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Abstract: This research investigates the use of intelligent techniques for the bipartite drawing problem 
(BDP). Due to the combinatorial nature of the solution space, the use of traditional search methods 
lead to exponential time. Hence, the aim of this paper is to speed up the search time when solving the 
BDP through the use of Evolutionary Algorithms (EAs) and Barycenter Heuristic (BC). EA is applied 
on the BDP wherein genetic operators such as crossover and mutation are employed while searching 
for the best possible solution. The results show that the EA approach guides the search towards optimal 
solutions and in many instances it outperforms the BC.  
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INTRODUCTION 
 
 The Evolutionary Algorithm (EA) offers the 
promise of a widely applicable, robust global search 
strategy. Good EA-performance is a matter of finding a 
proper balance between exploitation and exploration. 
This in turn is affected by EA-parameters such as the 
selection strategy, the genetic operators and their 
corresponding rates. 
 Directed graphs are used to represent aspects of 
systems in a wide variety of disciplines, including 
software, networking, information engineering and 
management. The usefulness of these representations 
depends on the layout of the graph. Thus there has been 
considerable interest in algorithms for drawing directed 
graphs so they are easy to understand and remember[1,2]. 
 One of the most important constraints, which 
should be respected, is that there are as few edge 
crossings as possible in drawing a bipartite graph. The 
number of crossings in a drawing of a bipartite graph 
does not depend on the precise position of vertices but 
only on the ordering of the vertices within each subset. 
Therefore, the problem of reducing edge crossing is the 
combinatorial one of choosing an appropriate ordering 
for each subset. Even though this combinatorial status 
simplifies the problem, it was shown that the problem 
of minimizing edge crossing for the bipartite graph is 
NP-complete[3]. 
 Most of the known heuristics for the bipartite graph 
problem produce acceptable drawings. However, 
obtaining better drawings has always attracted many 
researchers[4,5,6] in finding fewer edge crossings than it 
is possible to get with heuristics. May and Szkatula[7] 

have applied simulated annealing to BDP and Lee et 
al.[8] proposed a neural network model for this problem. 
Genetic algorithms (GAs) and EAs were used in 
solving NP-complete problems[9,10]. 
 
Background: Let G = (V, E) be a bipartite graph such 
as V = P∪Q, P∩Q = ∅. The barycenter heuristic (BC) 
orders the vertices according to the average of the 
positions of the vertices incident with them. The x-
coordinate of each vertex u∈L1 is chosen as the 
barycenter (average) of the x-coordinates of its 
neighbors. That is, x1(u) is selected to be avg(u) for all 
u ∈ L1. 
 Where  
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 The number of crossings output by the barycenter 
heuristic is defined by avg (G,x0). In the median 
heuristic, the x-coordinate of each u ∈ L1 is chosen to 
be a median of the x-coordinate of the neighbors of u.  
The BC heuristic and the median heuristic were 
investigated and compared[11]. Tests have shown that 
the BC heuristic performs slightly better than the 
median heuristic.  
 The density of bipartite graphs is a very important 
factor. The density of a bipartite graph G is defined by 
the ratio between the number of edges in G and in the 
corresponding complete bipartite graph Km,n. Note this 
latter graph has density of 100%. In this research, the 
BC heuristic is compared with the EA model. 
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EVOLUTIONARY ALGORITHM FOR THE 
BIPARTITE GRAPH 

 
Initialization: Simple Markov-chain algorithms have 
been used to generate bipartite graphs with a given 
degree sequence[12]. It was supposed that given a 
sequence  of  m+n   positive integers r1, r2, …, rm, c1, c2, 

…, cn such that � �= ji cr  and then count the number 
of m by n, (0,1)-matrices A which satisfy the following 
property: the sum of the entries of the ith row of A is ri 
and the sum of jth column is cj for i = 1, …, m and j = 1, 
…, n. Such matrices represent labeled bipartite graphs 
and the integer sequence is labeled degree sequence, as 
the numbers correspond to the degrees of the vertices in 
a bipartite graph. In this paper, the approach is to fix a 
certain number of vertices n and a ratio density factor � 
for the bipartite graph Bg.  The total possible number of 
edges (total_edges) is calculated as ( )� 	2/1−× nn  and then 
the number of needed edges (required_edges) 
becomes ( )� 	100/_ ρ×edgestotal . Once the graph has been 
created with a number of edges equal to required_edges 
and � as its density, a checkup procedure is called to 
ensure that the graph is bipartite. This checkup 
procedure creates two sets S1 and S2 which compose the 
generated bipartite graph, where no adjacent vertices 
exist within the same set. Subsequently a population of 
randomly genotypes is also generated. Each genotype I 
is represented by a 2-subset Pi and Qi of vertices from 
the previously generated bipartite graph. 
 The evaluation function counts the number of edge 
crossings, which is considered as the fitness value for 
each genotype. Thus, the smallest number of edge 
crossings will be targeted within the process of EA 
model. 
 
Reproduction/Selection: Reproduction is a process 
that makes more copies of better chromosomes in a 
population. The strings with a higher fitness value have 
a higher probability of contributing one or more 
offspring in the next generation. Various sampling 
methods for selecting individuals for reproduction are 
introduced in[13]. The Elitist method used here, always 
selects the best genotype (individual) to be present in 
the new population. Thus, an individual with the 
smallest number of edge crossings will be preserved in 
an effort to get better offspring in future generations. 
The best member of the previous generation is stored as 
the last in the list. If the best member of the current 
generation is worse then the best member of the 
previous generation, the latter one would replace the 
worst member of the current population. In addition, if 
best individual from the new population is better than 

the best individual from the previous population, then it 
is preserved. Well-performing parents are transferred to 
the next generation and only the badly-performing 
parents are replaced. The parents are selected after 
calculating the relative fitness and cumulative fitness 
for each member (individual). Consequently, the 
parents are selected based on the cumulative fitness. 
 To create a concrete evolutionary algorithm, it is 
necessary to fix some of its parameters. Genetic 
operations need to be designed in order to alter the 
composition of the children during reproduction. One 
needs to define crossover and mutation and the way that 
the candidates for parents and operators are chosen.   
 Mutation is a unary operation which increases the 
variability of the population by making point-wise 
changes in the representation of the individuals. 
Crossover combines the features of two parents to form 
two new individuals by swapping corresponding 
segments of parents’ representations.  
 Indeed, the crossover of two good graph drawings 
are not only very likely to produce undesirable 
offspring but also very time consuming when applied to 
many individuals belonging to the population of graphs. 
There are many crossover operators designed for graph 
drawings, but showed very discouraging results. For 
example, Hobbs and Rodgers[14] introduced a crossover 
operator that picks the nodes from each parent 
according to their positions in the drawing, but 
unfortunately no major improvement was recorded.  
 In general, evolutionary algorithm outperforms 
other simpler heuristics, the main problem being long 
computation time. To avoid it, one can simplify the 
process by, for example, remove crossover, simplifying 
mutation and using a simple evaluation function. In 
addition, based on the experiments conducted on 
bipartite graphs, there was no crossover operation 
which would make improvements to the current 
population and therefore it was another reason to 
discard the use of a crossover operator and use instead a 
pure mutation-based evolutionary method[15,16,17]. 
 
Mutation: Mutation is a process in which a sudden 
change is applied in the structure of a chromosome. A 
bit is selected randomly in the chromosome and its 
value is changed to some other value. Mutation is a 
very important operator in EAs. It acts like a local 
improvement operator and reduces the chance of 
getting stuck at the local optimum during the 
generation-by-generation progress. 
 
Analysis of the Problem: Let G = (V0, V1, E) denotes 
a bipartite graph where V0 and V1 are the two sets of 
independent vertices and E is the edge set. It is assumed 
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that �V0�V1� = n and �E� = m. Let bcr (G) denote the 
bipartite crossing number of G, that is, bcr (G) is the 
minimum edge crossings over all drawings of G. 
Computing bcr (G)is NP-hard[3] even when the ordering 
of vertices in V0 is fixed[18], where a polynomial time 
algorithm was designed and approximated bcr (G) by a 
factor of 3.  
 A polynomial-time algorithm has also been 
proposed[19] for the minimum edge crossings problem 
for two-layered graphs with vertex pairs. A greedy 
strategy is used to align the vertices so that edge-
crossings become as small as possible. At each 
iteration, a vertex pair pi is found that minimize a well 
defined cost function. Moreover, a polynomial time 
approximation algorithm with the performance 
guarantee of O (log4

n) time the optimal is known for the 
crossing number of degree bounded graphs[20], no 
polynomial time algorithm approximation algorithm 
whose performance is guaranteed has been known for 
approximating bcr (G)[21].   
 The structure of bipartite drawing was also related 
to the linear arrangement problem[21], which is another 
well-known problem in the theory of VLSI. An upper 
bound was constructed resulting in an O (n1.6) time 
algorithm for computing bcr (G) when G is tree.       
 The general principle underlying evolutionary 
algorithms is that of maintaining a population of 
possible solutions. The population undergoes an 
evolutionary process which imitates the natural 
biological evolution. In each generation better solutions 
have greater possibilities to reproduce, while worse 
solutions have greater possibilities to die and to be 
replaced by new individuals. To distinguish between 
good and bad solutions an evaluation function needs to 
be defined.  In this research, the number of crossings is 
used to evaluate individuals. 
 In the bipartite problem, the chromosome is 
encoded in the form of a 2-array structure representing 
the two subsets of the BDP. For example, consider a 
10-vertex bipartite graph that is represented by the two 
following subsets in Fig. 1. 
 Thus, each chromosome is represented by a 2-
subset array and the fitness is calculated as the number 
of edge crossings. The fitness of the graph shown in 
Fig.1 is equal 12. 
 
Applying the BC heuristic: A sample graph is used to 
show how the BC performs, which is shows in Fig.1.  
The BC orders the vertices according to the average of 
the positions of the vertices incident with them. For 
example, the first vertex in the second set has an 
average of the vertices’ positions incident with it equal 
zero. However, as for the second vertex,  average (Set 2  

79486

152103

Set1{6,8,4,9,7}

Set2{3,10,2,5,1}
 

 
Fig. 1: A bipartite graph 
 

79486

512103

Set1{6,8,4,9,7}

Set2{3,10,2,1,5}
 

 
Fig. 2: The BC Heuristic 
 
[2]) = ½ ((position (8)+position (4)) = ½ (2+3) = 2.5.  
The values for the other vertices are given as under: 
 
Average (Set2 [1]) = 0, average (Set2 [2]) = 2.5, 
average (Set2 [3]) = 3, average (Set2 [4]) = 4, 
average (Set2 [5]) = 3.25; 
  
 Figure 2 shows the graph of Fig. 1 with Set2 
permuted according to the BC heuristic, which ordered 
the vertices according to the average of the vertex 
positions found in the previous calculations. After 
performing the ordering, the results show that number 
of edge crossings is decreased to 10, whereas before 
applying the BC heuristic, there were 12 crossings. 
 
Mutation: Steps of the procedure mutate: 
 
• Assume there are n1 vertices in set1 and n2 vertices 

in set2 in a bipartite graph G 
• Each vertex i ∈ set1 mutates with a probability ρ to 

another vertex k within the range [1..n1] which has 
not been selected previously  

• Each vertex j ∈ set2 mutates with a probability ρ to 
another vertex l within the range [1..n2] which has 
not been selected previously  

• After all mutation operations are completed, re-
evaluate the number of crossings in graph G 

 
 Figure 3 shows the graph of Fig. 1 with Set1 
mutated to {7,4,8,6,9}. The number of edge crossings 
has changed to 19. 
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Set1{7,4,8,6,9}

Set2{3,10,2,5,1}  
 
Fig. 3: Graph of Fig. 1 after Mutating Set1 
 

RESULTS AND DISCUSSION 
 
 In this section, test runs are described and analyzed 
for various experiments with different parameter 
settings. In all test runs, bipartite graphs are denoted as 
G = (V0, V1, E). Population size should be large enough 
in order to give an unbiased view of the search space. 
On the other hand, too large population size makes the 
algorithm computationally intractable. Mutation rate 
increases the variability of the population. Naturally, 
there is again in a tradeoff situation: if a mutation rate 
becomes too large (i.e. close to 1.0), the algorithm 
wanders aimlessly in the search space. On the other 
hand, mutation rate should not be too low, since no 
crossover operations are used in this research. Number 
of iterations is also recorded to find out the best result. 
The maximum number of iterations is 500, which 
specifies the point where the algorithm stops. Graph 
density is also used to test the performance of EA.  
Subsequently, BC heuristic is also compared against the 
EA.  
 All test results represent the averages of multiples 
runs of the EA on the same graph. As a measure of the 
dispersion of the results, standard deviation is 
calculated in various scenarios. When graph size is 10 
and the graph density ranges from 10 to 90%, the 
number of crossings for the BC and EA is always the 
same for all test runs, whereas the number of iterations 
needed by EA to outperform the BC is different from 
one run to another.  
 The mutation rate for the EA was set to 0.8. In this 
analysis various sets of data have been considered. Fig. 
4 shows  the  performance  of  the  evolutionary  model 
compared with the BC heuristic approach, where graph 
order   set to 10 and  graph density equal to or less than 
90%. In this figure, the population size for the EA is set 
to  10. Having  a  relatively  small  population  size, the 
number  of   iterations  needed   to   outperform  the BC 
heuristic reached 200. 
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Fig. 4: BC Heuristic vs. EA (Pop. Size = 10) 
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Fig. 5: BC Heuristic vs. EA (Pop. Size = 30) 
 
 In terms of performance, Fig. 5 shows quite similar 
results as Fig. 4 except that the EA population size 
parameter is changed to 30. With a more diverse 
population, the EA needed less number of iterations to 
outperform the BC heuristic. The number of iterations 
to find less number of edge crossings did not exceed 50. 
 As the graph order increases, small population size 
such as 10 would need as much as 500 iterations to get 
the same results. When population size is increased to 
50 or 70, the number of iterations has slightly 
increased. Population sizes used in Fig. 6 and 7 were 30 
and higher for any graph order equal 17. Fig.6 shows 
that the EA always outperforms the BC heuristic for 
graphs with densities greater than 50%.  
 Figure 7 also illustrates the performance of the EA 
compared to the BC heuristic on graphs of order 17 and 
densities less than 50%. As the graph order increases, 
the number of edge crossings will always be smaller 
compared to graphs with small densities as it is 
indicated in Fig. 6 and 7. Finally, Fig. 8 shows how the 
graph density affects the number of iterations needed 
for EA to outperform the BC heuristics. 
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Fig. 6: BC heuristic vs. EA for graphs of densities 

greater than 50% 
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Fig. 7: BC Heuristic vs. EA for graphs of densities less 

than 50% 
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Fig. 8: Graph density vs. number of iterations 
 

CONCLUSION 
 
 Rosete-Suarez et al.[16] studied minimizing edge-
crossing with an evolutionary graph drawing and found 
interesting results. They found that scarce graphs with 
almost the same number of nodes (20 or 30) as the 
dense graphs are much easier for the algorithm than 
dense graphs, which indicated that the number of nodes 
was not a good indication of the problem difficulty. 
Consequently, another comparison was made with 
regards to the number of edges for dense graphs with 20 
nodes and around 48 edges and they concluded that a 
closer relation was found between problem difficulty 
and the number of edges than the number of nodes. 

They also studied other factors, besides minimizing 
edge-crossing, that are used when drawing graphs. A 
simple method was shown for acquiring and satisfying 
the subjective preferences of the users in order to good 
layouts. 
 In this study, experiments were conducted to show 
the performance of EA compared to the BC heuristic. 
Results indicate that for small graphs or relatively 
larger graphs, EA always found less number of 
crossings needed than in the BC heuristic approach. In 
small graphs for example, where the graph order was 
set to 10, the graph density did not make any 
differences as far as the performance of both 
approaches was concerned. However, when graph order 
was set to 17, the density factor was important, i.e., 
higher density graphs generated more edge crossings 
than lower density graphs. 
 The effectiveness of evolutionary computations 
depends on the interaction of representations used for 
the problem solutions, the reproduction/selection 
operators used and the configuration of the EA used. 
This research has demonstrated the power that exists 
within the evolutionary model, which outperforms the 
traditional methods, especially when the EA parameters 
are well tuned. 
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