
Journal of Computer Science 4 (8): 680-692, 2008
ISSN 1549-3636
© 2008 Science Publications

680

An Improved TCP Connection Protocol over Wireless Mobile Networks

with Mobile Nodes Handoff

Maen Mahmoud Al Assaf
Department of EECS, Syracuse University, Syracuse, NY

Abstract: Problem Statement: This study proposes a TCP layer protocol (Div-TCP) that aims to give
a solution for communication over wireless mobile networks that have the occurrence of handoff at
anytime. It describes a topology of wireless mobile network and the handoff process as an ordinary
process in that type of networks which may cause segments losses. Approach: Wireless mobile
networks have many weaknesses related to bit error, network congestion and weak signals that cause
segments losses as well as handoff process. For this reason, wireless mobile network TCP cannot
distinguish between losses caused by these weaknesses or by the handoff process. So in handoff case,
segments losses will trigger congestion control algorithms that reduce the TCP connection’s
throughput performance. Results: However, in addition to the previous efforts that provide different
algorithms and protocols which aim to come up with different solutions and enhancements for the TCP
connection in wireless mobile networks when handoff occurs, I am providing in this study Div-TCP
protocol that runs the ordinary TCP algorithms with adding more operations that are concerned to
handoff. These operations aim to maintain a suitable RTO at each sender to avoid triggering
congestions algorithms and also to maintain the sender’s throughput by establishing a TCP connection
prior to the handoff occurrence. Conclusions/Recommendations: The protocol's discussion shows
how end-to-end TCP connection became more efficient since the new Div-TCP connection after
handoff will have good and already built TCP connection and the RTO is too much high at all nodes so
there is no fear of a that TCP considers congestion.

Key word: TCP connection, mobile node, home agent, foreign agent, correspondent host, mobile IP,

handoff, round trip time, retransmission time out, congestion control, exponential back off

INTRODUCTION

 In wireless 802.11 networking, communications
take different shapes that connect end to end users
using at least one non-wired part of the network.
Actually, there are a lot of topologies. Mobile and
cellular networks are considered wireless networks that
have a particular system of components and protocols.
Actually, they are important at this period of time
because of their important applications.
 Mobile Networks may take different topologies
and structures[1]. Wireless 802.11 networks with
different topologies suffer from weaknesses in the level
of physical and data link layer of communication such
as low signal strength, other resources transmission
interference and signal fading problem that causes high
bit error rate. These problems contribute in disturbing
the upper layers protocols especially TCP transport
layer protocol.
 Mobile networks can support connection to the
internet as well as the telephony communication. In this
study, I can consider[1] wireless networks that run

infrastructure mode which is based on a Base Station
(BS) that connects and routes packets from and to
Mobile Nodes (MN). But for more accuracy, I will
consider the mobile network (Fig. 1) that supports
mobility of the MN so it can freely move among
different areas of coverage. In order to support
mobility, mobile network should be able to route
connection from and to MN as it moves freely between
different areas of coverage. So, the mobile network here
has Home Network (HN) that is controlled by Home
Agent (HA). Each HN has one or many MN attached to
it (Subscribers) and HA controls their information,
registrations and routing.
 When a MN moves to another area of coverage, it
leaves the HN and register with a Foreign Network FN
that is controlled by Foreign Agent FA that acts as HA
but in the foreign network. The sender host whether is
in HN or in FN is called correspondent host CH. Every
network agent is connected to the router that connects
the entire network with outside. Actually, when CH
establishes a TCP connection with the MN, it first
establishes a TCP connection with the Network Agent

J. Computer Sci., 4 (8): 680-692, 2008

 681

HA of that of the particular MN's Home Network (HA),
then the HA establishes another TCP connection with
the MN on behalf of the CH. So, the established
connection between CH and MN must go through the
HA which MN is currently attached with.
 When the mobile node MN changes place far
away, it will no longer be able to reach its Home agent
or in other words it will become out the coverage area.

F N

HN

M N

CH

FN

HN

M N

CH

 (a) Before Ha ndoff

(c) A fter H andoff

FN

HN

M N

CH

(b) W hile Ha ndoff

H A

F A

HA

F A

HA

F A

Established T CP
H andoff Preparation

Fig. 1: Wireless mobile network topology in its
different cases

 Then, the HN will no longer be able to handle the
connection from and to the mobile node so there should
be a transfer of the connection to the next nearest
foreign network FN and registration of MN with the FA
in a process called Handoff. However, since the MN is
related to its home network and considered as a
subscriber, the connection between the CH and the MN
always go through the home network agent HA even if
a handoff occurs. So after handoff, the connection will
be from CH to HA and then to the next foreign
network's agent FA and finally to the MN. For this
reason, handoff process sure disturbs network layer
routing and transport layer connection as well as in
many cases it may disconnect the connection especially
if there is no proper protocol that handles it.
 As its ability to support internet connection, mobile
networks are worthy to research in its session and TCP
connection because of its mentioned weaknesses
especially when handoff occurs that is the scope of this
study.

MATERIALS AND METHODS

Wireless connection handoff: In Mobile networking[1]

Handoff occurs when MN changes its location and
become under another base station or foreign network
coverage during the established connection. Actually,
Handoff process involves many steps including MN
registration with the foreign network agent and
different coordination. These processes sure take time
to switch to the new network which may include
disconnection at TCP transport layer. Actually, Handoff
process duration is not specific. Since mobile networks
can handle internet TCP/IP connection[4] TCP
connection is known of its reliability connection
oriented and when it is established, a stream of bytes
are sent and received. So, data isn’t sent separately
exactly as when you make a phone call. For this reason,
handoff is considerable issue.

Current work: There are many protocols, papers and
projects that aim to solve transport layer and TCP
connection over wireless mobile networks when
handoff occurs. Kurose and Ross[1] Mobility in wireless
mobile networks and the previously mentioned
weaknesses in addition to handoff process should not
have a remarkable impact on the higher layers protocols
if the lower layers protocols heal the connection
properly, so[2-3] Mobile-IP is used. But the TCP
transport layer protocol is more affected than the
application layer protocol because of segment loss
either from congestion or by handoff and bit error. So,
when a TCP connection is established between the

J. Computer Sci., 4 (8): 680-692, 2008

 682

sender and the receiver and the sender noticed that
some segments were not acknowledged by the receiver
before the end of Retransmission Time Out (RTO)
timer, sender's TCP will not distinguish either the
segments loss is due to network congestion, due to
handoff, or due to bit error and wireless weakness.
Anyway, the sender's TCP will retransmit the lost
segments and will apply the congestion algorithm that
decreases the congestion window and throughput.
 Actually, [2] Mobile-IP is considered a protocol that
solves network layer problems of wireless mobile
network connection. It is designed to handle mobile
routing especially when handoff occurs and to re-route
packets using the[1-3] care-of-address concept. So, MN
should maintain its IP address granted by its HN. Also,
it coordinates the MN registration process with the
foreign agent when handoff takes place. In[3], Mobile-IP
aims to help mobile wireless link by minimizing the
number and the size of the administrative messages sent
over the link. So, Mobile-IP is our layer 3 routing
protocol.
 In[2], TCP connection over wireless mobile
networks is healed by different operational parameters
like increasing window and buffer size, using large
MTU and the most important is time-stamp which
obtains an estimated RTT with each ACK received in
order to tolerate delay without any timeout.
 It is important that TCP connection over wireless
mobile networks do not reach retransmitting time out
RTO in order not to apply congestion control
algorithms. In[5] the author used similar network
topology to that I am using in this study. It agrees that
long handoff and its attached process like registrations
takes a period of time that causes a lot of
unacknowledged TCP segments that lead TCP sender to
trigger congestion control algorithms which cause
exponential back off where the transmission window
size (throughput) got multiplicative decrease where it
returns to slow start. This will lead to a long delay
before retransmitting the data packet and also will
trigger congestion algorithm that decreases the TCP
window size and throughput to go from the beginning
slow start. It takes more time to reach the same
throughput as before handoff. So, the possible solution
is to modify the Mobile-IP and to allow data packets to
be stored in the Foreign Agent (FA). So, when handoff
occurs, the FA will forward the stored packets to the
new FA. In addition, this solution is reasonable because
the acknowledged packets will be removed from the old
FA buffer so it will not be overloaded and also the two
FAs sure are close to each other so there is no chance
for disconnection while transmission. In addition, this

method will help if there is no retransmission occurs.
TCP retransmission time out RTO depends on RTT
which depends on the link strength and the distance
between the sender and the receiver. The author tested
the negative effect of handoff on TCP over wireless
mobile networks and compared the results with the
same test using wireless and fixed network.
 In[6] the authors provided a mobility management
solution at transport layer that minimizes the TCP
packet loss when handoff occurs based on Split Mode
Approach and ensures end-to-end paradigm of TCP
connection. They compared their results with TCP
Reno Model. They proposed a secured authentication
and micro-mobility model that use LDAP server which
runs over TCP/IP and contains user profile database
that makes user authentication in cooperation with
RADIUS server. However, the two TCP connections
are established, one between the CH and the LDAP
server and the other between LDAP server and the MN.
Actually, LDAP server does not send ACK to the CH
unless it receives an ACK from the MN for the
correspondent segments. LDAP stores data arriving
from CH in SEG_TCP field as well as user profile. So,
when handoff occurs, LDAP server forwards all
previously buffered segments in SEG_TCP to the MN
and continuously deletes the acknowledged segments.
Actually, the RTT is increased and the RTO is based on
the total RTT time of both TCP connections.
 There are some protocols are based on Split Mode
Approach to save reliability of TCP connection over
wireless mobile network. Bakbe and Badbinath[7] I-TCP
is proposed to handle problems related to mobility and
reliability of TCP connection in mobile networks
especially when handoff occurs. By this approach, the
connection between MN and the base station or the
network agent is wireless link but the connection
between the CH or any other node with the base station
or the network agent is fixed so we have two TCP
connections with some improvements in the wireless I-
TCP connection with the MN. Actually, the TCP fixed
connection is considered to be the regular TCP. So,
when MN want to connect with the CH, the base station
or the network agent will establish the TCP with the CH
on behalf of MN and also establish a I-TCP with the
MN. When a handoff occurs, the base station or
network agent will handle the connection and heal any
packet loss.
 Due to the unawareness of TCP connection about
the network condition and the packet loses and
distinguish packet loss from congestion loss and
random loss. That will decrease the TCP performance
when it is run over wireless networks. In[8], the authors

J. Computer Sci., 4 (8): 680-692, 2008

 683

proposed a new TCP congestion control mechanism by
router-assisted approach over wireless ad-hoc networks
which is mainly based on the information feed backed
from routers where the TCP sender is able to control
and adjust its sending speed dynamically in order to
avoid losses and congestion algorithms problems.
Actually, this sure can be useful in different wireless
networks including wireless mobile networks.

RESULTS

solution (Protocol) for improving TCP connection in
wireless mobile networks when handoff occurs
(Division TCP (Div-TCP)): In order to reach an
improvement for TCP connection over wireless mobile
networks, the protocol algorithm should consider the
previously mentioned wireless mobile network
weaknesses and its inability to distinguish between the
delay that is caused by handoff, by congestion, or by bit
error.
 Our solution has two goals that collaborate together
to cover and reduce handoff effects. Firstly, it aims to
handle handoff process by avoiding the sender to reach
RTO without receiving acknowledgments of the sent
packets in order to avoid going back to slow start by
triggering congestion algorithms so we can maintain
TCP connection throughput. This is important to be
maintained and its have special importance that arises
after handoff takes place where the end- to-end nodes
become more far to each other.
 Secondly, the solution algorithm aims to establish a
TCP connection between HA and the FA of the next
network when the handoff process seems to happen (a
little bit before handoff) in order to reach and maintain
a high throughput in between. This will cover the
handoff problems and affects positively upon the
overall throughput of the end-to-end TCP connection.
 In our protocol, we will use the previously
mentioned wireless mobile network topology. We
mentioned that the connection between the CH and the
MN goes through the HA and if any handoff of MN
happens to the next FA their will be a connection
established between HA and FA. However, we call the
end-to-end TCP connection that is established between
the CH and the MN (Div-TCP) which is our proposed
TCP solution protocol. The established Div-TCP as
shown in Fig. 1 is a combination of one or more
established TCP protocols between different nodes of
the end-to-end TCP connection. For example, in Fig. 1a
the end-to-end Div-TCP consists of the TCP connection
between the CH and the HA and also the TCP
connection between the HA and the MN. But in Fig. 1c

which represents the MN after its handoff to the next
FA, the end-to-end Div-TCP consists of the TCP
connection between the CH and the HA in addition to
the TCP connection between the HA and the FA and
finally the TCP connection between the FA and the
MN. So in both cases, the Div-TCP starts at CH and
ends at MN so its parts are apply[6,7] Split Mode
Approach but the whole Div-TCP is considered end-to-
end TCP protocol.
 It is important for each node involved in a Div-
TCP connection to calculate the RTT between itself and
the receiving end of the Div-TCP connection. In
addition, the CH and the MN should calculate the RTT
between each other along the whole path since they
represent the both ends of the Div-TCP connection.
Actually[4] an RTT time is the time needed for a
segment to reach the destination and for its
correspondent acknowledgment to be received by the
sender. So, RTT is calculated at the sender side. For
example, in the previous Fig. 1c after handoff occurs
assuming that the MN is the receiving end, CH should
calculate the RTT with the MN and also HA should
calculate the RTT of its connection with the MN and
also the next FA should calculate the RTT with the
MN.
 In order to measure the RTT between two nodes,
we will use in our protocol[4,9] Time Stamp Option
which is a 10-byte option in the TCP segment.
Actually, the Time Stamp here is the system clock
value at the segment's sending time. Initially, when a
sender node establishes a TCP connection with receiver
one, it sends a SYN segments that holds a Time Stamp
of its system clock in the segment's options. Then, the
receiver node replies with a SYN+ACK segments that
holds the sender segment's Time Stamp in its options.
The same thing happens while the regular TCP data
transfer, each segment sent by the sender includes a
Time Stamp in its options. So, when the receiver sends
an acknowledgment or an accumulative
acknowledgment for many received segments, it will
contain the sender segment's Time Stamp in Time
Stamp Echo Reply field. In other words, the receiver
keeps the sender segment's Time Stamp in the
acknowledgment so the sender will not be confused of
not knowing for which segment an acknowledgment
has been received. Then, the sender will easily calculate
the RTT with the receiver after receiving the
acknowledgment by subtracting the value of Time
Stamp Echo Reply field from the time shown by the
clock to find RTT. In[10], it considers that Time Stamp
is one of the TCP extensions for high performance and
should use the mnemonic RTTM (Round Trip Time

J. Computer Sci., 4 (8): 680-692, 2008

 684

Measurement) when it is used for that to distinguish it
from other Time Stamp option uses.

RTT = TSSC – TSER

Where:

RTT = Round Trip Time between sender and

receiver
TSSC = The current Time Stamp of Sender clock
TSER = Time Stamp Echo Reply

 In addition, the RTT is modified and recalculated
continuously every acknowledgment is received.
Actually, as[4] there is no need that the sender and the
receiver clocks to be synchronized because the RTT
calculation is based on the sender clock. In addition, the
sender should not store the time the segment left
because it is carried by the segment itself. Actually, we
can notice that the Div-TCP between CH and the MN
as they form the both ends of the TCP connection
should be calculated using timestamp and should have
the longest RTT.
 As mentioned above, in Div-TCP, the TCP
connection between the both ends CH and MN goes
into multiple established TCP connections among
different nodes in between. So, when the CH sends a
segment to the MN, it goes through the whole path and
every intermediate node stores it in its TCP buffer and
forwards it through the TCP connection to the next
node until it reaches the MN. Then, the MN
acknowledges the received segment(s) so the
acknowledgment goes back to the CH in the opposite
direction. So, every intermediate node TCP waits until
it receives the acknowledgment of the correspondent
segment from the MN or the next nodes to clear its
buffer and then forwards the acknowledgment back to
the previous node and so on until it reaches the CH. For
example, in Fig. 1c that shows the connection after
handoff. When the CH sends a segment to the MN, it
goes to the established TCP connection with the HA,
then thorough the one between HA and FA then finally
through the one between the FA and the MN. After that,
the MN acknowledges the received segment by sending
an acknowledgment back to the CH. The
acknowledgment first goes to the FA then to the HA to
reach finally the CH so every node clears the
acknowledged segments from its buffer. For this
reason, each node should consider the RTT with the
receiving side of the Div-TCP connection. In addition,
we can notice that the RTT increases at nodes as we
move toward the sending side and decreases at nodes as

we move toward the receiving side of the Div-TCP
connection.
 Initially in our proposed protocol, when the sender
(CH) establishes a TCP connection with the receiver
(MN)[6,7] Split Mode Approach is applied by
establishing a TCP connection with the Home Network
Agent (HA) of the MN, then HA establishes another
TCP connection with the MN involved in the
connection on behalf of the CH. The HA controls the
both TCP connection and the end-to-end Div-TCP
connection goes normally.
 While Div-TCP connection is established, MN by
nature moves continuously and changes place. So, the
home network signal may become weak and the MN
may become out of the network coverage so the MN
need to handoff to another foreign network and their
will be a lot of packets losses then the TCP problems
start at this moment.
 In order to handle these problems of our wireless
mobile network, our proposed Div-TCP protocol aims
to achieve the previously mentioned two goals by
applying two processes before and within handoff
process that we will call them Increase RTO (IncRTO)
that is specialized to attain the first goal and sender
TCP Buffer Division (BufDiv) that is specialized to
attain the second goal. Both of them at the end
collaborate together to cover and reduce handoff
effects. Actually, Div-TCP applies the ordinary TCP
algorithm but it adds also those two operations to cover
handoff effects on the end-to-end TCP connection. It
sure requires certain modifications in the TCP
algorithm of those nodes that are involved in the
wireless mobile network in order to understand the Div-
TCP protocol which includes those two additional
operations.
 The first goal aims to protect the sender from
reaching RTO without receiving acknowledgment.
Actually[4,11] RTO is a period of time that is set at the
sender side so the sender assume that the segment is
lost if this period expired without receiving an
acknowledgment. In this case, TCP retransmits the lost
segment and apply congestion algorithms which return
the window size to the beginning slow start. This will
decline the throughput and sure this is something not
desired. However, to reach our goal we need to increase
the RTO at nodes as we move toward the sending side
(IncRTO). This goal should be maintained before and
after the handoff. As mentioned, this will have more
significance after the handoff where the end-to-end
nodes become more far so RTO that waits for
acknowledgment should be more. Actually, RTO
calculation is based on RTT between the two ends. It
show that RTO increases as RTT increase. So in Fig. 1a

J. Computer Sci., 4 (8): 680-692, 2008

 685

and c assuming that CH is the sending side, its RTO
will be more than the other nodes thorough the Div-
TCP path until we reach the MN because the RTT of
the nodes decreases as we move toward the receiving
side. So in our Div-TCP protocol, the IncRTO
procedure is implicitly triggered at each node and the
first goal is achieved. However, there are some
calculations to estimate the RTO at each node of Div-
TCP connection. Actually, each node should know the
RTT with the receiving side of the Div-TCP connection
in order to calculate the RTO. Also, as RTO calculation
is effected by the value of RTT, it is recalculated as
RTT changes over the time. So, RTO of sent segments
may differ.
 We have encountered many algorithms to calculate
RTO. Peterson and Davie[11] Jacobson and Karels
proposed an algorithm as a battle against congestion
that determines the suitable RTO to guarantee no
unnecessary retransmission of segments and no
triggering congestion control mechanisms. In addition,
their algorithm can be used by any end-to-end TCP
protocol. It is not easy to have a given range of possible
RTTs and a variation of them over the time between the
two ends of the TCP connection. For this reason, TCP
uses an adaptive retransmission mechanism to calculate
RTO which keeps calculating the sample RTT
(SampleRTT) of each segment or accumulative
segments which is the difference between the
segment/first segment sending time and the
acknowledgment receiving time (Time Stamp) then
calculating the Estimated RTT (EstimateRTT).
However, if the variation among samples is small, the
EstimateRTT can be more trusted and there is no need
to multiply this estimate by 2 to compute the RTO. On
the other hand, if the variance among samples is high,
this indicates to a low trust in EstmateRTT to reach the
RTO value.
 It is important to state that RTO calculation is a
regular process in TCP protocol. Since our protocol is
based on the regular TCP protocol, RTO is implicitly
calculated at every node. The following algorithm is
called Jacobson and Karels Algorithm that is used to
find the RTO value based on the RTT deviation where
DeviationRTT is used as the following:

 Difference = SampleRTT- EstmateRTT

 EstimateRTT = EstimateRTT+(δ×Difference)

 Deviation = Deviation+δ (|Difference|-Deviation)

Where δ is a fraction between 0 and 1.It calculates the
mean RTT and the variation in that mean.

 Initially, EstimateRTT = SampleRTT and
Deviation = 1/2×EstimateRTT.
 TCP then computes the timeout value as a function
of both EstimateRTT and Deviation as following:
 Timeout = µ×EstiamteRTT+Φ×Deviation

Where based on experience, µ is typically set to 1 and
Φ is set to 4. Thus, when the variance is too small,
timeout is close to EstmateRTT; a large variance causes
the deviation term to dominate the calculation.
 The following Algorithm is the original one for
calculating the RTO from RTT:

EstimatedRTT = α×EstimatedRTT+(1-α)×SampleRTT

Time Out = 2×EstimatedRTT

Where:
EstimatedRTT = Estimated Round Trip Time
SampleRTT = Sample Round Trip Time
Time Out = Retransmission Time Out (RTO)
α = Smoothing Factor between 0.8 and

0.9
 Since RTO calculation is a regular process in TCP
protocol where our protocol is based on that, we are not
going in this paper to apply those algorithms mentioned
above as we will have RTO calculated by TCP. So
RTO calculation is out of this paper scope. However,
the purpose of illustrating the idea of those algorithms
is to show the relation between RTO and RTT when
calculating RTO in TCP and how we have RTO is
increased with RTT which is an important application
in our proposed protocol.
 The second goal aims to establish a TCP
connection between CH and the FA of the next network
through the HA a little bit before handoff in order to
reach and maintain a high throughput which means
going through slow start and become[4] increasing
exponentially. In order to attain the second goal,
(BufDiv) process of the Div-TCP is triggered a little bit
before handoff. In this process[12], Network Agents
either HA or FA periodically keep advertising ICMP
messages to let any MN knows about the particular
Network Agent. This is considered a regular process of
Mobile-IP in wireless mobile networks. When the MN
finds a new FA that has a stronger signal, it expects to
handoff to save its internet accessibility.
 When MN finds a new FA, it reaches to the
expecting to handoff point (ExptHandoff) and BufDiv
process starts here. So, ExptHandoff is the first phase of
BufDiv process of Div-TCP protocol. Actually,
network performance can be measured by RTT and

J. Computer Sci., 4 (8): 680-692, 2008

 686

throughput which study as indicators of the
connectivity strength between MN and HA or FA.
However in this protocol, I will consider here the RTT
performance measurement to measure the performance
of the connection and its strength because it is affected
by distance and the quality of the link between of both
the sender and the receiver. So during ExptHandoff
period which started after the MN encountered a FA,
the MN measures the RTT between itself and the
current HA and also between itself and the next FA. So,
when the RTT of MN with the HA increases, it shows
that the gap is increasing and there should be an
absolute handoff. Actually in this protocol[13], since
there is no established TCP connection up to this
moment before handoff is completed between the MN
and the FA, RTT is measured by sending an ICMP
timestamp message from MN to FA and receiving the
ICMP timestamp echo reply message that enables the
MN to calculate the RTT measurement. But, in case a
TCP connection is established like between MN and the
HA, RTT is measured continuously by the timestamp
option that is mentioned previously. Actually, in this
period of time where the MN is still expecting to
handoff to the FA, MN keeps sending an ICMP
message to the FA as soon as it receives the previous
ICMP message echo reply in order to keep calculating
the RTT. So, in ExptHandoff period of time, the MN
keeps monitoring and recording the total measurements
of RTT (TRTT) between itself and both HA and FA.

TRTT = RTTHA+RTTFA

Where:

TRTT = MN Total RTT
RTTHA = MN's RTT with HA
RTTFA = MN's RTT with FA

 Actually, RTTHA, RTTFA and TRTT are
continuously recalculated during ExptHandoff period
every time an acknowledgment/accumulative
acknowledgment is received in case with HA and every
time ICMP echo reply is received in case with FA and
the new values overwrite the previous ones. However,
after calculating TRTT each time, once the RTTHA in
respect to TRTT becomes 38% or more and RTTFA
becomes 62% or less in respect to TRTT, we call this
point the end of ExptHandoff period/phase and the start
of time Prepare to Handoff period/phase (PrpHandoff)
which are phases of BufDiv which is an operation in
our proposed protocol (Div-TCP). Actually, RTTHA
percentage in respect to the TRTT increases as the MN
goes far away from the HA and the RTTFA and its

percentage in respect to the TRTT decreases as the MN
goes toward the FA. Once MN reaches PrpHandoff, it
immediately estimates a certain period of time that we
will call it (EstHandoff) that when it expires, the MN
will strictly disconnect with the current HA and handoff
to the next FA (PrpHandoff finishes and handoff takes
is done). So, EstHandoff is a value of a period of time
that is calculated during the PrpHandoff phase of
BufDiv operation. However, after EstHandoff period
expiration, the RTTHA in respect to TRTT should be
approximately about 50% or more and RTTFA in
respect to TRTT should be approximately about 50% or
less but not a must. But in general, the MN connectivity
at that moment with the FA will be better and the RTT
between them is less. In order to calculate EstHandoff
period, MN in the beginning of PrpHandoff records
T1which is the time that RTTHA takes to turn from 38-
39% with TRTT as well as RTTFA takes to turn from
62-61% with TRTT. Also it records T2 which is the
time that RTTHA takes to turn from 39-40% with
TRTT as well as RTTFA takes to turn from 61-60%
with TRTT. Then the average to both times
(AvgEstHandoff) represents an estimated average
period of time in which RTT of MN increases 1% with
HA and decreases 1% with FA. However, during the
BufDiv Process through its different phases
(ExptHandoff , PrpHandoff) , MN keeps monitoring
that there is an increase of its RTT with the HA
(RTTHA) and there is a decrease of the RTT with the
FA (RTTFA). Once the opposite takes place, BufDiv
process is canceled and the MN will stay connected to
the HA through the current Div-TCP.

AvgEstHandoff = T1+T2/2

Where:
AvgEstHandoff = Estimated time for each 1%
T1 = Time of RTTHA to turns 39% and

RTTFA to turn 61% / TRTT
T2 = Time of RTTHA to turns 40% and

RTTFA to turn 60% / TRTT

 At this point of PrpHandoff period or phase, we
still have about 10% to have that RTTHA in respect to
TRTT becomes about 50% and RTTFA becomes 50%
in respect to TRTT (approximately not strictly), so we
can estimate the EstHandoff as the following:

EstHandoff = AvgEstHandoff×10

Where:
EstHandoff = Period of time that MN must handoff

after

J. Computer Sci., 4 (8): 680-692, 2008

 687

AvgEstHandoff = Estimated time for each 1%

 We assume that MN movements and the changes
of the wireless topology go constantly. However, after
EstHandoff period expires, it is supposed that RTTHA
in respect to TRTT becomes about 50% and RTTFA
becomes 50% in respect to TRTT but it is not a must.
However, the purpose of EstHandoff period is to
determine a known period of time that after it expires,
MN mostly will mostly have a strong signal with the
FA but still it may not be an equal percentage as well as
the MN may still able to hear the HA signal.
 After MN calculates the EstHandoff period, it
sends its value to the CH as a message. So, when CH
receives Esthandoff value, it recognizes that the MN
will absolutely disconnect after this period expires and
the current end-to-end Div-TCP connection will no
longer be established and the MN handoff will be done.
Actually, when the CH receives Esthandoff stating the
time left for the MN to stay under the home Network, it
should be less than the Esthandoff issued from the MN
because it took time to reach the CH. So, the CH
calculates the actual EstHandoff (ActEstHandoff) left
for the MN before handoff by subtracting the original
Esthandoff time from the time it to reach from the MN
to the CH which is the half of the RTT as the following:

ActEstHnadoff = EstHandoff-(RTT/2)

Where:
ActEstHandoff = The actual remaining time of MN to

handoff from CH point of view
EstHandoff = The original estimated time to

handoff by the MN
RTT = Round Trip Time between CH and

MN

 Recall that EstHandoff is calculated by MN and
ActEstHandoff is calculated by CH.

From process To be sent

PreBuff PostBuff

Fig. 2: CH's TCP buffer

 Once the CH calculates the actual estimated time
of MN's handoff during the BufDiv process
(ActEstHandoff), CH immediately measures the current
number of bits that are occupying its TCP buffer and
also the current throughput in term of bits per second no
matter how much bits of data are coming. The CH

calculates the throughput of the link by sending ICMP
packets over it. Susana and Rui[14] it comes as the ICMP
timestamp and trace route are able to calculate the
available bandwidth through the capacity and cross
traffic estimation. After the CH calculates the
throughput over the link, it divides its TCP buffer (Fig.
2) into two parts. I will name the first part Pre Handoff
Buffer (PreBuff) and the second part Post Handoff
Buffer (PostBuff). The purpose of this division is to
achieve the second goal of Div-TCP which is to
establish a TCP connection which is a new process
from the CH to the next FA through the HA before the
Handoff process takes place. This new TCP connection
will be named as Interim Connection (IntCon) which as
we said in the Div-TCP definition, the CH in reality
establish the TCP connection with the HA and the HA
establish the TCP connation with the FA on behalf of
the CH. The IntCon that will endure after the
completion of handoff and will bind in the new end-to
end Div-TCP connection between the CH and the MN
and will be the longest part of it. In the same time, the
current end-to-end Div-TCP connection between the
CH to the MN through the HA will stay transmitting.
However, the content of the PreBuff (Fig. 2) is already
located first in the queue and contains the next to be
sent bits so it will stay transmitting through the current
end-to-end Div-TCP connection before handoff. But the
PostBuff content will be immediately allocated in the
new IntCon TCP buffer and will directly start to be
transmitted through the newly established IntCon
before handoff process completes and will stay
transmitting through the new end-to-end Div-TCP
connection from CH to the MN through the FA after the
completion of the handoff process (Fig. 3). Also, all the
new coming bits will be buffered in the new
connection's buffer.

FA

PreBuffPostBuff

CH's TCP Buffer

CH

MN

Handoff Preparation

Already Established
Div-TCP

Already Established
Div-TCP

Interim TCP (IntCon)

Interim TCP
(IntCon)

HA

Fig. 3: Div-TCP vs. IntCon

J. Computer Sci., 4 (8): 680-692, 2008

 688

 However, in order to make this division, CH
calculates the current amount of data (bits) that are
allocated in its buffer and the current throughput of
transmission as mentioned above. Recall that
throughput is number of bits data transmission per
second. Then, it finds the number of bits that should
stay in the current Div-TCP connection buffer that will
be transmitted in the remaining life of the current Div-
TCP connection before the handoff occurs
(ActEstHandoff expires). These bits will be considered
as the content of the PreBuff where the rest bits will be
considered as the content of the PostBuff that will be
immediately transferred to the new IntCon TCP
connection buffer.

PreBuffCont = ActEstHandoff×Throughput
PostBuffCont = TotalBuff-PreBuffCont

PreBuffContent = PreBuff Content in bits
ActEstHandoff = The actual remaining time of MN to
handoff
Throughput = Current transmission rate in bps
PostBuffCont = PostBuff Content in bits
TotalBuff = Total buffer size in bits

 As mentioned above, the purpose of establishing
the interim TCP connection (IntCon) in the period of
time between PrpHandoff and the completion of the
handoff process is to get useful of it in order to have an
existing TCP connection between the CH and the FA as
a part of the near future new end-to-end Div-TCP that
will have a good advertised window size and
transmission rate instead of establishing it after the
handoff. However, while the FA is receiving the
transmitted segments from the CH through the HA over
the (IntCon) in the period of time before the MN
finishes the handoff process and the new end-to-end
Div-TCP connection is established, it buffers and saves
those segments as well as it acknowledges them for all
nodes in the backward direction until the CH. In our
example, FA save the received segments and send
acknowledgment to the HA that will after that send
acknowledgment to the CH.
 After EstHandoff period ends, MN will strictly
terminate the original Div-TCP connection with CH
through the HA and perform[12] the handoff process and
registration. So here PrpHandoff phase will finish and
handoff is complete. Then, the (IntCon) will be
connected with the new TCP connection that will be
established between the MN and the FA after
completing the handoff process (the MN becomes
connected to the Foreign Network Agent (FA)) and the
end to end connection (CH - HA - FA - MN) will be the

new Div-TCP). Recall that all of that period between
the preparation for the handoff and its completion is
called PreHandoff. So now, the PreHandoff period is
finished, the handoff process is complete and the MN is
now attached with the FA. Here I want to summarize
the BufDiv process which is an operation in our
proposed protocol Div-TCP where it starts when MN
encounters a FA signal so (ExptHandoff) phase of
BufDiv starts and here EstHandoff period is calculated
and sent to CH. Then, the second phase (PrpHandoff)
will be started and here the CH divides the TCP buffer
and establishes the Interim TCP connection (IntCon).
Finally, (PreHandoff) is finished after EstHandoff is
expired and Handoff is complete.
 After the handoff is complete, the FA will forward
the buffered segment that it received from the CH and
will stay accepting the incoming segment traffic and
acknowledging them. At that time, the MN will only
acknowledge the segments that it receives to the FA not
to the whole path back to the CH along the end-to-end
Div-TCP. This is because the MN has just finished
handoff to the FA and it is receiving the buffered
segments by the FA. Those segments are already
acknowledged to the CH and HA by the FA. Recall that
the receiving end of Div-TCP is the one who
acknowledges the received segments from the CH and
this acknowledgment goes backward through the entire
path and each node is acknowledged as well. But in the
period of time after the handoff finishes and the
buffered segments in FA are forwarded to the MN, the
Div-TCP will handle a special acknowledgment policy
that allows the MN to acknowledge only the FA where
the FA handles the CH and the previous nodes
acknowledgment. This policy will terminates only if
under any circumstance the FA has forwarded the entire
buffered segments to MN and it becomes able to
directly forward the incoming segments without
buffering them. At that time, the MN will be the one
who acknowledges the received segments to the CH
and all the nodes though the entire Div-TCP path.
 Finally, I found that Div-TCP is a suitable name
for this proposed protocol because the end-to-end Div-
TCP connection between the CH and MN is divided
into many TCP/Interim TCP connections between each
two adjacent nodes of the connections. Also, Div-TCP
protocol divides the CH TCP connection and buffer into
two connections and buffers as soon as handoff is
expected in BufDiv process.

DISCUSSION

Protocol Discussion: We are going to consider the
topology that is illustrated in Fig. 1 to discuss our

J. Computer Sci., 4 (8): 680-692, 2008

 689

protocol. In Fig. 1, we can see the different states of our
communicating parities before, while and after handoff.
At the beginning, the CH establishes an end-to-end
Div-TCP connection with the MN through the HA
where the MN is still in the same coverage area. The
end-to-end Div-TCP is going to be the TCP connection
between the CH and the HA and the other one between
the HA and MN. Then, after MN handoff to the other
network, the end-to-end Div-TCP is going to be
through CH-HA-FA-MN.
 As a regular operation in Div-TCP, RTT is
continuously calculated at every node involved in the
end-to-end Div-TCP connection between itself and the
MN. Sure, as a particular station through out the path is
close to the end MN, RTT will be less than the RTT of
the next nodes. RTT is always updated at each node
when it receives an acknowledgment. So let us assume
at a certain period of time before handoff takes place
that RTT of HA with MN is 1.5 ms, sure the RTT of
CH with the MN will be more as there is more distance
and assume that to be 2.5 ms. However, after handoff
takes place, the values will change as MN will become
more far to CH and new nodes become involves. So let
us assume that at a certain period of time after handoff
that RTT of FA with MN is 1.5 ms, RTT at HA to MN
is 2.5 ms, and at CH to MN is 3.5. So, we relied on the
fact that RTT increase with distance. But you may say
that RTT not only depends on the distance but also
depends on the quality of the line. But since part of the
Div-TCP connection between a particular node and the
MN relies on the Div-TCP connection between the next
node toward the MN and the MN itself (for example
Div-TCP connection between HA and MN relies on
that one between FA and MN), so distance will be the
main reason that controls the RTT. However as
mentioned, RTTs are always recalculated and changed.

 FA HA CH
RTT (ms) 1.5 2.5 3.5
RTO (ms) 4.5 7.5 10.5

Fig. 4: RTO vs. RTT after handoff

 When Div-TCP is established either before or after
handoff, it keeps running the IncRTO operation at each
node and checking its correctness. This operation leads
to make RTO high enough in respect to the RTT
between a particular node involved in the Div-TCP and
the MN which is the end part of the connection. It is
important to increase the RTO as we go far from MN
toward CH to avoid congestion algorithms to be applied
because the delay of acknowledgments is going to be

more as the RTT increases. Actually, increasing RTO is
very important especially after handoff so we need to
increase the RTO of the end-to-end Div-TCP
connection between CH and MN as the MN now
become more far than before.
 As mentioned before, the RTO calculation
algorithms show that whenever the RTT is increased,
RTO is also increased too. So the relationship between
RTT and RTO is considered positive. In addition,
calculating RTO is considered a part of the regular TCP
protocol in which our protocol is based on. So the
process of RTO calculation is out of this paper scope
but we will give an example. The example that we will
give is in [4], the mentioned RTO calculation
algorithms are applied and summarized in Fig. 4. So,
this clearly shows the relation between RTT and RTO
as a positive relation. Actually, the given examples here
are for the sake of assumption. Consider that a system
calculated different values of RTO for the given RTT in
Fig. 4, they should not have much variance or gap
results. However, all of the mentioned in the sum shows
that IncRTO operation as part of our proposed Div-TCP
protocol which aims to maintain higher RTO as RTT
increases is implicitly achieved.
 Now let us assume that the MN started to move far
away the HA and it encountered a signal from a FA,
sure the Div-TCP connectivity of MN with HA will be
decreasing and the Div-TCP connectivity of MN with
FA will be increasing. As mentioned, RTT will be the
connectivity measurement where more connectivity
will have less RTT and the opposite is correct. As MN
is moving away from HA to FA, a handoff will take
place at the end. So, at the point where FA is
encountered, BufDiv operation of Div-TCP will be
triggered at MN and latter at CH and the first phase
ExptHandoff will start at MN. Here, MN will keep
calculating the RTTHA and RTTFA. Let us assume that
at the beginning of ExptHandoff RTTHA = 35 ms and
RTTFA = 65 ms. So, TRTT = 35 + 65 =100 ms. At this
moment, the condition of going to PrpHandoff is not
matched yet. After short period of time, the new
calculation has measured that RTTHA = 38 ms and
RTTFA = 62 ms, PrpHandoff now goes since the
condition that RTTHA in respect of TRTT = 38% or
more and the RTTFA in respect of TRTT = 62% or
less. Here, the protocol will calculate (EstHandoff)
period of time which a duration that when it expires, the
MN will strictly handoff. To perform that, the protocol
will measure an approximate time where there is a 1%
increase in RTTHA in respect to TRTT and a 1%
decrease in RTTFA in respect to TRTT as MN is
moving toward FA and is becoming far away from HA.
As mentioned previously, this involves taking the

J. Computer Sci., 4 (8): 680-692, 2008

 690

average of two 1% increases and decreases in RTTHA
and RTTFA respectively. Actually, this depends on
many factors like the conditions of the cline and the
way that MN moves. Let us assume that 70 ms was the
period of time (T1) that RTTHA becomes = 39 ms and
RTTFA = 61 ms and 75 ms was the period of time (T2)
that RTTHA becomes = 40 ms and RTTFA = 60 ms as
MN is moving toward FA. This will give us the value
of AvgEstHandoff = (70 + 75) / 2 = 72.5 ms. So, this
will lead us to EstHandoff = 72.5 × 10 = 725 ms where
it is expected that the connectivity of MN with HA and
FA is approximately to be equal with more transition
toward FA. So after this period expires, PrpHandoff
will be finished and MN will disconnect with HA and
handoff to FA. Note that it is supposed that T1 and T2
to be higher than RTTHA and RTTFA since the
calculation of their updated values depend on receiving
acknowledgments. Fig. 5 summarizes the PrpHandoff
results at MN.
 EstHandoff will be sent immediately from MN to
CH as soon as it is calculated by MN during
PrpHandoff. CH will start now its BufDiv operation
and calculates ActEstHandoff at itself side. This
involves its calculation of the current RTT between
itself and MN before handoff at that instance of time.
This value sure will be more than RTTHA that is
calculated above as the distance is more. So, assuming
that RTT between CH and MN = 56 ms, ActEstHandoff
= 725 – (56/2) = 697 ms which is the strictly remaining
time of PrpHandoff phase and MN completely handoff
from the CH's point of view.
 From now until the end of PrpHandoff phase, MN
has nothing to do but to wait the end of this period to
perform successful handoff. But the CH now will
establish the IntCon with the FA through the HA after
dividing the transmitting Div-TCP buffer which will be
high throughput part of the near future end-to-end Div-
TCP after handoff complete to cover handoff problems.

 RTTHA(ms) RTTFA(ms) TRTT(ms)
 38 62 100
 39 61 100

T1(ms) 70
 RTTHA(ms) RTTFA(ms) TRTT(ms)
 39 61 100
 40 60 100

T2(ms) 75
AvgEst-

Handoff(ms)
72.5

EstHand-
off(ms)

725

Fig. 5: PrpHandoff Phase Results at MN

CH-MN RTT (ms) 56
ActEst-

Handoff(ms)
697

TotalBuff(bits) 4000 bits (500 byte)
PreBuffCont(bits) 697
PostBuffCont(bits) 3303

Fig. 6: PrpHandoff Phase Results at CH

 CH will immediately now calculate the total size of
its TCP buffer (TotalBuff) in bits and let us assume that
= 4000 bits (500 byte). Also it will calculate the current
transmission throughput of the current Div-TCP
established with the MN. Suppose that the current
throughput = 1000 bits/sec. So, the TCP will be divided
into two parts where PreBuff of size PreBuffCont = 697
/ 1000 × 1000 = 697 bits and PostBuff of size
PostBuffCont = 4000 – 697 = 3303 bits. So, the current
Div-TCP will transmit 697 bits and it will establish
IntCon connection that will transmit 3303 bits (if they
are already available or they are coming from the
process) to FA through HA where part/most of them
will be transmitted during ActEstHandoff before the
handoff completes. Fig. 6 summarizes the PrpHandoff
results at CH.
 Finally, the CH will now synchronize and establish
the IntCon with the FA that will be an efficient part of
the near future end-to-end Div-TCP and start
transmitting the PosBuff content since the beginning of
ActEstHandoff. TCP transmission over IntCon starts
with slow start where the growth of throughput (here
number of segments sent per round trip) is exponential
until a threshold (sshresh) is reached where it becomes
additive (increasing in 1 segment each round trip).

Fig. 7: TCP slow start exponential increase before

threshold

J. Computer Sci., 4 (8): 680-692, 2008

 691

 Here, we are going to assume the sshresh = 16
segments. Recall that a segment is a bunch of bits. So
initially, one segment will be transmitted though the
IntCon in the first round trip, then 2, then 4, 8 until the
threshold 16 is reached so the number of transmitted
segments will be 17, 18, and so on. Each leap will be
attained after one RTT between CH and FA in IntCon.
Fig. 7 shows the slow start exponential increase in TCP.
 Let us assume that the average of the different RTT
measurements between CH and FA during
ActEstHandoff is equal to 90 ms, we will have one leap
every 90 ms. Let us assume that each segment holds 10
bit, so 10 – 20 – 40 – 80 – 160 – 170 and so on bits will
be sent approximately after 90 ms between each one.
Fig. 8[15] of slow start and congestion avoidance shows
the number of segments and throughput of IntCon that
will be approximately reached after the end of the
ActEstHandoff where the curve is exponential until it
reaches the threshold (ssthresh) so it will become
additive.

Fig. 8: Slow Start, RTT vs Transmitted Segments

 We can now reach to a result from the Fig. 8 that as
after ActEstHandoff which equals to 697 ms is finished,
about 19 + 18 + 17 + 16 + 8 + 4 + 2 + 1 = 85 segments
which equals 850 bit of the PostBuff are going to be
transmitted through IntCon before the handoff
completes. So, the new end-to-end Div-TCP will be
efficient as it has a part with high throughput. FA will
keep acknowledgment the CH until MN completes
handoff, receive the buffered segments, and become
able to acknowledge the CH immediately.
 It is important to state that the values that were
used in this discussion and were applied on the protocol
algorithm may be approximate to those values when
applying or simulating this protocol under a practical
systems or circumstances. However, the purpose is to
show that the protocol (solution) has achieved its goals.

So, when this protocol is applied on practical or
deployed systems, sure it is going to give at least
approximates to the desired results.

CONCLUSION

 TCP is a connection oriented protocol that is
established between the end-to-end communicating
parties for reliable communication. It handles lost
packets due to the different reasons like bit error,
network congestion, weak signals and handoff process.
But unfortunately, it thinks that any loss is due
congestion. When TCP thinks that congestion took
place, it triggers congestion algorithms which return the
transmission window size and throughput to the
beginning slow start which is undesired event
especially in case the loss is not due congestion.
Handoff is a process that takes place in wireless
networks that causes packet loss due to the jump of the
mobile node from a network to another. This sure will
make the sender TCP thinks that the loss is due
congestion. For this reason, Div-TCP is a proposed
solution that runs the ordinary TCP algorithm with
extra two operations that are concerned to handoff
process. Those operations are triggered by the Div-TCP
as soon as handoff is expected to happen. IncRTO is
concerned in maintaining a suitable RTO at each node
involved in the end-to-end connection to avoid
triggering congestions algorithms where BufDiv is
concerned in maintaining the sender’s throughput by
establishing a TCP connection prior to the handoff
occurrence.

Future work: Assume that after CH established IntCon
during PrpHandoff with FA in BufDiv operation, the
MN decides to return back toward the Home Network.
We discussed this issue and we said that in case that
MN returns toward HA, BufDiv operation will be
cancelled. But after transmitting some data to the FA
through the IntCon, a solution should be founded to do
rollback. So the solution will be sure enabling the CH
to retrieve the buffer status before establishing IntCon
and to enable the FA to discard the IntCon
transmission.

REFERENCES

1. Kurose, J.F. and K.W. Ross, 2004. Computer

Networking: A Top-down Approach Featuring the
Internet. 3rd Edn. Addison-Wesley Educational
Publishers Inc., U.S.

2. Halsall, F., 2005. Computer Networking and the
Internet. 5th Edn. Addison Wesley. ISBN:
0321263588.

J. Computer Sci., 4 (8): 680-692, 2008

 692

3. Perkins, C., 2002. IP Mobility Support for IPv4",
RFC-3220. http://www.ietf.org/rfc/rfc3220.txt

4. Forouzan, B.A., 2007. TCP/IP Protocol Suite
International. 3rd Edn., McGraw-Hill Higher
Education. New York, Printed in Singapore. ISBN:
978-007-126066

5. Fladenmuller, A. and R. De Silva, 1999. The effect
of Mobile IP handoff on the performance of TCP. J
Mobile Networks Appl., 4: 131-135. Doi:
10.1023/A:1019138629630

6. Rojas, O.R. and J.B. Othman, 2005. A solution to
improve the TCP Performance in the presence of
handoffs in Wireless IP Networks. In: Proceeding
of IEEE (ICAS/ICNS 2005). pp: 13.

7. Bakbe, A. and B. Badbinath, 1995. I-TCP: Indirect
TCP for Mobile hosts. In: Proceeding of 15th
International Conference on Distributed
Computing Systems (May 1995). pp: 136-143.

8. Yao-Nan Lien and Ho-Cheng Hsiao, 2007. A new
TCP congestion control mechanism over wireless
Ad Hoc networks by router assisted approach. In:
Proceeding IEEE (ICDCSW'07 2007). pp: 84.

9. Clark, M.P., 2003. Data Networks, IP and the
Internet: Protocols, Design and Operation. John
Wiley and Sons, England, pp: 866. ISBN: 0-470-
84856-1.

10. Jacobson, V. and R. Braden, 1992. D. Borman,
TCP Extensions for High Performance, RFC1323.
http://www.ietf.org/rfc/rfc1323.txt

11. Peterson, L.L. and B. Davie, 2003. Computer
Networks-A Systems Approach. 3rd Edn., Morgan
Kaufman, U.S. ISBN: 155860832X.

12. Dixit, S. and R. Prasad, 2002. Wireless IP and
Building the Mobile Internet. Artech House
Publishers. U.S, ISBN:158053354X.

13. Postel, J., 1981. Internet Control Message Protocol.
DARPA Internet Program Protocol Specification,
RFC 792. http://www.ietf.org/rfc/rfc0792.txt

14. Susana Sargento and Rui Valadas, 2006. Capacity
and cross-traffic estimation of all links in a path
using ICMP Timestamps. In: Proceeding IEEE
(ICNICONSMCL'06), 2006. pp: 49.

15. Richard Stevens, W. and Gary R. Wright, 1994.
The Protocols. Addison-Wesley, pp: 576. ISBN
0201633469, 9780201633467
http://books.google.com/books?id=-btNds68w84C

