
Journal of Computer Science 4 (5): 415-420, 2008
ISSN 1549-3636
© 2008 Science Publications

Corresponding Author: Zarina Shukur, Department of Computer Science, Fakulti Teknologi dan Sains Maklumat,
 Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

415

The Design of ADAT: A Tool for Assessing Automata-Based Assignments

Zarina Shukur and Nurul Fatihah Mohamed

Department of Computer Science, Fakulti Teknologi dan Sains Maklumat,
Universiti Kebangsaan Malaysia, 43600 Bangi, Malaysia

Abstract: This study describes the design of an automatic assessment system for assessing an
automata-based assignment. Automata concept is taught in several undergraduate computing courses
such as Theory of Computation, Automata and Formal Languages and Compilers. We take two
elements into consideration when assessing the student’s answers; static element and dynamic element.
The static element involves the number of states (initial and final as well) and the number of
transitions. Whilst the dynamic aspect involves executing the automata against several test data. In this
work, we rely heavily on the JFLAP for drawing and executing the automata.

Key words: Automatic assessment, marking tool, automata diagram assessment

INTRODUCTION

 The aim of this study is to describe the design of a
tool for automatic assessment of an automata-based
assignments. The development of tools for automatic
assessment has generated considerable interest over the
past years. One of the earliest that we know is the tool
that asses the assignment for numerical analysis subject
in 1960-s[6]. From that time onwards, many assessment
tools had been developed. However, the computing
subjects are the focus of the researchers at that time.
Van Verth[20] stated in his thesis that until the mid of
70-s, the focus of the assessment is on the program
correctness. However, the focus of assessment became
optimal between 70-ies and early 80-ies[12]. We
believed that the birth of software engineering
discipline in 1963 gave impact to this issue. The
automatic assessment systems such as[3,5,6,8,11,13,15,16,20,21]

used several software quality factors in their design.
 Apart from that, many automatic assessment tools
for various kinds of subjects such as essays-based
assignment[2] (Foxley and Lou, 1994): Diagram-based
assignment[17,19]: (Ali et al. 2007); as well as the new
design of tools for computing program
assignments[4,7,9,10,18] have been developed.
 Automatic assessment tools help educators by
providing a consistent, accurate and efficient marking
process. These tools can also assist students in
improving their assignment, providing sufficient and
fast feedback. From the managerial perspective, these
tools can aid in handling a large number of students
assignments.

 In this study, we propose a tool, which we call
Automata Diagram Assessment Tool (ADAT) to assess
an automata-based assignments. Automata-based
assignments usually involve automata diagrams.
Although some assessment systems to assess
diagrams[19] already exist from the literature that we
have done, there is no system to specifically assess an
automata-based assignment.

AUTOMATIC MARKING CRITERIA

The prospective users of making systems are so large
and therefore marking systems for any subjects ideally
should be highly needed. However, like many other
software from research product, some automatic
marking system are being use in house actively, while
some others are just left as a research product.
Therefore, in order to have these marking tools
accepted and used by the targeted user, it should fulfill
certain criteria such as standards, guidelines, or
benchmark.
 In pedagogic perspective, any automatic marking
system should comply with its criteria. Higgins and
Bligh[7] have analyzed whether computer based
assessment (CBA) meets pedagogic criteria for
measuring the quality of assessment suggested by
Brown et al. (1996). Table 1, which is taken directly
from[7] shows the analysis.
 Based on the analysis, they concluded that CBA
meets 7 out of 10 criteria, therefore CBA can be said to
have concrete pedagogic benefits.
 From the modeling aspect, [9]try to formalize
automatic marking system in order to have a depth

J. Computer Sci., 4 (5): 415-420, 2008

 416

Table 1: Application of assessment criteria to CBA[7]

Criterion Application to CBA
Valid Will measure specified coursework aspects assuming
 good initial assessment design
Reliable The same assessment process will run for each
 submission: Consistency is absolute
Fair Design-dependent: CBA has no inherent advantages
Equitable The same assessment process will run for each
 submission: Discrimination is non-existent
Formative CBA provides a good opportunity to run assessment
 frequently throughout the learning process and to
 provide multiple submission with full feedback
 each time
Timely CBA provides a good opportunity to run assessment
 frequently throughout the learning process
Incremental Design-dependent: CBA has no inherent advantages
Redeemable CBA is suited to allowing multiple submissions
 should the designer wish this
Demanding Design-dependent: CBA has no inherent advantages
Efficient Considerable time and other resource saving to be
 made: Originally a motivation for CBA’s development

understanding of the systems. They considered a set of
document as the main object of any automatic marking
systems. The document can be either a correct answer
script, incorrect answer script, or the marking result. To
make it clearer, we rewrite their formalism by using Z
notation and focus only one marking system. Let
(document) be the set of any documents, the following
is the Z specification for the automatic marking
system:

 The specification describes there are two type of
answers; correct answer and incorrect answer. An
answer script cannot be correct or incorrect at the same
time. The other document is output document. Only
correct answer can have output documents. In[9]
formalism, it seems that they did not give any output to
the incorrect answers. Also they did not further
mentioned about the specification of correct answer.
Shukur et al.[16] stated that in general, any automatic
marking systems involve two types of input; the
students answers and the model answer. The model
answer can be either in the form of possible answer, or
in the form of answer specifications. The improvement

of this formalism is quite interesting but will not be
further discussed in this study.
 The other important thing is the standard interface
and infrastructure. Infrastructure is for the management
aspect of the course such as the collection of answer
scripts, distribution of questions etc. CourseMaster (or
previously known as Ceilidh) is one of the example. As
well as the interface should embed the standard icon
and functions as proposed in the discipline of user
interface design.
 By having a standard interface and infrastructure,
we hope that the developed marking tool can be just
plugged and played on it, for any subject. And much
better if for one particular subject, more than one
marking tool can be installed so that the user can have a
choice of marking tool to use.

AUTOMATA-BASED ASSIGNMENT

An automaton is a simplified, formalized model of a
computation. Figure 1 shows an example of automata
diagram. The basic automata only consist of states
(represented by circles) and transitions (represented by
arrowed lines). It may be used to compute the
membership function for a language, as well as it can
also model other kinds of things such as a state-based
system. In undergraduate curriculum, automaton is
normally used to compute the membership function for
a language.
 Automata-based assignments usually involve the
drawing of automata diagram. Therefore, one way to
check the correctness of an automata diagram is by
‘running’ it against several strings of the respective
described language and several strings that should be
rejected by it. It can be done by hand, but as expected,
it will inherit all the problems created by manual
checking. Thanks to[14], as we can execute automata
diagram using JFALP. However, for one particular
problem, we can have many forms of automata
diagrams. So, which is the best? Hence, we enhance the
marking approach of automata diagram by embedding
quality factors. By employing two of the software
quality factors i.e maintainability and readability, we
define the following factor to be included in assessing
an automata diagram.

The correct input strings: A correct diagram should
accept all correct input strings.

The incorrect input strings: A correct diagram should
reject all incorrect input strings.

J. Computer Sci., 4 (5): 415-420, 2008

 417

a

a

a+b

ab

bb

Fig. 1: An automata diagram

The number of states: A good diagram should have at
most the same number of states with the model answer.

The number of transitions: A good diagram should
have at most the same number of transitions with the
model answer.

The naming of the states: A good diagram should be
easy to understand. Therefore, the naming of the states
should be meaningful

THE DESIGN OF AUTOMATA DIAGRAM
ASSESSMENT TOOL

 ADAT receives two type of input, answer scripts
written by students and marking specifications provided
by the educator. Marking specification consists of
model answer, test weight and set of test data. Two
main process of ADAT are the dynamic assessment and
static assessment. Dynamic assessment involves testing
the answer script against several test data. While static
assessment aims to compare the number of states and
transitions from answer script with the model answer.
In addition, the name of the states will be checked by
using language database. Figure 2 illustrates the overall
process.

Marking scheme: In order to calculate the marks, six
test weights are needed. Four test weights are for the
four static elements and the other two are for the two
dynamic elements. At a moment we exclude the naming
factor of the states. In order to aid the educators, we set
the default value 5 for each static element and 20 for
each dynamic element. Based on this default value, we
have 60 as the total marks. Due to the importance of
dynamic elements compared to static, we therefore set
the default value of test weight as it is. However, the
value can be easily reset.
 The static elements refer to the statistic of the
elements in the diagram that are; the number of states,
initial states, final states and transitions. By assuming

Fig. 2: ADAT conceptual model

that the model answer is the best answer, therefore, any
student’s answer that contains more than the number of
elements of model answer will get less mark. Hence,
we propose a simple marking scheme as follows:

If (Number of States-Model)≥(Number of States-
Student) then
 MS-1 = Weight for States
Else
 MS-1 = ((Number of States-Model)/(Number of

States-Student))*Weight for States

If (Number of Initial States-Model)≥(Number of Initial
States-Student) then
 MS-2 = Weight for Initial States
Else
 MS-2 = ((Number of Initial States-Model)/

(Number of Initial States- Student))*Weight for
Initial States

If (Number of Final States-Model)≥(Number of Final
States-Student) then
 MS-3 = Weight for Final States
Else
 MS-3 = ((Number of Final States-Model)/

(Number of Final States-Student))*Weight
Final States

If (Number of Transition-Model)≥(Number of
Transition-Student) then
 MS-4 = Weight for Transition
Else

J. Computer Sci., 4 (5): 415-420, 2008

 418

 MS-4 = ((Number of Transition-Model)/
(Number of Transition- Student))*Weight
Transition

 Therefore, total static mark obtained is MS-1+MS-
2+MS-3+MS-4.

 The dynamic elements focus on the acceptance and
rejection of set of strings. For the marking purposes,
two set of strings are prepared; the accepted strings and
the rejected strings. If the student’s automata diagram
accepts all strings in the set of accepted string, then
he/she will obtain a full mark for this criteria. So as the
rejected string. If their answer rejects all the strings in
the set of rejected strings, he/she will get a full mark.
The following is the calculation scheme:

Accepted strings: MD-1 = (Number of accepted
strings)/(Total number of accepted strings)*weight for
accepted strings

Rejected strings: MD-2 = (Number of rejected
strings)/(Total number of rejected strings)*weight for
rejected strings

 Therefore, total dynamic mark obtained is MD-
1+MD-2.

Total marks = (Total Static marks obtained+Total

Dynamic marks obtained)/(Total Static
marks+total Dynamic marks) * 100

Implementation of ADAT: ADAT is implemented by
using Java. The students are required to draw the
automata by using JFLAP. Then the *.jff file of JFLAP
will processed by ADAT in order to obtain the static
elements of the diagram. In order to produce the static
mark, the static elements of the student’s answer will be
compared to the model answer, by using the proposed
marking scheme. The model answer, test weights and
two sets of test strings will be provided by the educator.
As for the dynamic marking, we run the automata
diagram against two sets of test strings. The strings will
be classified into two, a set of accepted string and a set
of rejected string. We make use of the JFLAP
technology as it can ‘execute’ the automata diagram.
The result of the execution will be used to calculate the
dynamic mark.
 Figure 3 and 4 shows the test weight input screen
and output screen of ADAT, respectively.

Testing of ADAT: To test ADAT, we selected one
question from the final examination of a course on

Fig. 3: Test weight input screen

Fig. 4: Marking result screen

Theory of Computation. Out of 46 students’ answer
scripts we only used 10 of them. The original students’
answers are hand-written, hence we redrawn them using
JFLAP. The answers are then marked by using ADAT
approach. We prepare three marking schemes with
different weights as in Table 2. The aim to have three
marking schemes is to analyze the effect of different
weights. The marking results from ADAT are then
compared with the marking result from the human
marker. In this case, we only used one human marker.
 Table 3 shows the overall result. The table is
divided into four main columns which represent the
result from human marker, ADAT with the first
marking scheme, second marking scheme and third
marking scheme, respectively. Each main column is
divided into two sub columns that represent the student
identity and the result. The list of student has been
sorted based on their marks.

J. Computer Sci., 4 (5): 415-420, 2008

 419

Table 2: Marking schemes
 Dynamic scheme Static scheme
 -- ---
 Accepted Rejected No. No. of No. of No. of
Weight strings strings of state initial state final state transition
Marking Scheme 1 10 5 5 2 2 5
Marking Scheme 2 20 10 5 2 2 5
Marking Scheme 3 10 5 0 0 0 0

Table 3: Overall result
Human marker ADAT with marking scheme 1 ADAT with marking scheme 2 ADAT with marking scheme 3
Stud 6 100 Stud 6 100.0 Stud 6 100.0 Stud 6 100.0
Stud 7 100 Stud 7 100.0 Stud 7 100.0 Stud 7 100.0
Stud 3 100 Stud 4 87.4 Stud 4 91.7 Stud 3 100.0
Stud 4 80 Stud 3 74.1 Stud 3 83.0 Stud 4 100.0
Stud 1 80 Stud 9 71.6 Stud 1 65.9 Stud 1 66.7
Stud 9 80 Stud 1 65.5 Stud 9 65.3 Stud 9 53.3
Stud 8 40 Stud 8 51.7 Stud 8 50.0 Stud 10 48.9
Stud 10 20 Stu1 0 49.1 Stu1 0 48.9 Stud 8 46.7
Stud 5 0 Stud 5 45.2 Stud 5 43.4 Stud 5 40.0
Stud 2 0 Stud 2 39.6 Stud 2 34.6 Stud 2 24.4

 From the table we can see that the human marker
and ADAT agree that Stud 5 and Stud 2 obtained the
two lowest marks. However the human marker seems
quite strict by giving zero marks for the students.
 The next two from bottom are Stud 8 and Stud 10
and it is agreed by all the markers. However, for ADAT
with marking scheme 3, it gave more marks for Stud 10
compared to Stud 8. This is not a problem because all
of the markers (except human) gave a very slightly
different mark for both of them. Again, for these two
students, human marker is more strict compared to
ADAT.
 It seems that all markers agreed that the next two
students are the same students that are Stud 1 and Stud
9. Human marker gave the same marks for both
students. ADAT with marking scheme 1 that is the
dynamic and static weight are balance, Stud 9 obtained
more marks. With marking scheme 2, that is dynamic
weight are higher than static weight, they both obtained
nearly similar marks. Whilst for marking scheme 3 that
is only dynamic mark is considered, Stud 1 obtained
more marks than Stud 9. This means that the automata
diagram by Stud 9 is simpler compared to Stud 1.
However both diagrams are not totally correct. Human
marker classifies the incorrectness by Stud 1 and Stud 9
as the same, without considering the complexity of the
drawing. However, by giving more weight on static
elements, Stud 9 obtained higher marks than Stud 9, as
shown by marking scheme 1. Nevertheless, if we focus
on dynamic aspect, Stud 1 will obtained more marks
compared to Stud 9, as shown by marking scheme 2
and 3.
 The last four students from top are resorted by us
so that we can analyzed it easily. The original table are
sorted by marks and followed by the student identity.

Therefore if they obtained the same marks (as given by
ADAT with marking scheme 3) the position should be
Stud 3, Stud 4, Stud 6 and Stud 7. However, we
rearranged the position as long as the marks are the
same. All markers agreed to give Stud 6 and Stud 7 full
marks. This means that Stud 6 and Stud 7 is totally
correct and the diagram is as good as the model answer.
However for Stud 3 and Stud 4, the markers have
different evaluation. The human marker gave full marks
for Stud 3 and not with Stud 4. However, by
considering only dynamic elements, both students
obtained full marks. This means ADAT agreed that
Stud 3 and Stud 4 have correct answers. Why human
marker gave less mark to Stud 4? When we analyzed
Stud 4 handwritten answer, we found out that it
contained a very small error, like syntax error.
However, when we redrawn it to the electronic version
by using JFlap, the error is removed as JFlap has certain
features that can control us when we draw the automata
diagram. Therefore, if any students prepared their
diagram by using JFlap, they will not face that problem.
As for Stud 3, the answer is correct but the diagram is
not as good as model answer. Therefore, Stud 3 could
not obtained full marks if static elements are taken into
consideration as shown by ADAT with marking scheme
1 and 2.
 In summary, based on the testing result, the
performance shown by ADAT can be considered as
good as a human and more rational then human.

CONCLUSION

 The essence of this study is about the design of an
automatic marking tool for automata-based assignment,
called ADAT. Earlier, we also described about the

J. Computer Sci., 4 (5): 415-420, 2008

 420

environment that might boost the application of
marking tools. ADAT has been tested and the initial
result looks promising. The ADAT approach is more
rational compared to human and more or less similar to
the human marker. Our next step is to enhance ADAT
to assess as much elements that are related to the theory
of computers science subject.

REFERENCES

1. Ali, H.N, Z. Shukur and S. Idris, 2007. Assessment

system for UML class diagram using notations
extraction. Int. J. Comput. Sci. Network Secur.,
7: 181-187.

2. Batten, E., 1994. New computer grading of student
prose, using modern concept and software. J. Exp.
Educat., 2: 127 142.

3. Benford, S., E. Burke and E. Foxley, 1992.
Courseware to support the teaching of
programming. In: Proceedings of the Conference
on Developments in the Teaching of Computer
Science, April, 1992, Canterbury, UK, pp:158-166.

4. Blumenstein, M., S. Green, A. Nguyen and
V. Muthukkumarasamy, 2004. An experimental
analysis of game: A generic automated marking
environment. In: Proceeding of The 9th Annual
Conference on Innovation and Technology in
Computer Science Education, June 28-30, 2004,
Leeds, United Kingdom, pp: 67-71.

5. Brown S., Race P. and Smith B., 500 Tips on
Assessment, London: Kogan Page, 1996, ISBN
0749419415.

6. Faidhi, J.A.W., 1986. The complexity analysis of
Pascal programs and the application to a university
teaching environment. Ph.D. Thesis. University of
Brunel.

7. Foubister, S.P., G. Michealson and N. Tomes,
1997. Automatic assessment of elementary
Standard ML programs using Ceilidh. J. Comput.
Assis. Learn., 3: 99-108.

8. Foxley E., Lou B., A Simple Text Automatic
Marking System, Artificial Intelligence and
Simulation of Behaviour 94 Conference for:
Computational Linguistics for Speech and
Handwriting Recognition, Workshop in Leeds
University, UK, April 12th, 1994.

9. Higgins, C.A. and B. Bligh, 2006. Formative
computer based assessment in diagram based
domains. In: Proceeding of The 11th Annual
Conference on Innovation and Technology in
Computer Science Education, June 26-28, 2006,
Bologna, Italy, pp: 98-102.

10. Hung, S., L. Kwok and A. Chung, 1993. New
metrics for automated programming assessment.
IFIP Trans. A-Comput. Sci. Technol., 40: 233-243.

11. Koike, H., K. Akama and C. Ishikawa, 2007.
Toward a software development model for
automatic marking software. In: Proceeding of The
ACM Special Interest Group on University and
College Computing Services 2007, October 7-10,
2007, Orlando, Florida, USA, pp: 190-193.

12. Malmi, L., V. Karavirta and A. Korhonen, 2004.
Visual algorithm simulation exercise system with
automatic assessment: TRAKLA2. Inform.
Educat., 3: 267-288.

13. Marth, U.V., 1994. Kassandra, the automatic
grading system. Institute of Advance Computer
study, University of Maryland, College Park,
Switzerland.

14. Michaelson, G., 1996. Automatic analysis of
functional program style. In: Proceeding of the
1996 Australian Software Engineering Conference,
Melbourne, Australia, July 14-18, 1996, pp: 38-46.

15. Redish, K.A. and W.F. Smyth, 1987. Evaluating
measures of program quality. Comput. J.,
30: 228 232.

16. Rodger, S., 2006. Learning automata and formal
languages interactively with JFLAP. In:
Proceeding of The 11th Annual Conference on
Innovation and Technology in Computer Science
Education, June 26-28, 2006, Bologna, Italy, pp:
360-360.

17. Saikkonen, R., L. Malmi and A. Korhonen, 2001.
Fully automatic assessment of programming
exercises. In: Proceeding of The 6th Annual
Conference on Innovation and Technology in
Computer Science Education, June 25-27, 2001,
Canterbury, UK, pp: 133-136.

18. Shukur, Z., E. Burke and E. Foxley, 1999. The
automatic assessment of formal specification
coursework. J. Comput. Higher Educat. Mass, US,
11: 86-119.

19. Shukur, Z., Y. Away and M.A. Dawari, 2004.
Computer-aided marking system for engineering.
In: Proceeding of Society for Information
Technology and Teacher Education International
Conference, March 2004, Atlanta US,
pp: 1852-1857.

20. Thomas, P., K. Waugh and N. Smith, 2006. Using
patterns in the automatic marking of ER-diagrams.
In: Proceeding of The 11th Annual Conference on
Innovation and Technology in Computer Science
Education, June 26-28, 2006, Bologna, Italy,
pp: 83-87.

21. Tsintsifas, A., 2002. Diagram base-computer base
assessment. Ph.D. Thesis. Computer Science
Department, The University of Nottingham.

22. Van Verth, P.B., 1985. A system for automatically
grading program quality. SUNY (Buffalo)
Technical Report, 1985.

23. Zin, A.M. and E. Foxley, 1991. Automatic program
quality assessment system. In: Proceedings of the
IFIP Conference on Software Quality, March 1991,
SP University, India.

