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Abstract: Problem Statement: This study proposes a TCP layer protocol (Div-TCP) that aims to give 
a solution for communication over wireless mobile networks that have the occurrence of handoff at 
anytime. It describes a topology of wireless mobile network and the handoff process as an ordinary 
process in that type of networks which may cause segments losses. Approach: Wireless mobile 
networks have many weaknesses related to bit error, network congestion and weak signals that cause 
segments losses as well as handoff process. For this reason, wireless mobile network TCP cannot 
distinguish between losses caused by these weaknesses or by the handoff process. So in handoff case, 
segments losses will trigger congestion control algorithms that reduce the TCP connection’s 
throughput performance. Results: However, in addition to the previous efforts that provide different 
algorithms and protocols which aim to come up with different solutions and enhancements for the TCP 
connection in wireless mobile networks when handoff occurs, I am providing in this study Div-TCP 
protocol that runs the ordinary TCP algorithms with adding more operations that are concerned to 
handoff. These operations aim to maintain a suitable RTO at each sender to avoid triggering 
congestions algorithms and also to maintain the sender’s throughput by establishing a TCP connection 
prior to the handoff occurrence. Conclusions/Recommendations: The protocol's discussion shows 
how end-to-end TCP connection became more efficient since the new Div-TCP connection after 
handoff will have good and already built TCP connection and the RTO is too much high at all nodes so 
there is no fear of a that TCP considers congestion. 
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INTRODUCTION 
 
 In wireless 802.11 networking, communications 
take different shapes that connect end to end users 
using at least one non-wired part of the network. 
Actually, there are a lot of topologies. Mobile and 
cellular networks are considered wireless networks that 
have a particular system of components and protocols. 
Actually, they are important at this period of time 
because of their important applications.  
 Mobile Networks may take different topologies 
and structures[1]. Wireless 802.11 networks with 
different topologies suffer from weaknesses in the level 
of physical and data link layer of communication such 
as low signal strength, other resources transmission 
interference and signal fading problem that causes high 
bit error rate. These problems contribute in disturbing 
the upper layers protocols especially TCP transport 
layer protocol. 
 Mobile networks can support connection to the 
internet as well as the telephony communication. In this 
study, I can consider[1] wireless networks that run 

infrastructure mode which is based on a Base Station 
(BS) that connects and routes packets from and to 
Mobile Nodes (MN). But for more accuracy, I will 
consider the mobile network (Fig. 1) that supports 
mobility of the MN so it can freely move among 
different areas of coverage. In order to support 
mobility, mobile network should be able to route 
connection from and to MN as it moves freely between 
different areas of coverage. So, the mobile network here 
has Home Network (HN) that is controlled by Home 
Agent (HA). Each HN has one or many MN attached to 
it (Subscribers) and HA controls their information, 
registrations and routing.  
 When a MN moves to another area of coverage, it 
leaves the HN and register with a Foreign Network FN 
that is controlled by Foreign Agent FA that acts as HA 
but in the foreign network. The sender host whether is 
in HN or in FN is called correspondent host CH. Every 
network agent is connected to the router that connects 
the entire network with outside. Actually, when CH 
establishes a TCP connection with the MN, it first 
establishes a TCP connection with the Network Agent 
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HA of that of the particular MN's Home Network (HA), 
then the HA establishes another TCP connection with 
the MN on behalf of the CH. So, the established 
connection between CH and MN must go through the 
HA which MN is currently attached with.  
 When the mobile node MN changes place far 
away, it will no longer be able to reach its Home agent 
or  in  other words it will become out the coverage area.  
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Fig. 1: Wireless mobile network topology in its 
different cases   

 Then, the HN will no longer be able to handle the 
connection from and to the mobile node so there should 
be a transfer of the connection to the next nearest 
foreign network FN and registration of MN with the FA 
in a process called Handoff. However, since the MN is 
related to its home network and considered as a 
subscriber, the connection between the CH and the MN 
always go through the home network agent HA even if 
a handoff occurs. So after handoff, the connection will 
be from CH to HA and then to the next foreign 
network's agent FA and finally to the MN. For this 
reason, handoff process sure disturbs network layer 
routing and transport layer connection as well as in 
many cases it may disconnect the connection especially 
if there is no proper protocol that handles it. 
 As its ability to support internet connection, mobile 
networks are worthy to research in its session and TCP 
connection because of its mentioned weaknesses 
especially when handoff occurs that is the scope of this 
study.  

 
MATERIALS AND METHODS 

 
Wireless connection handoff: In Mobile networking[1] 

Handoff occurs when MN changes its location and 
become under another base station or foreign network 
coverage during the established connection. Actually, 
Handoff process involves many steps including MN 
registration with the foreign network agent and 
different coordination. These processes sure take time 
to switch to the new network which may include 
disconnection at TCP transport layer. Actually, Handoff 
process duration is not specific. Since mobile networks 
can handle internet TCP/IP connection[4] TCP 
connection is known of its reliability connection 
oriented and when it is established, a stream of bytes 
are sent and received. So, data isn’t sent separately 
exactly as when you make a phone call. For this reason, 
handoff is considerable issue. 
 
Current work: There are many protocols, papers and 
projects that aim to solve transport layer and TCP 
connection over wireless mobile networks when 
handoff occurs. Kurose and Ross[1] Mobility in wireless 
mobile networks and the previously mentioned 
weaknesses in addition to handoff process should not 
have a remarkable impact on the higher layers protocols 
if the lower layers protocols heal the connection 
properly, so[2-3] Mobile-IP is used. But the TCP 
transport layer protocol is more affected than the 
application layer protocol because of segment loss 
either from congestion or by handoff and bit error. So, 
when a TCP connection is established between the 
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sender and the receiver and the sender noticed that 
some segments were not acknowledged by the receiver 
before the end of Retransmission Time Out (RTO) 
timer, sender's TCP will not distinguish either the 
segments loss is due to network congestion, due to 
handoff, or due to bit error and wireless weakness. 
Anyway, the sender's TCP will retransmit the lost 
segments and will apply the congestion algorithm that 
decreases the congestion window and throughput. 
 Actually, [2] Mobile-IP is considered a protocol that 
solves network layer problems of wireless mobile 
network connection. It is designed to handle mobile 
routing especially when handoff occurs and to re-route 
packets using the[1-3] care-of-address concept. So, MN 
should maintain its IP address granted by its HN. Also, 
it coordinates the MN registration process with the 
foreign agent when handoff takes place. In[3], Mobile-IP 
aims to help mobile wireless link by minimizing the 
number and the size of the administrative messages sent 
over the link. So, Mobile-IP is our layer 3 routing 
protocol. 
 In[2], TCP connection over wireless mobile 
networks is healed by different operational parameters 
like increasing window and buffer size, using large 
MTU and the most important is time-stamp which 
obtains an estimated RTT with each ACK received in 
order to tolerate delay without any timeout. 
 It is important that TCP connection over wireless 
mobile networks do not reach retransmitting time out 
RTO in order not to apply congestion control 
algorithms. In[5] the author used similar network 
topology to that I am using in this study. It agrees that 
long handoff and its attached process like registrations 
takes a period of time that causes a lot of 
unacknowledged TCP segments that lead TCP sender to 
trigger congestion control algorithms which cause 
exponential back off where the transmission window 
size (throughput) got multiplicative decrease where it 
returns to slow start. This will lead to a long delay 
before retransmitting the data packet and also will 
trigger congestion algorithm that decreases the TCP 
window size and throughput to go from the beginning 
slow start. It takes more time to reach the same 
throughput as before handoff. So, the possible solution 
is to modify the Mobile-IP and to allow data packets to 
be stored in the Foreign Agent (FA). So, when handoff 
occurs, the FA will forward the stored packets to the 
new FA. In addition, this solution is reasonable because 
the acknowledged packets will be removed from the old 
FA buffer so it will not be overloaded and also the two 
FAs sure are close to each other so there is no chance 
for disconnection while transmission. In addition, this 

method will help if there is no retransmission occurs. 
TCP retransmission time out RTO depends on RTT 
which depends on the link strength and the distance 
between the sender and the receiver. The author tested 
the negative effect of handoff on TCP over wireless 
mobile networks and compared the results with the 
same test using wireless and fixed network. 
 In[6] the authors provided a mobility management 
solution at transport layer that minimizes the TCP 
packet loss when handoff occurs based on Split Mode 
Approach and ensures end-to-end paradigm of TCP 
connection. They compared their results with TCP 
Reno Model. They proposed a secured authentication 
and micro-mobility model that use LDAP server which 
runs over TCP/IP and contains user profile database 
that makes user authentication in cooperation with 
RADIUS server. However, the two TCP connections 
are established, one between the CH and the LDAP 
server and the other between LDAP server and the MN. 
Actually, LDAP server does not send ACK to the CH 
unless it receives an ACK from the MN for the 
correspondent segments. LDAP stores data arriving 
from CH in SEG_TCP field as well as user profile. So, 
when handoff occurs, LDAP server forwards all 
previously buffered segments in SEG_TCP to the MN 
and continuously deletes the acknowledged segments. 
Actually, the RTT is increased and the RTO is based on 
the total RTT time of both TCP connections. 
 There are some protocols are based on Split Mode 
Approach to save reliability of TCP connection over 
wireless mobile network. Bakbe and Badbinath[7] I-TCP 
is proposed to handle problems related to mobility and 
reliability of TCP connection in mobile networks 
especially when handoff occurs. By this approach, the 
connection between MN and the base station or the 
network agent is wireless link but the connection 
between the CH or any other node with the base station 
or the network agent is fixed so we have two TCP 
connections with some improvements in the wireless I-
TCP connection with the MN. Actually, the TCP fixed 
connection is considered to be the regular TCP. So, 
when MN want to connect with the CH, the base station 
or the network agent will establish the TCP with the CH 
on behalf of MN and also establish a I-TCP with the 
MN. When a handoff occurs, the base station or 
network agent will handle the connection and heal any 
packet loss. 
 Due to the unawareness of TCP connection about 
the network condition and the packet loses and 
distinguish packet loss from congestion loss and 
random loss. That will decrease the TCP performance 
when it is run over wireless networks. In[8], the authors 
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proposed a new TCP congestion control mechanism by 
router-assisted approach over wireless ad-hoc networks 
which is mainly based on the information feed backed 
from routers where the TCP sender is able to control 
and adjust its sending speed dynamically in order to 
avoid losses and congestion algorithms problems. 
Actually, this sure can be useful in different wireless 
networks including wireless mobile networks. 

 
RESULTS  

 
solution (Protocol) for improving TCP connection in 
wireless mobile networks when handoff occurs 
(Division TCP (Div-TCP)): In order to reach an 
improvement for TCP connection over wireless mobile 
networks, the protocol algorithm should consider the 
previously mentioned wireless mobile network 
weaknesses and its inability to distinguish between the 
delay that is caused by handoff, by congestion, or by bit 
error. 
 Our solution has two goals that collaborate together 
to cover and reduce handoff effects. Firstly, it aims to 
handle handoff process by avoiding the sender to reach 
RTO without receiving acknowledgments of the sent 
packets in order to avoid going back to slow start by 
triggering congestion algorithms so we can maintain 
TCP connection throughput. This is important to be 
maintained and its have special importance that arises 
after handoff takes place where the end- to-end nodes 
become more far to each other. 
 Secondly, the solution algorithm aims to establish a 
TCP connection between HA and the FA of the next 
network when the handoff process seems to happen (a 
little bit before handoff) in order to reach and maintain 
a high throughput in between. This will cover the 
handoff problems and affects positively upon the 
overall throughput of the end-to-end TCP connection. 
 In our protocol, we will use the previously 
mentioned wireless mobile network topology. We 
mentioned that the connection between the CH and the 
MN goes through the HA and if any handoff of MN 
happens to the next FA their will be a connection 
established between HA and FA. However, we call the 
end-to-end TCP connection that is established between 
the CH and the MN (Div-TCP) which is our proposed 
TCP solution protocol. The established Div-TCP as 
shown in Fig. 1 is a combination of one or more 
established TCP protocols between different nodes of 
the end-to-end TCP connection. For example, in Fig. 1a 
the end-to-end Div-TCP consists of the TCP connection 
between the CH and the HA and also the TCP 
connection between the HA and the MN. But in Fig. 1c 

which represents the MN after its handoff to the next 
FA, the end-to-end Div-TCP consists of the TCP 
connection between the CH and the HA in addition to 
the TCP connection between the HA and the FA and 
finally the TCP connection between the FA and the 
MN. So in both cases, the Div-TCP starts at CH and 
ends at MN so its parts are apply[6,7] Split Mode 
Approach but the whole Div-TCP is considered end-to-
end TCP protocol. 
 It is important for each node involved in a Div-
TCP connection to calculate the RTT between itself and 
the receiving end of the Div-TCP connection. In 
addition, the CH and the MN should calculate the RTT 
between each other along the whole path since they 
represent the both ends of the Div-TCP connection. 
Actually[4] an RTT time is the time needed for a 
segment to reach the destination and for its 
correspondent acknowledgment to be received by the 
sender. So, RTT is calculated at the sender side. For 
example, in the previous Fig. 1c after handoff occurs 
assuming that the MN is the receiving end, CH should 
calculate the RTT with the MN and also HA should 
calculate the RTT of its connection with the MN and 
also the next FA should calculate the RTT with the 
MN.  
 In order to measure the RTT between two nodes, 
we will use in our protocol[4,9] Time Stamp Option 
which is a 10-byte option in the TCP segment. 
Actually, the Time Stamp here is the system clock 
value at the segment's sending time. Initially, when a 
sender node establishes a TCP connection with receiver 
one, it sends a SYN segments that holds a Time Stamp 
of its system clock in the segment's options. Then, the 
receiver node replies with a SYN+ACK segments that 
holds the sender segment's Time Stamp in its options. 
The same thing happens while the regular TCP data 
transfer, each segment sent by the sender includes a 
Time Stamp in its options. So, when the receiver sends 
an acknowledgment or an accumulative 
acknowledgment for many received segments, it will 
contain the sender segment's Time Stamp in Time 
Stamp Echo Reply field. In other words, the receiver 
keeps the sender segment's Time Stamp in the 
acknowledgment so the sender will not be confused of 
not knowing for which segment an acknowledgment 
has been received. Then, the sender will easily calculate 
the RTT with the receiver after receiving the 
acknowledgment by subtracting the value of Time 
Stamp Echo Reply field from the time shown by the 
clock to find RTT. In[10], it considers that Time Stamp 
is one of the TCP extensions for high performance and 
should use the mnemonic RTTM (Round Trip Time 
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Measurement) when it is used for that to distinguish it 
from other Time Stamp option uses. 
 
RTT = TSSC – TSER 
 
Where: 
 
RTT = Round Trip Time between sender and 

receiver 
TSSC = The current Time Stamp of Sender clock 
TSER = Time Stamp Echo Reply 
 
 In addition, the RTT is modified and recalculated 
continuously every acknowledgment is received. 
Actually, as[4] there is no need that the sender and the 
receiver clocks to be synchronized because the RTT 
calculation is based on the sender clock. In addition, the 
sender should not store the time the segment left 
because it is carried by the segment itself. Actually, we 
can notice that the Div-TCP between CH and the MN 
as they form the both ends of the TCP connection 
should be calculated using timestamp and should have 
the longest RTT.  
 As mentioned above, in Div-TCP, the TCP 
connection between the both ends CH and MN goes 
into multiple established TCP connections among 
different nodes in between. So, when the CH sends a 
segment to the MN, it goes through the whole path and 
every intermediate node stores it in its TCP buffer and 
forwards it through the TCP connection to the next 
node until it reaches the MN. Then, the MN 
acknowledges the received segment(s) so the 
acknowledgment goes back to the CH in the opposite 
direction. So, every intermediate node TCP waits until 
it receives the acknowledgment of the correspondent 
segment from the MN or the next nodes to clear its 
buffer and then forwards the acknowledgment back to 
the previous node and so on until it reaches the CH. For 
example, in Fig. 1c that shows the connection after 
handoff. When the CH sends a segment to the MN, it 
goes to the established TCP connection with the HA, 
then thorough the one between HA and FA then finally 
through the one between the FA and the MN. After that, 
the MN acknowledges the received segment by sending 
an acknowledgment back to the CH. The 
acknowledgment first goes to the FA then to the HA to 
reach finally the CH so every node clears the 
acknowledged segments from its buffer. For this 
reason, each node should consider the RTT with the 
receiving side of the Div-TCP connection. In addition, 
we can notice that the RTT increases at nodes as we 
move toward the sending side and decreases at nodes as 

we move toward the receiving side of the Div-TCP 
connection. 
 Initially in our proposed protocol, when the sender 
(CH) establishes a TCP connection with the receiver 
(MN)[6,7] Split Mode Approach is applied by 
establishing a TCP connection with the Home Network 
Agent (HA) of the MN, then HA establishes another 
TCP connection with the MN involved in the 
connection on behalf of the CH. The HA controls the 
both TCP connection and the end-to-end Div-TCP 
connection goes normally. 
 While Div-TCP connection is established, MN by 
nature moves continuously and changes place. So, the 
home network signal may become weak and the MN 
may become out of the network coverage so the MN 
need to handoff to another foreign network and their 
will be a lot of packets losses then the TCP problems 
start at this moment.  
 In order to handle these problems of our wireless 
mobile network, our proposed Div-TCP protocol aims 
to achieve the previously mentioned two goals by 
applying two processes before and within handoff 
process that we will call them Increase RTO (IncRTO) 
that is specialized to attain the first goal and sender 
TCP Buffer Division (BufDiv) that is specialized to 
attain the second goal. Both of them at the end 
collaborate together to cover and reduce handoff 
effects. Actually, Div-TCP applies the ordinary TCP 
algorithm but it adds also those two operations to cover 
handoff effects on the end-to-end TCP connection. It 
sure requires certain modifications in the TCP 
algorithm of those nodes that are involved in the 
wireless mobile network in order to understand the Div-
TCP protocol which includes those two additional 
operations. 
 The first goal aims to protect the sender from 
reaching RTO without receiving acknowledgment. 
Actually[4,11] RTO is a period of time that is set at the 
sender side so the sender assume that the segment is 
lost if this period expired without receiving an 
acknowledgment. In this case, TCP retransmits the lost 
segment and apply congestion algorithms which return 
the window size to the beginning slow start. This will 
decline the throughput and sure this is something not 
desired. However, to reach our goal we need to increase 
the RTO at nodes as we move toward the sending side 
(IncRTO). This goal should be maintained before and 
after the handoff. As mentioned, this will have more 
significance after the handoff where the end-to-end 
nodes become more far so RTO that waits for 
acknowledgment should be more. Actually, RTO 
calculation is based on RTT between the two ends. It 
show that RTO increases as RTT increase. So in Fig. 1a 
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and c assuming that CH is the sending side, its RTO 
will be more than the other nodes thorough the Div-
TCP path until we reach the MN because the RTT of 
the nodes decreases as we move toward the receiving 
side. So in our Div-TCP protocol, the IncRTO 
procedure is implicitly triggered at each node and the 
first goal is achieved. However, there are some 
calculations to estimate the RTO at each node of Div-
TCP connection. Actually, each node should know the 
RTT with the receiving side of the Div-TCP connection 
in order to calculate the RTO. Also, as RTO calculation 
is effected by the value of RTT, it is recalculated as 
RTT changes over the time. So, RTO of sent segments 
may differ. 
 We have encountered many algorithms to calculate 
RTO. Peterson and Davie[11] Jacobson and Karels 
proposed an algorithm as a battle against congestion 
that determines the suitable RTO to guarantee no 
unnecessary retransmission of segments and no 
triggering congestion control mechanisms. In addition, 
their algorithm can be used by any end-to-end TCP 
protocol. It is not easy to have a given range of possible 
RTTs and a variation of them over the time between the 
two ends of the TCP connection. For this reason, TCP 
uses an adaptive retransmission mechanism to calculate 
RTO which keeps calculating the sample RTT 
(SampleRTT) of each segment or accumulative 
segments which is the difference between the 
segment/first segment sending time and the 
acknowledgment receiving time (Time Stamp) then 
calculating the Estimated RTT (EstimateRTT). 
However, if the variation among samples is small, the 
EstimateRTT can be more trusted and there is no need 
to multiply this estimate by 2 to compute the RTO. On 
the other hand, if the variance among samples is high, 
this indicates to a low trust in EstmateRTT to reach the 
RTO value.  
 It is important to state that RTO calculation is a 
regular process in TCP protocol. Since our protocol is 
based on the regular TCP protocol, RTO is implicitly 
calculated at every node. The following algorithm is 
called Jacobson and Karels Algorithm that is used to 
find the RTO value based on the RTT deviation where 
DeviationRTT is used as the following:  
 
 Difference = SampleRTT- EstmateRTT 
 
 EstimateRTT = EstimateRTT+( δ×Difference) 
 
 Deviation = Deviation+δ (|Difference|-Deviation) 
 
Where δ is a fraction between 0 and 1.It calculates the 
mean RTT and the variation in that mean.  

 Initially, EstimateRTT = SampleRTT and 
Deviation = 1/2×EstimateRTT. 
 TCP then computes the timeout value as a function 
of both EstimateRTT and Deviation as following: 
 Timeout = µ×EstiamteRTT+Φ×Deviation 
 
Where based on experience, µ is typically set to 1 and 
Φ is set to 4. Thus, when the variance is too small, 
timeout is close to EstmateRTT; a large variance causes 
the deviation term to dominate the calculation. 
 The following Algorithm is the original one for 
calculating the RTO from RTT: 
 
EstimatedRTT = α×EstimatedRTT+(1-α)×SampleRTT 

 
Time Out = 2×EstimatedRTT 

 
Where: 
EstimatedRTT = Estimated Round Trip Time 
SampleRTT = Sample Round Trip Time 
Time Out = Retransmission Time Out (RTO) 
α  = Smoothing Factor between 0.8 and 

0.9 
 Since RTO calculation is a regular process in TCP 
protocol where our protocol is based on that, we are not 
going in this paper to apply those algorithms mentioned 
above as we will have RTO calculated by TCP. So 
RTO calculation is out of this paper scope. However, 
the purpose of illustrating the idea of those algorithms 
is to show the relation between RTO and RTT when 
calculating RTO in TCP and how we have RTO is 
increased with RTT which is an important application 
in our proposed protocol.  
 The second goal aims to establish a TCP 
connection between CH and the FA of the next network 
through the HA a little bit before handoff in order to 
reach and maintain a high throughput which means 
going through slow start and become[4] increasing 
exponentially. In order to attain the second goal, 
(BufDiv) process of the Div-TCP is triggered a little bit 
before handoff. In this process[12], Network Agents 
either HA or FA periodically keep advertising ICMP 
messages to let any MN knows about the particular 
Network Agent. This is considered a regular process of 
Mobile-IP in wireless mobile networks. When the MN 
finds a new FA that has a stronger signal, it expects to 
handoff to save its internet accessibility. 
 When MN finds a new FA, it reaches to the 
expecting to handoff point (ExptHandoff) and BufDiv 
process starts here. So, ExptHandoff is the first phase of 
BufDiv process of Div-TCP protocol. Actually, 
network performance can be measured by RTT and  
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throughput which study as indicators of the 
connectivity strength between MN and HA or FA. 
However in this protocol, I will consider here the RTT 
performance measurement to measure the performance 
of the connection and its strength because it is affected 
by distance and the quality of the link between of both 
the sender and the receiver. So during ExptHandoff 
period which started after the MN encountered a FA, 
the MN measures the RTT between itself and the 
current HA and also between itself and the next FA. So, 
when the RTT of MN with the HA increases, it shows 
that the gap is increasing and there should be an 
absolute handoff. Actually in this protocol[13], since 
there is no established TCP connection up to this 
moment before handoff is completed between the MN 
and the FA, RTT is measured by sending an ICMP 
timestamp message from MN to FA and receiving the 
ICMP timestamp echo reply message that enables the 
MN to calculate the RTT measurement. But, in case a 
TCP connection is established like between MN and the 
HA, RTT is measured continuously by the timestamp 
option that is mentioned previously. Actually, in this 
period of time where the MN is still expecting to 
handoff to the FA, MN keeps sending an ICMP 
message to the FA as soon as it receives the previous 
ICMP message echo reply in order to keep calculating 
the RTT. So, in ExptHandoff period of time, the MN 
keeps monitoring and recording the total measurements 
of RTT (TRTT) between itself and both HA and FA. 
 
TRTT = RTTHA+RTTFA 
 
Where: 
 
TRTT = MN Total RTT 
RTTHA = MN's RTT with HA 
RTTFA = MN's RTT with FA 
 
 Actually, RTTHA, RTTFA and TRTT are 
continuously recalculated during ExptHandoff period 
every time an acknowledgment/accumulative 
acknowledgment is received in case with HA and every 
time ICMP echo reply is received in case with FA and 
the new values overwrite the previous ones. However, 
after calculating TRTT each time, once the RTTHA in 
respect to TRTT becomes 38% or more and RTTFA 
becomes 62% or less in respect to TRTT, we call this 
point the end of ExptHandoff period/phase and the start 
of time Prepare to Handoff period/phase (PrpHandoff) 
which are phases of BufDiv which is an operation in 
our proposed protocol (Div-TCP). Actually, RTTHA 
percentage in respect to the TRTT increases as the MN 
goes far away from the HA and the RTTFA and its 

percentage in respect to the TRTT decreases as the MN 
goes toward the FA. Once MN reaches PrpHandoff, it 
immediately estimates a certain period of time that we 
will call it (EstHandoff) that when it expires, the MN 
will strictly disconnect with the current HA and handoff 
to the next FA (PrpHandoff finishes and handoff takes 
is done). So, EstHandoff  is a value of a period of time 
that is calculated during the PrpHandoff phase of 
BufDiv operation. However, after EstHandoff period 
expiration, the RTTHA in respect to TRTT should be 
approximately about 50% or more and RTTFA in 
respect to TRTT should be approximately about 50% or 
less but not a must. But in general, the MN connectivity 
at that moment with the FA will be better and the RTT 
between them is less. In order to calculate EstHandoff 
period, MN in the beginning of PrpHandoff records 
T1which is the time that RTTHA takes to turn from 38-
39% with TRTT as well as RTTFA takes to turn from 
62-61% with TRTT. Also it records T2 which is the 
time that RTTHA takes to turn from 39-40% with 
TRTT as well as RTTFA takes to turn from 61-60% 
with TRTT. Then the average to both times 
(AvgEstHandoff) represents an estimated average 
period of time in which RTT of MN increases 1% with 
HA and decreases 1% with FA. However, during the 
BufDiv Process through its different phases 
(ExptHandoff , PrpHandoff) , MN keeps monitoring 
that there is an increase of its RTT with the HA 
(RTTHA) and there is a decrease of the RTT with the 
FA (RTTFA). Once the opposite takes place, BufDiv 
process is canceled and the MN will stay connected to 
the HA through the current Div-TCP. 
 
AvgEstHandoff = T1+T2/2 
 
Where: 
AvgEstHandoff = Estimated time for each 1% 
T1  = Time of RTTHA to turns 39% and 

RTTFA to turn 61% / TRTT 
T2  = Time of RTTHA to turns 40% and 

RTTFA to turn 60% / TRTT 
 
 At this point of PrpHandoff period or phase, we 
still have about 10% to have that RTTHA in respect to 
TRTT becomes about 50% and RTTFA becomes 50% 
in respect to TRTT (approximately not strictly), so we 
can estimate the EstHandoff as the following: 
 
EstHandoff = AvgEstHandoff×10 
 
Where:  
EstHandoff = Period of time that MN must handoff 

after 
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AvgEstHandoff = Estimated time for each 1% 
 
 We assume that MN movements and the changes 
of the wireless topology go constantly. However, after 
EstHandoff period expires, it is supposed that RTTHA 
in respect to TRTT becomes about 50% and RTTFA 
becomes 50% in respect to TRTT but it is not a must. 
However, the purpose of EstHandoff period is to 
determine a known period of time that after it expires, 
MN mostly will mostly have a strong signal with the 
FA but still it may not be an equal percentage as well as 
the MN may still able to hear the HA signal. 
 After MN calculates the EstHandoff period, it 
sends its value to the CH as a message. So, when CH 
receives Esthandoff value, it recognizes that the MN 
will absolutely disconnect after this period expires and 
the current end-to-end Div-TCP connection will no 
longer be established and the MN handoff will be done. 
Actually, when the CH receives Esthandoff stating the 
time left for the MN to stay under the home Network, it 
should be less than the Esthandoff issued from the MN 
because it took time to reach the CH. So, the CH 
calculates the actual EstHandoff (ActEstHandoff) left 
for the MN before handoff by subtracting the original 
Esthandoff time from the time it to reach from the MN 
to the CH which is the half of the RTT as the following: 
 
ActEstHnadoff = EstHandoff-(RTT/2) 
 
Where: 
ActEstHandoff = The actual remaining time of MN to 

handoff from CH point of view 
EstHandoff = The original estimated time to 

handoff by the MN 
RTT = Round Trip Time between CH and 

MN 
 
 Recall that EstHandoff is calculated by MN and 
ActEstHandoff is calculated by CH. 
 
From process To be sent

PreBuff PostBuff  
 

Fig. 2: CH's TCP buffer 
 
 Once the CH calculates the actual estimated time 
of MN's handoff during the BufDiv process 
(ActEstHandoff), CH immediately measures the current 
number of bits that are occupying its TCP buffer and 
also the current throughput in term of bits per second no 
matter how much bits of data are coming. The CH 

calculates the throughput of the link by sending ICMP 
packets over it. Susana and Rui[14] it comes as the ICMP 
timestamp and trace route are able to calculate the 
available bandwidth through the capacity and cross 
traffic estimation. After the CH calculates the 
throughput over the link, it divides its TCP buffer (Fig. 
2) into two parts. I will name the first part Pre Handoff 
Buffer (PreBuff) and the second part Post Handoff 
Buffer (PostBuff). The purpose of this division is to 
achieve the second goal of Div-TCP which is to 
establish a TCP connection which is a new process 
from the CH to the next FA through the HA before the 
Handoff process takes place. This new TCP connection 
will be named as Interim Connection (IntCon) which as 
we said in the Div-TCP definition, the CH in reality 
establish the TCP connection with the HA and the HA 
establish the TCP connation with the FA on behalf of 
the CH. The IntCon that will endure after the 
completion of handoff and will bind in the new end-to 
end Div-TCP connection between the CH and the MN 
and will be the longest part of it. In the same time, the 
current end-to-end Div-TCP connection between the 
CH to the MN through the HA will stay transmitting. 
However, the content of the PreBuff (Fig. 2) is already 
located first in the queue and contains the next to be 
sent bits so it will stay transmitting through the current 
end-to-end Div-TCP connection before handoff. But the 
PostBuff content will be immediately allocated in the 
new IntCon TCP buffer and will directly start to be 
transmitted through the newly established IntCon 
before handoff process completes and will stay 
transmitting through the new end-to-end Div-TCP 
connection from CH to the MN through the FA after the 
completion of the handoff process (Fig. 3). Also, all the 
new coming bits will be buffered in the new 
connection's buffer.  
 

 

FA 

PreBuffPostBuff 

CH's TCP Buffer  

CH 

MN

Handoff Preparation  

Already Established
Div-TCP 

Already Established 
Div-TCP 

Interim TCP (IntCon) 

Interim TCP 
(IntCon) 

HA 

 
 

Fig. 3: Div-TCP vs. IntCon 
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 However, in order to make this division, CH 
calculates the current amount of data (bits) that are 
allocated in its buffer and the current throughput of 
transmission as mentioned above. Recall that 
throughput is number of bits data transmission per 
second. Then, it finds the number of bits that should 
stay in the current Div-TCP connection buffer that will 
be transmitted in the remaining life of the current Div-
TCP connection before the handoff occurs 
(ActEstHandoff expires). These bits will be considered 
as the content of the PreBuff where the rest bits will be 
considered as the content of the PostBuff that will be 
immediately transferred to the new IntCon TCP 
connection buffer. 
 
PreBuffCont = ActEstHandoff×Throughput 
PostBuffCont = TotalBuff-PreBuffCont 
 
PreBuffContent = PreBuff Content in bits 
ActEstHandoff = The actual remaining time of MN to 
handoff 
Throughput = Current transmission rate in bps 
PostBuffCont = PostBuff Content in bits 
TotalBuff = Total buffer size in bits 
 
 As mentioned above, the purpose of establishing 
the interim TCP connection (IntCon) in the period of 
time between PrpHandoff and the completion of the 
handoff process is to get useful of it in order to have an 
existing TCP connection between the CH and the FA as 
a part of the near future new end-to-end Div-TCP that 
will have a good advertised window size and 
transmission rate instead of establishing it after the 
handoff. However, while the FA is receiving the 
transmitted segments from the CH through the HA over 
the (IntCon) in the period of time before the MN 
finishes the handoff process and the new end-to-end 
Div-TCP connection is established, it buffers and saves 
those segments as well as it acknowledges them for all 
nodes in the backward direction until the CH. In our 
example, FA save the received segments and send 
acknowledgment to the HA that will after that send 
acknowledgment to the CH. 
 After EstHandoff period ends, MN will strictly 
terminate the original Div-TCP connection with CH 
through the HA and perform[12] the handoff process and 
registration. So here PrpHandoff phase will finish and 
handoff is complete. Then, the (IntCon) will be 
connected with the new TCP connection that will be 
established between the MN and the FA after 
completing the handoff process (the MN becomes 
connected to the Foreign Network Agent (FA)) and the 
end to end connection (CH - HA - FA - MN) will be the 

new Div-TCP). Recall that all of that period between 
the preparation for the handoff and its completion is 
called PreHandoff. So now, the PreHandoff period is 
finished, the handoff process is complete and the MN is 
now attached with the FA. Here I want to summarize 
the BufDiv process which is an operation in our 
proposed protocol Div-TCP where it starts when MN 
encounters a FA signal so (ExptHandoff) phase of 
BufDiv starts and here EstHandoff period is calculated 
and sent to CH. Then, the second phase (PrpHandoff) 
will be started and here the CH divides the TCP buffer 
and establishes the Interim TCP connection (IntCon). 
Finally, (PreHandoff) is finished after EstHandoff is 
expired and Handoff is complete. 
 After the handoff is complete, the FA will forward 
the buffered segment that it received from the CH and 
will stay accepting the incoming segment traffic and 
acknowledging them. At that time, the MN will only 
acknowledge the segments that it receives to the FA not 
to the whole path back to the CH along the end-to-end 
Div-TCP. This is because the MN has just finished 
handoff to the FA and it is receiving the buffered 
segments by the FA. Those segments are already 
acknowledged to the CH and HA by the FA. Recall that 
the receiving end of Div-TCP is the one who 
acknowledges the received segments from the CH and 
this acknowledgment goes backward through the entire 
path and each node is acknowledged as well. But in the 
period of time after the handoff finishes and the 
buffered segments in FA are forwarded to the MN, the 
Div-TCP will handle a special acknowledgment policy 
that allows the MN to acknowledge only the FA where 
the FA handles the CH and the previous nodes 
acknowledgment. This policy will terminates only if 
under any circumstance the FA has forwarded the entire 
buffered segments to MN and it becomes able to 
directly forward the incoming segments without 
buffering them. At that time, the MN will be the one 
who acknowledges the received segments to the CH 
and all the nodes though the entire Div-TCP path.  
 Finally, I found that Div-TCP is a suitable name 
for this proposed protocol because the end-to-end Div-
TCP connection between the CH and MN is divided 
into many TCP/Interim TCP connections between each 
two adjacent nodes of the connections. Also, Div-TCP 
protocol divides the CH TCP connection and buffer into 
two connections and buffers as soon as handoff is 
expected in BufDiv process. 
 

DISCUSSION 
 
Protocol Discussion: We are going to consider the 
topology that is illustrated in Fig. 1 to discuss our 
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protocol. In Fig. 1, we can see the different states of our 
communicating parities before, while and after handoff. 
At the beginning, the CH establishes an end-to-end 
Div-TCP connection with the MN through the HA 
where the MN is still in the same coverage area. The 
end-to-end Div-TCP is going to be the TCP connection 
between the CH and the HA and the other one between 
the HA and MN. Then, after MN handoff to the other 
network, the end-to-end Div-TCP is going to be 
through CH-HA-FA-MN.  
 As a regular operation in Div-TCP, RTT is 
continuously calculated at every node involved in the 
end-to-end Div-TCP connection between itself and the 
MN. Sure, as a particular station through out the path is 
close to the end MN, RTT will be less than the RTT of 
the next nodes. RTT is always updated at each node 
when it receives an acknowledgment. So let us assume 
at a certain period of time before handoff takes place 
that RTT of HA with MN is 1.5 ms, sure the RTT of 
CH with the MN will be more as there is more distance 
and assume that to be 2.5 ms. However, after handoff 
takes place, the values will change as MN will become 
more far to CH and new nodes become involves. So let 
us assume that at a certain period of time after handoff 
that RTT of FA with MN is 1.5 ms, RTT at HA to MN 
is 2.5 ms, and at CH to MN is 3.5. So, we relied on the 
fact that RTT increase with distance. But you may say 
that RTT not only depends on the distance but also 
depends on the quality of the line. But since part of the 
Div-TCP connection between a particular node and the 
MN relies on the Div-TCP connection between the next 
node toward the MN and the MN itself (for example 
Div-TCP connection between HA and MN relies on 
that one between FA and MN), so distance will be the 
main reason that controls the RTT. However as 
mentioned, RTTs are always recalculated and changed. 
 

 FA HA CH 
RTT (ms) 1.5 2.5 3.5 
RTO (ms) 4.5 7.5 10.5 

 
Fig. 4: RTO vs. RTT after handoff 

 
 When Div-TCP is established either before or after 
handoff, it keeps running the IncRTO operation at each 
node and checking its correctness. This operation leads 
to make RTO high enough in respect to the RTT 
between a particular node involved in the Div-TCP and 
the MN which is the end part of the connection. It is 
important to increase the RTO as we go far from MN 
toward CH to avoid congestion algorithms to be applied 
because the delay of acknowledgments is going to be 

more as the RTT increases. Actually, increasing RTO is 
very important especially after handoff so we need to 
increase the RTO of the end-to-end Div-TCP 
connection between CH and MN as the MN now 
become more far than before.  
 As mentioned before, the RTO calculation 
algorithms show that whenever the RTT is increased, 
RTO is also increased too. So the relationship between 
RTT and RTO is considered positive. In addition, 
calculating RTO is considered a part of the regular TCP 
protocol in which our protocol is based on. So the 
process of RTO calculation is out of this paper scope 
but we will give an example. The example that we will 
give is in [4], the mentioned RTO calculation 
algorithms are applied and summarized in Fig. 4. So, 
this clearly shows the relation between RTT and RTO 
as a positive relation. Actually, the given examples here 
are for the sake of assumption. Consider that a system 
calculated different values of RTO for the given RTT in 
Fig. 4, they should not have much variance or gap 
results. However, all of the mentioned in the sum shows 
that IncRTO operation as part of our proposed Div-TCP 
protocol which aims to maintain higher RTO as RTT 
increases is implicitly achieved. 
 Now let us assume that the MN started to move far 
away the HA and it encountered a signal from a FA, 
sure the Div-TCP connectivity of MN with HA will be 
decreasing and the Div-TCP connectivity of MN with 
FA will be increasing. As mentioned, RTT will be the 
connectivity measurement where more connectivity 
will have less RTT and the opposite is correct. As MN 
is moving away from HA to FA, a handoff will take 
place at the end. So, at the point where FA is 
encountered, BufDiv operation of Div-TCP will be 
triggered at MN and latter at CH and the first phase 
ExptHandoff will start at MN. Here, MN will keep 
calculating the RTTHA and RTTFA. Let us assume that 
at the beginning of ExptHandoff RTTHA = 35 ms and 
RTTFA = 65 ms. So, TRTT = 35 + 65 =100 ms. At this 
moment, the condition of going to PrpHandoff is not 
matched yet. After short period of time, the new 
calculation has measured that RTTHA = 38 ms and 
RTTFA = 62 ms, PrpHandoff now goes since the 
condition that RTTHA in respect of TRTT = 38% or 
more and the RTTFA in respect of TRTT = 62% or 
less. Here, the protocol will calculate (EstHandoff) 
period of time which a duration that when it expires, the 
MN will strictly handoff. To perform that, the protocol 
will measure an approximate time where there is a 1% 
increase in RTTHA in respect to TRTT and a 1% 
decrease in RTTFA in respect to TRTT as MN is 
moving toward FA and is becoming far away from HA. 
As mentioned previously, this involves taking the 
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average of two 1% increases and decreases in RTTHA 
and RTTFA respectively. Actually, this depends on 
many factors like the conditions of the cline and the 
way that MN moves. Let us assume that 70 ms was the 
period of time (T1) that RTTHA becomes = 39 ms and 
RTTFA = 61 ms and 75 ms was the period of time (T2) 
that RTTHA becomes = 40 ms and RTTFA = 60 ms as 
MN is moving toward FA. This will give us the value 
of AvgEstHandoff = (70 + 75) / 2 = 72.5 ms. So, this 
will lead us to EstHandoff = 72.5 × 10 = 725 ms where 
it is expected that the connectivity of MN with HA and 
FA is approximately to be equal with more transition 
toward FA. So after this period expires, PrpHandoff 
will be finished and MN will disconnect with HA and 
handoff to FA. Note that it is supposed that T1 and T2 
to be higher than RTTHA and RTTFA since the 
calculation of their updated values depend on receiving 
acknowledgments. Fig. 5 summarizes the PrpHandoff 
results at MN. 
 EstHandoff will be sent immediately from MN to 
CH as soon as it is calculated by MN during 
PrpHandoff. CH will start now its BufDiv operation 
and calculates ActEstHandoff at itself side. This 
involves its calculation of the current RTT between 
itself and MN before handoff at that instance of time. 
This value sure will be more than RTTHA that is 
calculated above as the distance is more. So, assuming 
that RTT between CH and MN = 56 ms, ActEstHandoff 
= 725 – (56/2) = 697 ms which is the strictly remaining 
time of PrpHandoff phase and MN completely handoff 
from the CH's point of view.  
 From now until the end of PrpHandoff phase, MN 
has nothing to do but to wait the end of this period to 
perform successful handoff. But the CH now will 
establish the IntCon with the FA through the HA after 
dividing the transmitting Div-TCP buffer which will be 
high throughput part of the near future end-to-end Div-
TCP after handoff complete to cover handoff problems. 

 
 RTTHA(ms) RTTFA(ms) TRTT(ms) 
 38 62 100 
 39 61 100 

T1(ms) 70 
 RTTHA(ms) RTTFA(ms) TRTT(ms) 
 39 61 100 
 40 60 100 

T2(ms) 75 
AvgEst- 

Handoff(ms) 
72.5  

EstHand- 
off(ms) 

725  

 
Fig. 5: PrpHandoff Phase Results at MN 

CH-MN RTT (ms) 56  
ActEst- 

Handoff(ms) 
697  

TotalBuff(bits) 4000 bits (500 byte) 
PreBuffCont(bits) 697  
PostBuffCont(bits) 3303 

 
Fig. 6:  PrpHandoff Phase Results at CH 

 
 CH will immediately now calculate the total size of 
its TCP buffer (TotalBuff) in bits and let us assume that 
= 4000 bits (500 byte). Also it will calculate the current 
transmission throughput of the current Div-TCP 
established with the MN. Suppose that the current 
throughput = 1000 bits/sec. So, the TCP will be divided 
into two parts where PreBuff of size PreBuffCont = 697 
/ 1000 × 1000 = 697 bits and PostBuff of size 
PostBuffCont =  4000 – 697 = 3303 bits. So, the current 
Div-TCP will transmit 697 bits and it will establish 
IntCon connection that will transmit 3303 bits (if they 
are already available or they are coming from the 
process) to FA through HA where part/most of them 
will be transmitted during ActEstHandoff before the 
handoff completes. Fig. 6 summarizes the PrpHandoff 
results at CH. 
 Finally, the CH will now synchronize and establish 
the IntCon with the FA that will be an efficient part of 
the near future end-to-end Div-TCP and start 
transmitting the PosBuff content since the beginning of 
ActEstHandoff. TCP transmission over IntCon starts 
with slow start where the growth of throughput (here 
number of segments sent per round trip) is exponential 
until a threshold (sshresh) is reached where it becomes 
additive (increasing in 1 segment each round trip).  
 

 
 
Fig. 7: TCP slow start exponential increase before 

threshold 
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 Here, we are going to assume the sshresh = 16 
segments. Recall that a segment is a bunch of bits. So 
initially, one segment will be transmitted though the 
IntCon in the first round trip, then 2, then 4, 8 until the 
threshold 16 is reached so the number of transmitted 
segments will be 17, 18, and so on. Each leap will be 
attained after one RTT between CH and FA in IntCon. 
Fig. 7 shows the slow start exponential increase in TCP. 
 Let us assume that the average of the different RTT 
measurements between CH and FA during 
ActEstHandoff is equal to 90 ms, we will have one leap 
every 90 ms. Let us assume that each segment holds 10 
bit, so 10 – 20 – 40 – 80 – 160 – 170 and so on bits will 
be sent approximately after 90 ms between each one. 
Fig. 8[15] of slow start and congestion avoidance shows 
the number of segments and throughput of IntCon that 
will be approximately reached after the end of the 
ActEstHandoff where the curve is exponential until it 
reaches the threshold (ssthresh) so it will become 
additive. 
 

 
 
Fig. 8: Slow Start, RTT vs Transmitted Segments 
 
 We can now reach to a result from the Fig. 8 that as 
after ActEstHandoff which equals to 697 ms is finished, 
about 19 + 18 + 17 + 16 + 8 + 4 + 2 + 1 = 85 segments 
which equals 850 bit of the PostBuff are going to be 
transmitted through IntCon before the handoff 
completes. So, the new end-to-end Div-TCP will be 
efficient as it has a part with high throughput. FA will 
keep acknowledgment the CH until MN completes 
handoff, receive the buffered segments, and become 
able to acknowledge the CH immediately. 
 It is important to state that the values that were 
used in this discussion and were applied on the protocol 
algorithm may be approximate to those values when 
applying or simulating this protocol under a practical 
systems or circumstances. However, the purpose is to 
show that the protocol (solution) has achieved its goals. 

So, when this protocol is applied on practical or 
deployed systems, sure it is going to give at least 
approximates to the desired results.  
 

CONCLUSION 
 
 TCP is a connection oriented protocol that is 
established between the end-to-end communicating 
parties for reliable communication. It handles lost 
packets due to the different reasons like bit error, 
network congestion, weak signals and handoff process. 
But unfortunately, it thinks that any loss is due 
congestion. When TCP thinks that congestion took 
place, it triggers congestion algorithms which return the 
transmission window size and throughput to the 
beginning slow start which is undesired event 
especially in case the loss is not due congestion. 
Handoff is a process that takes place in wireless 
networks that causes packet loss due to the jump of the 
mobile node from a network to another. This sure will 
make the sender TCP thinks that the loss is due 
congestion. For this reason, Div-TCP is a proposed 
solution that runs the ordinary TCP algorithm with 
extra two operations that are concerned to handoff 
process. Those operations are triggered by the Div-TCP 
as soon as handoff is expected to happen. IncRTO is 
concerned in maintaining a suitable RTO at each node 
involved in the end-to-end connection to avoid 
triggering congestions algorithms where BufDiv is 
concerned in maintaining the sender’s throughput by 
establishing a TCP connection prior to the handoff 
occurrence. 
 
Future work: Assume that after CH established IntCon 
during PrpHandoff with FA in BufDiv operation, the 
MN decides to return back toward the Home Network. 
We discussed this issue and we said that in case that 
MN returns toward HA, BufDiv operation will be 
cancelled. But after transmitting some data to the FA 
through the IntCon, a solution should be founded to do 
rollback. So the solution will be sure enabling the CH 
to retrieve the buffer status before establishing IntCon 
and to enable the FA to discard the IntCon 
transmission. 
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