
Journal of Computer Science 3 (1): 28-34, 2007
ISSN 1549-3636
© 2007 Science Publications

Corresponding Author: Aliouat Zibouda University of Ferhat Abbes, Faculty of Engineer Science, Computer Science
Department, Setif 19000 Algeria.

28

Formal Analysis of Fault-tolerant Algorithm

in the Time-triggered Architecture

1Aliouat Zibouda , 1Aliouat Makhlouf and 2Batouche Chawki
1Computer Science Department, University of Ferhat Abbes, Faculty of Engineer Science

Sétif 19000 Algeria,
2 Computer Science Department, Faculty of Engineer Science, University of Constantine

Contantine 25000 Algeria

Abstract: Time-Triggered architecture (TTA) provides a computing infrastructure for the design and
implementation of dependable distributed systems. The core building block of the TTA is the
communication protocol TTP/C. This protocol has been designed to provide no faulty nodes. TTP/C
integrates a set of fault-tolerant services like: message transmissions, clocks synchronization and
Group Membership Protocol (GMP). The GMP protocol ensures that each TTA node maintains a
private membership set, which records all the nodes that are believed to be nonfaulty. In the GMP
protocol previously studied in the literature, any detected faulty node was immediately excluded from
the group. This gradual exclusion process risks invalidating the protocol after N-3 successive failures if
the ability of faulty node reintegration was not implemented. Our contribution in this paper was to
remedy this serious problem. A node reintegration increases system survivability by allowing a
(recovering) transiently-faulty node to regain a group. Our proposal algorithm, devoted to node
reintegration inside the group membership protocol, was formally specified and verified using a
diagrammatic representation. The verification of the proposal has been checked with the well known
PVS theorem prover.

Keywords: Time-triggered Architecture, TTP/C, GMP, deductive verification, reintegration

INTRODUCTION

 The Time-Triggered Architecture (TTA) is
distributed computer architecture for the
implementation of highly dependable real-time systems.
TTA is intended for devices controlling safety-critical
electronic systems without mechanical backup, so-
called “by-wire” systems such as those for automotive
steering, braking and suspension control[1]. It has been
argued that the kind of reliability required in such
situations cannot be achieved without a careful formal
analysis of the mechanisms and algorithms involved[2,3].
A TTA system is provided with fault tolerance abilities
implemented in both hardware and software
components. Whereas the hardware relies on redundant
nodes and duplicated communication channels, the
software uses algorithms that control such basic
services as membership agreement, clique avoidance
and clock synchronization that are accomplished by
TTP/C. The Time-Triggered Protocol TTP/C is the core
of the communication level of TTA. Furthermore,
TTP/C is designed to provide an acceptable level of
fault tolerance. In particular, the protocol has to ensure
that non-faulty nodes receive consistent data despite the
presence of possibly faulty nodes or a faulty
communication channel. The provision of fault
tolerance is based on a number of assumptions, which

constitute the so-called fault hypothesis. The main
assumption for the algorithms implemented in TTP/C is
that a fault manifests itself as either a reception fault or
a consistent send fault of some node[4]. Especially,
TTP/C assumes that transmission faults are consistent,
that is, messages are received by either all non-faulty
nodes or none.
 In this regard, this paper is devoted to the transient
failures. The faulty node that has been excluded can
reintegrate the group membership after recovery
operation. For this, a detailed overview of formal
analysis work for the reintegration node is given in[5].
we concentrate our attention, in this paper, to the formal
verification of a node reintegration in the TTP/C group
membership protocol, thereby complementing and
extending previous work[5,6]. The group membership
algorithm[6] is modeled as a synchronous system. Its
verification is significantly more difficult than other
fault-tolerant algorithms because information about the
failure of processors is not available immediately but
only with a certain delay. Therefore one has to be very
careful when reasoning about possibly failed
components. Verification of safety properties, like the
requirement that all (non-faulty) processors of a system
should have the same view about the current

J. Computer Sci., 3 (1): 28-34, 2007

 29

membership status of other processors, is typically
accomplished by an induction proof.

 In order to establish the induction step, however,
one generally has to strengthen the invariant because
often enough the property of interest is not inductive.
Usually, repeated strengthening is necessary before an
inductive invariant is found and although some of the
strengthening can be generated automatically, this
becomes the main task when performing a mechanized
verification. We take an approach proposed by
Rushby[7] instead of expressing the correctness property
as one large conjunction, we use a set of disjunctively
connected formulas that can be seen as the
description of an abstract state machine[7]. Each
disjunction contains the desired property and
represents a particular configuration the membership
algorithm can reach.
 To establish the correctness of the algorithm, one
has to show that at every point in time, the system is in
one of these configurations. For the TTP group
membership algorithm, we have formally proved both
an agreement property, i.e., that every non-faulty node
considers the same set of processors to be part of the
membership and a self-diagnosis-reintegration property
that states: a faulty processor will eventually remove
itself from the membership and it will be re-integrated
to the group no later than 3n + 1 steps after the fault
occurred (n is the total number of processors involved
in GMP protocol). All definitions and proofs have been
developed and mechanically checked with the PVS
theorem prover system[6].

GROUP MEMBERSHIP PROTOCOL

 In a distributed system, an adherence protocol of
GMP group is a fault tolerant mechanism enabling to
get a consensus on the identities of non failed (correct)
processors. Any failed processor must be excluded from
the group at the end of limited time. Because of the
presence of other fault tolerance mechanisms in TTP/C
module, the GMP sub-module assumes that all fault
occurrences may be only of two types:
* Send fault: These faults are supposed to be

consistent that is, no processor of the group
receives anything, or all receive something that is
interpreted like an invalid message (invalid frame).
In other words, no faults are generated by the
communication bus.

* Receive fault: A processor affected by this type of
fault can't receive anything, or receives an invalid
message.

 From the moment where a processor becomes
faulty (first fault manifestation), its behavior towards
sending or receiving messages can be arbitrary. We
assume that the fault occurrences is sufficiently rare to
guarantee that when a processor fails, it flows out an

interval of time greater than 2n slots before another
processor of the group becomes faulty. Furthermore, it
will always remain at least two non faulty processors in
the system. Let's note that this hypothesis of rarity of
fault occurrences is based on the existing system
experience[8].
Under the previous hypothesis, the GMP protocol must
guarantee the following properties at all times:

* Validity of the local views of the group: At all
times, non-faulty processors should have all and only
the non-faulty processors in their membership sets.
∀ p∈ NFt : memt

p = NFt ∨ ∃ x ∉ NFt : memt
p= NFt ∪

{x}
 ∨ p∉ NFt : memt

p = ∅ memt
p ⊆ NFt ∨ {p}

* Agreement on members of the group:At all
times, all non-faulty processors should have the same
membership sets.
∀ p,q∈ NFt : memt

p = memt
q

* Self-diagnosis-reintegration in limited Time: A
processor that becomes faulty should eventually
diagnose its fault; empty its membership set and
reintegrate to the group in no more than 3n slots + 1.
 ∀ x: x∈ NFt ∧ x ∉ NFt+1 � ∃ s: 0<s ∧ s ≤3n +1 ∧ x∈
NFt+s

Algorithm description: In our model, we assume a set
proc of n processors, labeled 0, 1, …, n-1, that are
arranged in a logical ring. Every processor p maintains
a set memt

p (the membership set of processor p) that
contains all processors that p considers operational at
time t. In slot t the processor with label t mod n is the
broadcaster, denoted broadcaster(t). In addition to the
message data, the broadcaster sends those parts of its
internal state that are critical for the protocol to work
properly. More precisely, a CRC checksum that is
calculated over the data message and the critical state
information (which includes the membership set) is
appended to the message.
 For the analysis of the group membership
algorithm, it is sufficient to assume that a message
contains the broadcaster’s local view memt

b on the
membership.
 As the order of messages is statically defined, there
is no need for special membership messages to be sent.
Instead, a successfully received message is interpreted
as a life-sign of the sender and a receiver will maintain
the broadcaster in its local membership set if it agrees
with the broadcaster’s critical state information and
hence with its membership set. Conversely, if a
processor does not receive an expected message or does
not agree with the broadcaster’s view on the
membership, the broadcaster will be considered faulty
and the receiver removes it from its membership set.
 The group membership algorithm is designed to
operate in the presence of faults. A processor can be

J. Computer Sci., 3 (1): 28-34, 2007

 30

send-faulty, in which case it will fail to broadcast in its
next slot, while a receive-faulty processor will not
succeed in receiving the message of the next non-faulty
processor.
 We use NFt to denote the set of non-faulty
processors at time t and p ∉ NFt indicates that p is
either send-faulty or receive-faulty at time t.
Furthermore, sendst

b describes that the current
broadcaster b sends a message on the bus, while
arrivest

p means that the message sent by the broadcaster
arrives at the receiver p.
 At all slots, there is a broadcaster b will have to
send a message. Of course, a broadcaster can be faulty
(integrator) or non-faulty. The integrator has already
added itself in its own membership set. The following
specification shows the axiomatization of sendst

b as we
defined it in PVS:
 ���t : set[proc]
Sendst

b : bool
Arrivest

p : bool
Integratt p : bool
Sending : Axiom
LET b = broadcaster(t) IN
 b ∈ memt

b � sendst
b

 A message sent by the current broadcaster b will
arrive at a non-faulty processor p and also to the
integrator processor. Of course, there is no generation
of spontaneous messages and hence, messages arrive
only if they have been sent. These axioms also imply
that broadcasts are consistent: a message arrives either
at all non-faulty processors or, if the broadcaster is
send-faulty, at none of them. The PVS specification is
given as follows:
arrival : Axiom
LET b = broadcaster(t) IN
 sendst

b ∧ p ∈ ���t � arrivest
p

arrival_int : Axiom
LET b = broadcaster(t) IN
 sendst

b ∧ integratt p � arrivest
p

nonarrival : Axiom
LET b = broadcaster(t) IN
 ¬ sendst

b � ¬ arrivest
p

 The processor that has been detected failed and has
emptied its membership set will be integrator. The
following specification shows the axiomatization of
Integrating as defined in PVS:
 Integrating : Axiom
LET b = broadcaster(t) IN
memt

p = empty ¬ integratt
p ∧ � integratt+1

p
 The task of a group membership algorithm is to
diagnose the failure of a faulty processor and to inform
all non-faulty processors about it. In order to cause a
broadcaster to realize that it is send-faulty, the TTP
group membership algorithm uses an (implicit)
acknowledgment mechanism. A processor p that is the
broadcaster in slot t checks whether the next non-faulty
broadcaster, say q, that will send in the next slot has the
same membership set as q and in particular contains p

in its membership set. If so, p can conclude that its
broadcast was successful. Otherwise, either p is failed
to broadcast or q is receive-faulty. To resolve this
ambiguity, p waits for the next non-faulty broadcaster
following q, say r. If r contains p in its membership set
but not q while having the same view considering other
processors, the original message of p was then sent
correctly and q is failed. If p is not in r’s membership
set, but q is (and the rest of the membership sets of p
and r are the same), then q and r agree that p is failed to
send. In this case, p will remove itself from its own
membership set and fail silently.
 A similar mechanism could be used for diagnosing
receive faults: if a processor p does not receive an
expected message, it could check whether the next non-
faulty broadcaster maintained the original sender in its
membership set in which case p must realize that it has
suffered from a receive fault. However, TTP employs a
slightly different mechanism that is also used to avoid
the formation of disjoint cliques at the same time. A
clique c is a group g (g is a subset of global set of
processors) of processors where agreement on the
current state is reached only within the group g.
 Each processor p maintains two counters, acct

p
and rejt

p, which keep track of how many messages p
has accepted (successfully received) and rejected,
respectively. A processor p will increment the counter
rejt

p if p does not agree with the broadcaster’s view on
the membership. In p’s next broadcast slot, p checks
whether it has accepted more messages in the last round
than it has rejected. If so, p resets its counters and
broadcasts; the other case indicates that p suffered from
a receive fault. Therefore, p removes itself from the
membership set and by not broadcasting its message, p
can inform the other processors about its failure.
 Formally, the group membership algorithm is
described by a set of guarded commands. In every slot
t, every processor executes exactly one of these
commands. The guards are evaluated in a top-down
order. The formal description involves two additional
boolean state variables, prevt

p and doubtt
p. If a

processor p was the previous broadcaster and now waits
for being acknowledged, prevp is set to true, while
doubtp is true if p did not get acknowledged by its
successor and waits for the second successor to resolve
the conflict. In this case, the variable succt

p holds p’s
first successor which refused to acknowledge p.

FORMAL DESCRIPTION OF THE GMP
ALGORITHM

 The formal description of the GMP algorithm
needs one additional boolean state variable, integratt

p.
If a processor p was detected faulty integratt

p
 is set to

true. The following formal definitions list 20 such
guarded commands, with two of them, namely the
clauses (1) and (2), describing the behaviour of the

J. Computer Sci., 3 (1): 28-34, 2007

 31

current broadcaster and the remaining eighteen
commands consider the receivers. Among the latter, we
can identify four sub-categories: clause (3) deals with a
supposedly faulty processor that has already removed
itself from its membership set. The clauses (4) to (10)
describe the behaviour of a processor that has broadcast
a message and waits for acknowledgment. The clauses
(11) to (14) deal with a processor that has not been
acknowledged by its first successor and waits for the
second successor to disambiguate the situation. Finally,
the clauses (15) to (20) comprise all other receiving
processors.
 In a normal situation, the processor that is the
broadcaster in the current slot executes the clause (1).
In the exception to this ordinary behaviour of the
broadcaster (This broadcaster does not agree with other
processors that is, it has rejected more messages in the
previous TDMA round and hence its rej counter is
greater than its acc counter), the broadcaster must not
send and empties its membership set (clause (2)).
The clause (3) describes the behaviour of a processor
that has already emptied its membership set. Such a
processor will be reintegrated to the group but not
immediately. It resets the integrat flag to true and the
counters acc and rej to the values of 2 and 0,
respectively. Its membership set will then contain only
itself and the current broadcaster.
 The clauses (4) and (6) describe the behaviour of
the processor that has just been the broadcaster in the
previous slot, that is, has the prev flag is set (true). The
first case (clause (4)) describes the situation when the
processor, that has the integrat flag set, receives a
correct message (the boolean expression arrivep

t is true)
and the current broadcaster has accepted the previous
broadcaster's message. Therefore, the processor can
finish the acknowledgment process and reset the prev
and integrat flags to false. Moreover, because the last
message was accepted, the accp

t counter is increased.
 The clause (5) describes the behaviour of an
integrator processor, that without inspecting its
membership set (it is a faulty previous broadcaster),
receives a correct message. Therefore, the processor
can finish the acknowledgment process, inserts the
current broadcaster in its membership, resets the prev
flag to false and increases corresponding counter.
 If the previous broadcaster has received a negative
acknowledgment from its successor (clause (7)), it has
to examine another processor's membership on the
correctness of the original message transmission in
order to resolve the conflict whether it committed a
send fault or its first successor suffered from a receive
fault. Such processor will have the doubt flag set to
true.
 The clause (8) describes the behavior when the
current broadcaster is integrator and the receiver is a
previous broadcaster and has correctly received a
message.

 The clauses (11) to (14) concern a processor that
has doubt flag set to true.
 The clauses (15) and (18) describe the behaviour
when the processor receives a message and agrees with
the broadcaster's view on the membership. The receiver
is either a reintegrator processor or ordinary receiver
one.
 The clause (17) is evaluated to true when the
processor receives a message and agrees with the
integrator broadcaster's view on the membership.

broadcaster
(1) accp

t > rejp
t ∧

 accp
t ≥ 2 � memp

t+1 = memp
t

 ∧ prevp
t+1 = T

 ∧ accp
t+1 = 1 ∧ rejp

t+1 = 0
(2) otherwise � memp

t+1 = emptyset
 ∧ prevp

t+1 = F
 ∧ accp

t+1 = 0 ∧ rejp
t+1 = 0

Receiver
(3) memp

t = emptyset � integratp
t+1 = T

 ∧ memp
t+1 = {p,b}

 ∧ accp
t+1 = 2 ∧ rejp

t+1 = 0
(4) prevp

t ∧ arrivep
t

 ∧ memb
t = memp

t ∪{p}
 ∧ integratp

t � memp
t+1 = memp

t

 ∧ prevp
t+1 = F

 ∧ accp
t+1 = accp

t + 1
 ∧ integratp

t+1 = F
(5) prevp

t ∧ arrivep
t

 ∧ integratp
t � memp

t+1 = memp
t ∪ {b}

 ∧ prevp
t+1 = F

 ∧ accp
t+1 = accp

t + 1
 (6) prevp

t ∧ arrivep
t

 ∧ memb
t = memp

t ∪{p} � memp
t+1 = memp

t
 ∧ prevp

t+1 = F
 ∧ accp

t+1 = accp
t + 1

(7) prevp
t ∧ arrivep

t ∧
 memb

t = memp
t \ {p} � memp

t+1 = memp
t \{b}

 ∧ prevp
t+1 = F

 ∧ doubtp
t+1 = T

 ∧ rejp
t+1 = rejp

t + 1
 ∧ succp

t+1 = b
(8) prevp

t ∧ arrivep
t

 ∧ integratb
t � memp

t+1 = memp
t ∪ {b}

 ∧ accp
t+1 = accp

t + 1
 ∧ prevp

t+1 = F
(9) prevp

t ∧ nullp
t � memp

t+1 = memp
t \{b}

(10) prevp

t � memp
t+1 = memp

t \{b}
 ∧ rejp

t+1 = rejp
t + 1

(11) doubtp
t ∧ arrivep

t
 ∧ memb

t = memp
t ∪{p}\{succp

t}
 � memp

t+1 = memp
t

 ∧ accp
t+1 = accp

t + 1

J. Computer Sci., 3 (1): 28-34, 2007

 32

 ∧ doubtp
t+1 = F

(12) doubtp
t ∧ arrivep

t
 ∧ memb

t = memp
t ∪{succp

t ,b}\ {p}
 � memp

t+1 = emptyset
 ∧ doubtp

t+1 = F
 ∧ accp

t+1 = accp
t + 1

(13) doubtp
t ∧ nullp

t � memp
t+1 = memp

t \{b}

(14) doubtp

t � memp
t+1 = memp

t \{b}
 ∧ rejp

t+1 = rejp
t + 1

(15) arrivep
t ∧ integratp

t
 ∧ (memp

t = memb
t) � memp

t+1 = memp
t

 ∧ accp
t+1 = accp

t + 1
 ∧ integratp

t+1 = F
(16) arrivep

t ∧ integratp
t � memp

t+1 = memp
t ∪{b}

 ∧ accp
t+1 = accp

t + 1
(17) arrivep

t ∧ integratb
t
� memp

t+1 = memp
t ∪{b}

 ∧ accp
t+1 = accp

t + 1
(18) arrivep

t

 ∧ (memp
t = memb

t) � memp
t+1 = memp

t
 ∧ accp

t+1 = accp
t + 1

(19) nullp
t � memp

t+1 = memp
t \{b}

(20) otherwise � memp

t+1 = memp
t
 \ {b}

 ∧ rejp
t+1 = rejp

t + 1

APPROACH TO VERIFY THE PROPOSAL
ALGORITHM

 For the verification of the node reintegration part
of TTP/C group membership algorithm we apply a
method proposed by Rushby[7]. The requirements of
validity and agreement express properties that should
hold for all reachable states of the system. Such
invariants, or safety properties, are usually verified by
some form of induction proof. The configurations are
defined such that every single configuration implies the
desired property and to verify that property one has to
show that at all times the system is in one of these
configurations. Thus, the main part of the proof can be
represented as a configurations diagram. The diagram
for the group membership algorithm is shown in Fig. 1.
The nodes of the diagram represent the configurations
and arrows denote transitions from one configuration to
others and are labeled with transition conditions.
Configurations are parameterized by the time t and
describe the global state the system is in.
Configurations can have additional parameters such as
processors (x, y,) that behave differently from the
rest of system, or additional entities necessary to
describe the system state. The labels of transitions
express the preconditions for the system to move from
one configuration to another. For example, the label x =
z of the transition from integration-ok to stable means
that the system takes this transition if x is the last
broadcaster. The transition conditions leading from one

configuration need not necessarily be disjoint, but one
has to show that they are complete in the sense that
their disjunction is true.
 The diagram can be developed step-by-step. One
usually starts by defining some initial configuration or
the one in which the system stays under normal
circumstances, i. e. as long as no fault occurs. For TTP,
this central configuration is the one labeled stable. By
symbolically evaluating the algorithm in the current
configuration and by splitting on possible cases, we
generate some new configurations and the transitions
from the original configuration are labeled with the
appropriate conditions. By repeatedly applying this
construction on each transition and each new
configuration, one aims to develop a closed diagram.
To prove safety properties like validity or agreement,
one has then to demonstrate that every configuration
implies the desired property and that the disjunction of
the transition conditions leading from any one
configuration evaluates to true; this ensures that there is
no other configuration the system can possibly get into.
In order to prove liveness properties like self-diagnosis-
integration one has to establish that the system can not
loop forever on a configuration other than stable.
 There are several benefits to this approach: firstly,
the diagram can be developed incrementally and in a
totally systematic way by symbolically executing one
step of the algorithm in every configuration. Secondly,
the completed diagram is a suitable mean of analyzing
the difficult special cases of the algorithm and to
explain how and why it works (or doesn’t). Lastly, it
seems that the creative steps in developing the proof
can be accomplished easier than by using the traditional
way of repeated invariant strengthening. The
configurations as presented here generally are not
invariants and are therefore identified more easily.
 The next section describes how the configuration
diagram for the TTP group membership algorithm is
gradually developed and outlines the verification of the
two correctness requirements for the TTP group
membership algorithm.

DEVELOPING THE CONFIGURATION
DIAGRAM

 The system is said to be in a stable configuration if
the membership set of all non-faulty processors p is
equal to NFt. The set of all non-faulty processors at
time t and a faulty processor has already diagnosed its
fault and thus removed itself from its own membership
set. For stable, the two safety properties validity and
agreement follow immediately from these definitions.
Moreover, stable is the initial configuration of the
system.
Stable (t, z) : bool =
 recent (t, z)
 ∧ ∀p : p ∈ NF t � memt

p = NF t
 ∧ p = z ⇔ acct

p > rejtp
 ∧ p ≠ z � acct

p > rejtp+1

J. Computer Sci., 3 (1): 28-34, 2007

 33

 ∧ prevt
p = T ⇔ p = z

 ∧ doubttp = F
 ∧ integrattp = F

 In the configuration stable(t z) the counters of
non-faulty processors are set such that acct

p rejt
p+1.

reintegration_member_Two
(t,z,x,R)

reintegration
(t,z,x,R)

reintegration-ok
(t,z,x)

good

reintegration-member
(t,z,x,R)

Stable(t,z)

good-missedLattent(t,x,z)
b=x

 no message b ≠≠≠≠ x ∧∧∧∧ x ≠≠≠≠z
 good missed

missed-rcv
x-not-ack
(t,x,z,S)

Excluded-z-doubt
(t,z,x,S)

missed-rcv
(t,x,z,S)

good
b=x

no message

b=x

 message rejected

good

reintegration-1st-succ
(t,z,x,R)

b ? x
x = z

b=x
good disagree

x=zb ? x
x = z

b=x
good agree

b ? x
good

b ≠≠≠≠ x

x ≠≠≠≠ z

Excluded-doubt
no-2nd-succ

(t,z,x,S)

good
good

good
reintegration-2nd-succ

(t,z,x)
 good

Excluded
(t,z,x,S)

Excluded-doubt
(t,x,y,z)

good
no ack

good

Pending-self-diag
no-1st-succ

(t,x,z,S)
 good

Pending-self-diag
(t,x,z,S)

good disagree

good missed

good

b=x self diag

b=x self diag
 x∉∉∉∉ memt

x

Stable_faulty
(t,x,z)

b=x self diag

b=x self diag

 good no ack

b=x
 message no ack

 Fig. 1: Configuration diagram for the Global TTP membership algorithm

 This is to allow for a non-faulty processor p to
cope with a send fault of other broadcaster in the next
round, in which case, the counter rejtp will be
increased; this should not lead to p removing itself from
its own membership set in its next sending slot, for
which acct

p rejt
p must hold. However, the most

recent non-faulty broadcaster, say z, cannot satisfy this
condition as in its sending slot z, sets the counters:
acct

z = 1 and rejt
z = 0.

 The expression recent (t, z) denotes that at time t,
processor z is the recent non-faulty broadcaster.
 The group membership algorithm is said to be in
the stable-faulty configuration at time t, for t > 0, if the
membership set of all non faulty processors is equal to
NF t and the faulty processor x has its membership
set empty.
stable-faulty (t, x, z) : bool =
 x ∉ NF t ∧ recent (t, z)
 ∧ ∀ p : before (t, z, p) � p ∉ NF t
 ∧ ∀ p : (p ∈ NF t ∨ p = x) � memt

p = ∅ ⇔ p = x
 ∧ memt

p = NF t ⇔ p ≠ x

 ∧ acct
p = rejtp +1 ⇔ (p = z ∨ p = x)

 ∧ integrattp = F
 ∧ prevt

p = T ⇔ p = z
 ∧ doubttp = F
 If a processor, say x, which was detected faulty and
has its membership set empty becomes integrator, the
system will be into a new configuration, that we call
reintegration.
reintegration (t, x, z, R) : bool =
 x ∉ NF t ∧ z ∈ NF t
 ∧ ∃ p : p ∈ NF t ∧ before (t, p, z)
 ∧ ∀ p : (p ∈ NF t ∨ p = x) � memt

p = R ⇔ p = x
 ∧ acct

p > rejtp +1 ⇔ p = x
 ∧ acct

p = rejtp +1 ⇔ p = z
 ∧ integrattp = T ⇔ p = x
 ∧ prevt

p = T ⇔ p = z
 ∧ doubttp = F
 If the group membership algorithm is in stable-
faulty configuration at time t with respect to x and z,
then the agreement property holds at time t. The system

J. Computer Sci., 3 (1): 28-34, 2007

 34

transits into the stable-faulty configuration if x is the
current broadcaster but fails to send a message through
command (2). Thus, the non-faulty processors remove x
from their membership sets by executing the command
(19) or (9) in the case of z. Therefore, all non-faulty
processors have the same membership sets. The
correctness property self-diagnosis-reintegration is a
liveness property that is, once has left stable
configuration, it can not be trapped in one of other
configurations. It must be return to stable state no later
than 3n+1 steps after the fault occurred.
 Let the system be in the stable-faulty configuration
at time t with respect to x and z and let b denoted the
broadcaster at time t. If membership set’s x is empty
and if no new fault occurs in the next step then the
system will be in the reintegration configuration at time
t + 1 with respect to x, b and the set {x, b}.
Stable-faulty to reintegration : LEMMA
LET b = broadcaster(t) IN
Stable-faulty(t,x,z) ∧ b ∈ NF t ∧ NF t =NF

t+1 � reintegration (t+1, x, b, {x, b})

CONCLUSION

 In the previous GMP protocol of TTP/C of the
TTA architecture, any detected faulty node, is
immediately excluded from the group. This gradual
exclusion process risks invalidating the protocol after
N-3 successive failures if the ability of faulty node
reintegration is not implemented. Our contribution in
this paper is to remedy this serious problem. Therefore,
we have proposed a formal framework to model the
group membership protocol with nodes reintegration.
This additional part allows GMP protocol to get more
availability in the context of critical embedded
applications.
 The proofs of the main correctness properties of
the algorithm have been developed and mechanically
checked with the assistance of the PVS specification
and verification system.
 Further research is concerned with formally
specifying the startup algorithm and finding ways to
clearly identify the relationships and interfaces between
group membership, startup and clock synchronization
services.

REFERENCES

1. Rushby, J., 2002. An overview of formal

verification for time-triggered architecture. Proc.
7th Intl. Symp. on Formal Techniques in Real-Time
and Fault-Tolerant Systems. Vol. 2469 of LNCS,
Springer-Verlag, pp: 83-105.

2. Kopetz, H. and G. Bauer, 2002. The time-triggered
architecture. Special Issue of IEEE on Modeling
and Design of Embedded Software.

3. Anonymous, 2002. Time-Triggered Protocol
TTP/C High-Level Specification Document.
Available on request from TTTech at
http://www.tttech.com/technology/ specrequest.
html.

4. Bauer, G., H. Kopetz and W. Steiner, 2002.
Byzantine Fault Containment in TTP/C. Proc. Intl.
Workshop on Real-Time LANs in the Internet age,
pp: 13-16.

5. Aliouat, Z., 2006. Formal Modeling and analysis of
a node Reintegration in the Time-Triggered
Architecture. Asian J. Inform. Technol., 5: 706-
711.

6. Pfeifer, H., 2000. Formal Verification of the TTP
Group Membership Algorithm. In Tommaso
Bolognesi and DiegoLatella, (Eds.), Formal
Methods for Distributed System Development
Proceedings of FORTE XIII / PSTV XX 2000,
Pisa, Italy, Kluwer Academic Publishers, pp: 3-18.

7. Rushby, J., 2000. Verification Diagrams Revisited:
Disjunctive Invariants for Easy Verification. In E.
A. Emerson and A. P. Sistla, (Eds.), Computer
Aided Verification (CAV 2000), volume 1855 of
LNCS, pages 508–520, Chicago, IL, Springer-
Verlag.

8. Pfeifer, H., 2003. Formal analysis of fault-tolerant
algorithms in the time-triggered architecture. Ph.D.
Thesis, Universität Ulm, Germany.

