
Journal of Computer Science 3 (9): 717-722, 2007
ISSN 1549-3636
© 2007 Science Publications

717

Experimental Comparison Between Evolutionary Algorithm and Barycenter

Heuristic for the Bipartite Drawing Problem

Zoheir Ezziane
Faculty of Information Technology, Higher Colleges of Technology,

Al-Ain, P.O. Box. 17258, UAE

Abstract: This research investigates the use of intelligent techniques for the bipartite drawing problem
(BDP). Due to the combinatorial nature of the solution space, the use of traditional search methods
lead to exponential time. Hence, the aim of this paper is to speed up the search time when solving the
BDP through the use of Evolutionary Algorithms (EAs) and Barycenter Heuristic (BC). EA is applied
on the BDP wherein genetic operators such as crossover and mutation are employed while searching
for the best possible solution. The results show that the EA approach guides the search towards optimal
solutions and in many instances it outperforms the BC.

Key words: Evolutionary algorithm, edge crossing, bipartite graph, barycenter heuristic, NP-complete

problems

INTRODUCTION

 The Evolutionary Algorithm (EA) offers the
promise of a widely applicable, robust global search
strategy. Good EA-performance is a matter of finding a
proper balance between exploitation and exploration.
This in turn is affected by EA-parameters such as the
selection strategy, the genetic operators and their
corresponding rates.
 Directed graphs are used to represent aspects of
systems in a wide variety of disciplines, including
software, networking, information engineering and
management. The usefulness of these representations
depends on the layout of the graph. Thus there has been
considerable interest in algorithms for drawing directed
graphs so they are easy to understand and remember[1,2].
 One of the most important constraints, which
should be respected, is that there are as few edge
crossings as possible in drawing a bipartite graph. The
number of crossings in a drawing of a bipartite graph
does not depend on the precise position of vertices but
only on the ordering of the vertices within each subset.
Therefore, the problem of reducing edge crossing is the
combinatorial one of choosing an appropriate ordering
for each subset. Even though this combinatorial status
simplifies the problem, it was shown that the problem
of minimizing edge crossing for the bipartite graph is
NP-complete[3].
 Most of the known heuristics for the bipartite graph
problem produce acceptable drawings. However,
obtaining better drawings has always attracted many
researchers[4,5,6] in finding fewer edge crossings than it
is possible to get with heuristics. May and Szkatula[7]

have applied simulated annealing to BDP and Lee et
al.[8] proposed a neural network model for this problem.
Genetic algorithms (GAs) and EAs were used in
solving NP-complete problems[9,10].

Background: Let G = (V, E) be a bipartite graph such
as V = P∪Q, P∩Q = ∅. The barycenter heuristic (BC)
orders the vertices according to the average of the
positions of the vertices incident with them. The x-
coordinate of each vertex u∈L1 is chosen as the
barycenter (average) of the x-coordinates of its
neighbors. That is, x1(u) is selected to be avg(u) for all
u ∈ L1.
 Where

�
�
�

�

�
�
�

�

∈
= �

uvu N
vx

d
uavg)(

1
)(0

 The number of crossings output by the barycenter
heuristic is defined by avg (G,x0). In the median
heuristic, the x-coordinate of each u ∈ L1 is chosen to
be a median of the x-coordinate of the neighbors of u.
The BC heuristic and the median heuristic were
investigated and compared[11]. Tests have shown that
the BC heuristic performs slightly better than the
median heuristic.
 The density of bipartite graphs is a very important
factor. The density of a bipartite graph G is defined by
the ratio between the number of edges in G and in the
corresponding complete bipartite graph Km,n. Note this
latter graph has density of 100%. In this research, the
BC heuristic is compared with the EA model.

J. Computer Sci., 3 (9): 717-722, 2007

 718

EVOLUTIONARY ALGORITHM FOR THE
BIPARTITE GRAPH

Initialization: Simple Markov-chain algorithms have
been used to generate bipartite graphs with a given
degree sequence[12]. It was supposed that given a
sequence of m+n positive integers r1, r2, …, rm, c1, c2,

…, cn such that � �= ji cr and then count the number
of m by n, (0,1)-matrices A which satisfy the following
property: the sum of the entries of the ith row of A is ri
and the sum of jth column is cj for i = 1, …, m and j = 1,
…, n. Such matrices represent labeled bipartite graphs
and the integer sequence is labeled degree sequence, as
the numbers correspond to the degrees of the vertices in
a bipartite graph. In this paper, the approach is to fix a
certain number of vertices n and a ratio density factor �
for the bipartite graph Bg. The total possible number of
edges (total_edges) is calculated as ()� 	2/1−× nn and then
the number of needed edges (required_edges)
becomes ()� 	100/_ ρ×edgestotal . Once the graph has been
created with a number of edges equal to required_edges
and � as its density, a checkup procedure is called to
ensure that the graph is bipartite. This checkup
procedure creates two sets S1 and S2 which compose the
generated bipartite graph, where no adjacent vertices
exist within the same set. Subsequently a population of
randomly genotypes is also generated. Each genotype I
is represented by a 2-subset Pi and Qi of vertices from
the previously generated bipartite graph.
 The evaluation function counts the number of edge
crossings, which is considered as the fitness value for
each genotype. Thus, the smallest number of edge
crossings will be targeted within the process of EA
model.

Reproduction/Selection: Reproduction is a process
that makes more copies of better chromosomes in a
population. The strings with a higher fitness value have
a higher probability of contributing one or more
offspring in the next generation. Various sampling
methods for selecting individuals for reproduction are
introduced in[13]. The Elitist method used here, always
selects the best genotype (individual) to be present in
the new population. Thus, an individual with the
smallest number of edge crossings will be preserved in
an effort to get better offspring in future generations.
The best member of the previous generation is stored as
the last in the list. If the best member of the current
generation is worse then the best member of the
previous generation, the latter one would replace the
worst member of the current population. In addition, if
best individual from the new population is better than

the best individual from the previous population, then it
is preserved. Well-performing parents are transferred to
the next generation and only the badly-performing
parents are replaced. The parents are selected after
calculating the relative fitness and cumulative fitness
for each member (individual). Consequently, the
parents are selected based on the cumulative fitness.
 To create a concrete evolutionary algorithm, it is
necessary to fix some of its parameters. Genetic
operations need to be designed in order to alter the
composition of the children during reproduction. One
needs to define crossover and mutation and the way that
the candidates for parents and operators are chosen.
 Mutation is a unary operation which increases the
variability of the population by making point-wise
changes in the representation of the individuals.
Crossover combines the features of two parents to form
two new individuals by swapping corresponding
segments of parents’ representations.
 Indeed, the crossover of two good graph drawings
are not only very likely to produce undesirable
offspring but also very time consuming when applied to
many individuals belonging to the population of graphs.
There are many crossover operators designed for graph
drawings, but showed very discouraging results. For
example, Hobbs and Rodgers[14] introduced a crossover
operator that picks the nodes from each parent
according to their positions in the drawing, but
unfortunately no major improvement was recorded.
 In general, evolutionary algorithm outperforms
other simpler heuristics, the main problem being long
computation time. To avoid it, one can simplify the
process by, for example, remove crossover, simplifying
mutation and using a simple evaluation function. In
addition, based on the experiments conducted on
bipartite graphs, there was no crossover operation
which would make improvements to the current
population and therefore it was another reason to
discard the use of a crossover operator and use instead a
pure mutation-based evolutionary method[15,16,17].

Mutation: Mutation is a process in which a sudden
change is applied in the structure of a chromosome. A
bit is selected randomly in the chromosome and its
value is changed to some other value. Mutation is a
very important operator in EAs. It acts like a local
improvement operator and reduces the chance of
getting stuck at the local optimum during the
generation-by-generation progress.

Analysis of the Problem: Let G = (V0, V1, E) denotes
a bipartite graph where V0 and V1 are the two sets of
independent vertices and E is the edge set. It is assumed

J. Computer Sci., 3 (9): 717-722, 2007

 719

that �V0�V1� = n and �E� = m. Let bcr (G) denote the
bipartite crossing number of G, that is, bcr (G) is the
minimum edge crossings over all drawings of G.
Computing bcr (G)is NP-hard[3] even when the ordering
of vertices in V0 is fixed[18], where a polynomial time
algorithm was designed and approximated bcr (G) by a
factor of 3.
 A polynomial-time algorithm has also been
proposed[19] for the minimum edge crossings problem
for two-layered graphs with vertex pairs. A greedy
strategy is used to align the vertices so that edge-
crossings become as small as possible. At each
iteration, a vertex pair pi is found that minimize a well
defined cost function. Moreover, a polynomial time
approximation algorithm with the performance
guarantee of O (log4

n) time the optimal is known for the
crossing number of degree bounded graphs[20], no
polynomial time algorithm approximation algorithm
whose performance is guaranteed has been known for
approximating bcr (G)[21].
 The structure of bipartite drawing was also related
to the linear arrangement problem[21], which is another
well-known problem in the theory of VLSI. An upper
bound was constructed resulting in an O (n1.6) time
algorithm for computing bcr (G) when G is tree.
 The general principle underlying evolutionary
algorithms is that of maintaining a population of
possible solutions. The population undergoes an
evolutionary process which imitates the natural
biological evolution. In each generation better solutions
have greater possibilities to reproduce, while worse
solutions have greater possibilities to die and to be
replaced by new individuals. To distinguish between
good and bad solutions an evaluation function needs to
be defined. In this research, the number of crossings is
used to evaluate individuals.
 In the bipartite problem, the chromosome is
encoded in the form of a 2-array structure representing
the two subsets of the BDP. For example, consider a
10-vertex bipartite graph that is represented by the two
following subsets in Fig. 1.
 Thus, each chromosome is represented by a 2-
subset array and the fitness is calculated as the number
of edge crossings. The fitness of the graph shown in
Fig.1 is equal 12.

Applying the BC heuristic: A sample graph is used to
show how the BC performs, which is shows in Fig.1.
The BC orders the vertices according to the average of
the positions of the vertices incident with them. For
example, the first vertex in the second set has an
average of the vertices’ positions incident with it equal
zero. However, as for the second vertex, average (Set 2

79486

152103

Set1{6,8,4,9,7}

Set2{3,10,2,5,1}

Fig. 1: A bipartite graph

79486

512103

Set1{6,8,4,9,7}

Set2{3,10,2,1,5}

Fig. 2: The BC Heuristic

[2]) = ½ ((position (8)+position (4)) = ½ (2+3) = 2.5.
The values for the other vertices are given as under:

Average (Set2 [1]) = 0, average (Set2 [2]) = 2.5,
average (Set2 [3]) = 3, average (Set2 [4]) = 4,
average (Set2 [5]) = 3.25;

 Figure 2 shows the graph of Fig. 1 with Set2
permuted according to the BC heuristic, which ordered
the vertices according to the average of the vertex
positions found in the previous calculations. After
performing the ordering, the results show that number
of edge crossings is decreased to 10, whereas before
applying the BC heuristic, there were 12 crossings.

Mutation: Steps of the procedure mutate:

• Assume there are n1 vertices in set1 and n2 vertices

in set2 in a bipartite graph G
• Each vertex i ∈ set1 mutates with a probability ρ to

another vertex k within the range [1..n1] which has
not been selected previously

• Each vertex j ∈ set2 mutates with a probability ρ to
another vertex l within the range [1..n2] which has
not been selected previously

• After all mutation operations are completed, re-
evaluate the number of crossings in graph G

 Figure 3 shows the graph of Fig. 1 with Set1
mutated to {7,4,8,6,9}. The number of edge crossings
has changed to 19.

J. Computer Sci., 3 (9): 717-722, 2007

 720

96847

152103

Set1{7,4,8,6,9}

Set2{3,10,2,5,1}

Fig. 3: Graph of Fig. 1 after Mutating Set1

RESULTS AND DISCUSSION

 In this section, test runs are described and analyzed
for various experiments with different parameter
settings. In all test runs, bipartite graphs are denoted as
G = (V0, V1, E). Population size should be large enough
in order to give an unbiased view of the search space.
On the other hand, too large population size makes the
algorithm computationally intractable. Mutation rate
increases the variability of the population. Naturally,
there is again in a tradeoff situation: if a mutation rate
becomes too large (i.e. close to 1.0), the algorithm
wanders aimlessly in the search space. On the other
hand, mutation rate should not be too low, since no
crossover operations are used in this research. Number
of iterations is also recorded to find out the best result.
The maximum number of iterations is 500, which
specifies the point where the algorithm stops. Graph
density is also used to test the performance of EA.
Subsequently, BC heuristic is also compared against the
EA.
 All test results represent the averages of multiples
runs of the EA on the same graph. As a measure of the
dispersion of the results, standard deviation is
calculated in various scenarios. When graph size is 10
and the graph density ranges from 10 to 90%, the
number of crossings for the BC and EA is always the
same for all test runs, whereas the number of iterations
needed by EA to outperform the BC is different from
one run to another.
 The mutation rate for the EA was set to 0.8. In this
analysis various sets of data have been considered. Fig.
4 shows the performance of the evolutionary model
compared with the BC heuristic approach, where graph
order set to 10 and graph density equal to or less than
90%. In this figure, the population size for the EA is set
to 10. Having a relatively small population size, the
number of iterations needed to outperform the BC
heuristic reached 200.

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Graph Density

Number of Crossings (BC)

Number of Crossings (EA)

Fig. 4: BC Heuristic vs. EA (Pop. Size = 10)

0

5

10

15

20

25

30

35

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Graph Density

Number of Crossings (BC)
Number of Crossings (EA)

Fig. 5: BC Heuristic vs. EA (Pop. Size = 30)

 In terms of performance, Fig. 5 shows quite similar
results as Fig. 4 except that the EA population size
parameter is changed to 30. With a more diverse
population, the EA needed less number of iterations to
outperform the BC heuristic. The number of iterations
to find less number of edge crossings did not exceed 50.
 As the graph order increases, small population size
such as 10 would need as much as 500 iterations to get
the same results. When population size is increased to
50 or 70, the number of iterations has slightly
increased. Population sizes used in Fig. 6 and 7 were 30
and higher for any graph order equal 17. Fig.6 shows
that the EA always outperforms the BC heuristic for
graphs with densities greater than 50%.
 Figure 7 also illustrates the performance of the EA
compared to the BC heuristic on graphs of order 17 and
densities less than 50%. As the graph order increases,
the number of edge crossings will always be smaller
compared to graphs with small densities as it is
indicated in Fig. 6 and 7. Finally, Fig. 8 shows how the
graph density affects the number of iterations needed
for EA to outperform the BC heuristics.

J. Computer Sci., 3 (9): 717-722, 2007

 721

0
10
20
30
40
50
60
70

80
90

100

0.6 0.6 0.6 0.6 0.7 0.7 0.7 0.7 0.8 0.8 0.8 0.8 0.9 0.9 0.9
Graph density

Number of crossings (BC)

Population size (EA)

Number of crossings (EA)

Fig. 6: BC heuristic vs. EA for graphs of densities

greater than 50%

0
20
40
60
80

100

0.1 0.1 0.2 0.2 0.3 0.3 0.4 0.4 0.4
Graph density

Number of crossings (BC)

Population size (EA)

Number of crossings (EA)

Fig. 7: BC Heuristic vs. EA for graphs of densities less

than 50%

0
50

100
150

200

250

1 3 5 7 9 11 13 15 17 19 21 23
Averaged test

Density percent

Number of
Iterations (EA)

Fig. 8: Graph density vs. number of iterations

CONCLUSION

 Rosete-Suarez et al.[16] studied minimizing edge-
crossing with an evolutionary graph drawing and found
interesting results. They found that scarce graphs with
almost the same number of nodes (20 or 30) as the
dense graphs are much easier for the algorithm than
dense graphs, which indicated that the number of nodes
was not a good indication of the problem difficulty.
Consequently, another comparison was made with
regards to the number of edges for dense graphs with 20
nodes and around 48 edges and they concluded that a
closer relation was found between problem difficulty
and the number of edges than the number of nodes.

They also studied other factors, besides minimizing
edge-crossing, that are used when drawing graphs. A
simple method was shown for acquiring and satisfying
the subjective preferences of the users in order to good
layouts.
 In this study, experiments were conducted to show
the performance of EA compared to the BC heuristic.
Results indicate that for small graphs or relatively
larger graphs, EA always found less number of
crossings needed than in the BC heuristic approach. In
small graphs for example, where the graph order was
set to 10, the graph density did not make any
differences as far as the performance of both
approaches was concerned. However, when graph order
was set to 17, the density factor was important, i.e.,
higher density graphs generated more edge crossings
than lower density graphs.
 The effectiveness of evolutionary computations
depends on the interaction of representations used for
the problem solutions, the reproduction/selection
operators used and the configuration of the EA used.
This research has demonstrated the power that exists
within the evolutionary model, which outperforms the
traditional methods, especially when the EA parameters
are well tuned.

REFERENCES

1. Jing, Y. and K. Cheng, 2001. Vector generation for

power supply noise estimation and verification of
deep submicron designs. IEEE Transactions on
Very Large Scale Integration (VLSI) Systems,
9 (2): 329-340.

2. Merz, P. and F. Bernd, 2000. Fitness landscapes,
mimetic algorithms and greedy operators for graph
bipartitioning. Evol. Comp., 8 (1): 61-91.

3. Garey, M.R. and D.S. Johnson, 1983. Crossing
Number is NP-Complete. SIAM J. Algebraic and
Discrete Methods, 4 (3): 312-316.

4. Jünger, M. and P. Mutzel, 1997. 2-Layer
straightline crossing minimization: Performance of
exact and heuristic algorithms. J. Graph
Algorithms Appl., 1: 1-25.

5. Marti, R., 1998. Tabu search algorithm for the
bipartite drawing problem. Eur. J. Operat. Res.,
106 (2-3): 558-569.

6. Stallmann, M., F. Brglez and D. Ghosh, 2001.
Heuristics, Experimental Subjects and Treatment
Evaluation in Bigraph Crossing Minimization,
ACM J. Exp. Algorithmics, 6: (8): 1-42.

7. May, M. and K. Szkatula, 1988. On the Bipartite
Crossing Number. Control CyberNet,
17 (1): 85-98.

J. Computer Sci., 3 (9): 717-722, 2007

 722

8. Lee, K.C., N. Funabiki and Y. Takifuji, 1992. A
Parallel Improvement Algorithm for the Bipartite
Subgraph Problem. IEEE Trans. Neural Networks,
3: 139-145.

9. Ezziane, Z., 2002. Job Sequencing in an
Evolutionary Paradigm. Cybernetics and Systems:
An Int. J., 33 (2): 161-170.

10. Ezziane, Z., 2002. Solving the 0/1 Knapsack
Problem using an Adaptive Genetic Algorithm.
Artificial Intelligence for Engineering Design,
Analysis and Manufacturing (AIEDAM),
16 (1): 23-30.

11. Makinnen, E. and M. Sieranta, 1994. Genetic
Algorithms for Drawing Bipartite Graphs. Int. J.
Comp. Math., 53: 157-166.

12. Kannan, R., P. Tetali and S. Vempala, 1997.
Simple Markov-chain algorithms for generating
bipartite graphs and tournaments. Proceedings of
the eighth annual ACM-SIAM symposium on
Discrete algorithms, New Orleans, Louisiana,
USA, 193-200.

13. Michalewicz, Z., 1996. Genetic Algorithms+Data
Structures = Evolution Programs, 3rd Edn.,
Springer, New York.

14. Hobbs, M.H.W. and P.J. Rodgers, 1998.
Representing Space: A Hybrid Genetic Algorithm
for Aesthetic Graph Layout. In Frontiers in
Evolutionary Algorithms, FEA’98, Proceedings of
the 4th Joint Conference on Information Sciences,
JCIS’98, 2: 415-418.

15. Newton, M., O. Sykora, M. Withall and I. Vrto,
2002. A PVM Computation of Bipartite Graph
Drawings.
http://parc.lboro.ac.uk/research/projects/parseqgd/s
topara/stopara.pdf accessed on 6th August 2006.

16. Rosete-Suarez, A., M. Sebag and A. Ochoa-
Rodriguez, 1999. A study of Evolutionary Graph
Drawing. Technical Report,
http://citeseer.ist.psu.edu/411217.html accessed on
7th November 2006.

17. Branke, J., F. Bucher and H. Schmeck, 1997. A
Genetic Algorithm for Undirected Graphs. In J. T.
Alnader Edn., Proceedings of 3rd Nordic Workshop
on Genetic Algorithms and their Appli., 193-206.

18. Eades, P. and N. Wormald, 1994. Edge Crossings
in Drawings of Bipartite Graphs. Algorithmica,
1: 379-403.

19. Yamaguchi, A. and H. Toh, 2001. Two-Layered
Genetic Network Drawings with Minimum Edge
Crossings, Genome Informatics, 12: 456-457.

20. Leighton, F.T. and S. Rao, 1988. An Approximate
max flow min cut theorem for multicommodity
flow problem with applications to approximation
algorithm. In the 29th Annual IEEE Symposium on
Foundation of Computer Science, IEEE Computer
Society Press, Los Alamitos, 422-431.

21. Shahrokhi, F., F. Sykora, L.A. Szekely and I. Vrto,
2001. On Bipartite Drawings and the Linear
Arrangement Problem, SIAM J. Comp.,
30 (6): 1773-1789.

