Journal of Computer Science 5 (12): 1009-1019, 2009
ISSN 1549-3636
© 2009 Science Publications

Implementation of CONCEIVER++: An Object-Oriented Program
Under standing System

Nor Fazlida Mohd SanfAbdullah Mohd. Zin andSufian Idris
Faculty of Computer Science and Information Tecbgy
“Faculty of Science and Information Technology,
University Kebangsaan Malaysia, Malaysia

Abstract: Problem statement: Understanding on computer program is a complex itiegractivity.

It is ability and also a difficult task especiaftyr novice programmer. The object-oriented langsage
has widely used in education and industry recentlyprogramming it is important to have such
software which can aid programmers or studentsaddecthe program. But, available program
understanding systems using the plan based apprsacily are developed for non-object-oriented
programming languages. Reviewed from the availalytem also showed that none of the plan
formalisms used is for an object-oriented langud&mecifically, problem arises when the existing
system is not usable for teaching programming pgsepoProgram understanding system with plan
for object-oriented does not exist was the mains@aawhy this research is being carried out.
Approach: Method used on developed the program understarsyisigm named CONCEIVER++ is
Unified Approach (UA). The process involved from U#r developing and testing the system is
iterative development and continuous testing. Tloegss must be iterate and reiterate until satisfie
with the system. In order to test the quality assoe of the system is by choosing the black box
testing strategies.Results: The object-oriented program understanding systambeen successfully
implemented. The implementation is tested with sangple of Java programming code. The binary
search tree for control flow graph and linked i@t plan has been generated. Results of undersigndi
the meaning or semantic of the program codes asobleen produced. The black box testing had
shows that all statements of line of code of thanee program have been recognized and the
correctness output has been checkednclusion: The understanding module of CONCEIVER++,
which are code/CFG processor, plan processor armhmnéion engine has been tested. All line of
codes (or nodes) has been recognized and got tameaming using the developed module.

Key words: Program understanding, implementation, plan basentr@ Flow Graph (CFG),
meaning, testing

INTRODUCTION programming covers writing capability, reading and
understanding of a program code. Understanding of a
Program understanding is an activity that enableprogram code is ability and also a difficult task
to know the meaning or semantic of programmingespecially for novice programmer. The importantl ski
codes. It is an important activity in maintaining afor any programmers to be developed is the abibty
system, debugging a programming code and as one ofad an available program code which being coded by
activity in reverse engineering process. It alsdhis other programmel%.
intermediate skill to programmers, suggested by Research in program understanding is still being
Romerd". Understanding on computer program is astudy until now and the common approach used for
complex cognitive activity. Therefore, realizatioha supporting program understanding is with completing
system is very beneficial to novice and experiencehe program code through abstractibihe purpose of
programmers. Those who involve in programmingthis study is to present the implementation of obje
activities which is difficult are the programmers. oriented program understanding system,
Knowledge and experienced of programmer inCONCEIVER++ which is using the abstraction

Corresponding Author: Nor Fazlida Mohd Sani, Faculty of Computer Scieacd Information Technology,
University Putra Malaysia, 43400 UPM, SerdangaBgbr, Malaysia,
Tel: +603-89466550 Fax: +603-89466577
1009

J. Computer i, 5 (12): 1009-1019, 2009

approach. In this study will explain on the apploand were three approach of plan recognition, whichojs- t
present the detail processes involved in produtiiegy down, bottom-up and hybrid which combining the top-

meaning of statements. down and bottom-up appro
Plan that use for the understanding purposes must
Related works: be formatted into a standard format. The standainch f

Abstraction approach: Abstraction is understanding is vital so the derived plan formed in the sameniatr
approach directly on the source code or systemtthat and easily accessed using specified recognition
be comprehend. Intermediate representation is &lwayalgorithm. Plan formalism is the language desigat th
use with abstraction for the purpose of recognitidn being used for creating plans. This formalism mhest
programming code. In abstraction approach, plaedas designed to ensure each plan that will be creatdd i
also used to save all knowledge’s plan for thateven formed. There are several plan formalisms hged
programs domain. A recognition plan algorithm il previous researchers. One of is a Plan Calculus in
used to match the intermediate parts with plan ftben Programmer’s Apprentice system is for Lisp
plan based to give understanding or meaning fdeiter languag€?. There was a plan formalism to recognize
program codes. The advantages of this approach a@OBOL programming language B3. This formalism
easier to organize user-defined classes or obpguis is use in development of program understandingegyst
also to differentiate objects names with methodae® named concept recognizer.
This is important to organize definitions so thhe t Review from the available system had shows that
related information can be grouped together in comm none of the plan formalisms used is for an object-
location$”. Furthermore, abstraction can help tooriented language. Therefore in this study, basethe
reduced complexity and minimizing the numbers ofKozaczynski's plan formalism, specific plan fornsati
details in certain program cod®salso helps a lot in for object-oriented language will be developed by
the process of understanding purposes. Anotherelating the results of understanding and debugging
concrete reasons using abstraction is the relighii =~ The chosen of Kozaczynski's plan formalism is beeau
the understanding or inference result is true based of the capability for representing knowledge of
the source progrdth Most of the program programming code with two concepts, language and
understanding algorithm with this approach werengisi abstract concepts. For debugging purposes, each
library of programming plan with multi-heuristics common error will be detected driven by the abserice
strategies to find the existence of plans in there® matched plan for certain code statement, resutts fr
program. This statement has emphasized in formethe recognition or understanding engine. The resufit
researches such a$’ifl. recognition will be displays in details for evergde of
control flow graph which represent the recognized
Plan base and formalism: Plan base is the important programming codes. The control flow graph is the
component for any program understanding systemintermediate representation of programming codas th
usually with abstraction approach. This is becanise is use in CONCEIVER++. The detailed explanation of
the plan base is the library of inference knowletlire control flow graph has been presented in ®aal.™.
each program code that will be identified by thstsgn. Plan base for CONCEIVER++ stored all plans that
The terms ‘plan’ for program analysis researchbeing retrieved by recognition engine. Plans in
literature, is used for referring to different sets such CONCEIVER++ contain knowledge for understanding
as: (1) Abstract representation for fragment ofegq@) and debugging. All the available system which use
Programming heuristics; (3) Programming abstractiorplan-based recognition approach, not integrate the
concept; and (4) Knowledge to identify programmingdebugging knowledge together with understanding
concept?. knowledge in their plan formalism, except for PAT
According to Will§”, an experienced programmer is and GRASPRZ. Plan for PAT system has a knowledge
keep on redeveloping lots of hierarchy for progdesign to identify bugs that relates to the program cd&T’s
by recognizing from the data structure and algorith plan represents the logical of algorithm, while rpla
which is commonly used and typically know how to dodeveloped in CONCEIVER++ represents the common
the higher level abstraction. The common compugerizform of statement of code that being used sevinast
structure that being used called as cliché. Clishé@ Near-miss cliché recognition in GRASPR involves the
frequently appears pattern in program codes, ssch aise of clichés library for detecting instance a€hoé in
algorithm, data structure or pattern specific doalPlan program using graph parsing algorithm, which differ
is the representation of cliché. The objective &np than in CONCEIVER++ implementation, plan
recognition is identifying cliché by using the pldrhere recognition algorithm.

1010

J. Computer i, 5 (12): 1009-1019, 2009

Automated program understanding: Lots of The use of object-oriented paradigm has showed
researchers’ groups have focused their efforts irthe achievement's results in software engineeringhs
developing tool and technique for automating progra as maintenance and the usability is easy to achieige
understanding. Different program understandingrelates with encapsulation, inheritance and
systems are tends to apply different representativpolymorphism that includes in the object-oriented
framework and heuristics in recognition algorithm. paradigm. Because of these concepts, object-odente
Example, Concept Recognizer by Kozaczynski andodes have been used widely and with variety in
Ning® used top-down library based approach for plaimplementation the same task. Lieberherr and
recognition. This system recognizing plan usingHolland™® explained that the good object-oriented
heuristic approach, specific rules and constraingprogramming styles and techniques are by writinglsm
instruction using representation of component andandidate functions. Therefore, it produces a syste
constraint of plan. Source code will be transforimd that contains numbers of several small modules.
abstract syntax tree. The plan recognition algorith The available program understanding systems
starts by collecting all patterns from the libratilen using the plan based approach usually are developed
matching all components to the program, come otlt wi non-object-oriented programming languages, theee ar
a set of potential plans with all components maiche such as Programmer's Apprentite GRASPH,
After that, the constraint part of the set of plavitbe =~ PROUST, Talu$¥, PAT® CONCEIVER*? and
implemented. Limpiyakof?’ says that plan BUG-DOCTOR?®. But the object-oriented languages
representation in Concept Recognizer is simple antlas widely used in education and industry recently.
unambiguous, also algorithm used is successful t@bviously in local and foreign countries, this new
recognize plan in COBOL programs. paradigm programming language has been used in
Representation of abstraction emitting informationteaching of computer programming and has been
that not needed such as syntax tree omits formasroved by Ari?¥, Bruhn and Burtdf”, Gerailf?® and
variations, while control flow graph omitting vaizn ~ Madden and Chambéf®. Therefore, an object-
for control statements. Representation replacindeso oriented program understanding system is needed
with abstract model such as event for Qlﬂélhﬂ Specifica”y for teaching of programming_
represents syntax tree entity. Abstraction was eeed Most of the available programs understanding
for recognition because it will simplify searchiagea systems are specially developed for maintaining a
for program representation. In addition, abstraclyysiem in an organization. Problem arises when the
representations have multiple use if there any Imgss existing system is not usable for teaching prograxgm
Lgigﬁnmﬁﬁggénfzn;%cgggnand control flow graph Iwil purposes. By the fact that it can help students on
: learning programming, reading and understanding

Learning of programming: The learning of certain program codes. Currently,. object-oriented
programming aspect is stressed out since reseaccls f Programming languages have been widely used ta lear
is concentrate on learning of programming towardsProgramming at many universities, local or abroad.
students in university level. In learning of Program understanding system with plan for object-
programming, one of the most problem faces byoriented does not exist was the main reason whg/ thi
students in writing program codes is programmingresearch is being carried out. The main purposeuof
errors. The students always feel unmotivated oimgry Study is to develop a program understanding sy$tem

to read and understand the meaning of the fragmfent Object-oriented language that is Java using plese ba
program code in order to correct the error. Thattiy ~ @Pproach. Knowledge relates to programming codes
we developed a program understanding system whicWill be parsed and represented or transformed into
can help the students. Since the study is on thecob intermediate representation and then the informatio
oriented language, some explanation on object-tmien about program will be kept as programming plarhia t
languages will be discussed here with severaPlan base. . o
researches in program understanding that use the Kutti et al”® have said that the simplicity and
object-oriented concept or language. Object orteta Versatile nature of Java has made it popular as a
is not only programming paradigm. Hoffri&hhas his ~ general-purpose language within the Computer Seienc
opinion that it is a design paradigm. Hoffman assid community. Apart from that _Java also has a_devmatio
that relationship between components can be dasignéuch as the case of declaring reference pointdrs. T
with scattered, non-procedure. But at the same, tinee declaration syntax of a reference pointer look® lik
low level aspects of object-oriented language &ee t declaring a normal variable. According to Kutial *!
same as the procedural languages. again, to interpret the meaning is depends on the

1011

J. Computer i, 5 (12): 1009-1019, 2009

intuition of the programmers. The meaning willbee « Declarator: Initialization of identifier in certain
wrong if the programmers are the novices. Even the class

experienced also will make the same mistake. Fo¥ Relational operator: Operator <, <=, >, >=, == and
learning of programming purposes, the program |=

understanding system can helps the programmers % |dentifier 1, 2, 3: Variable name used in a plan.
identified the correct meaning for each statemerfits . |nteger: Integer value of variable

object-oriented programming codes especially Java, cgnstraint:

This is also the importance of developing one BOYr , pjan: plan that involved in inferring the plan
understanding system which aid in the learning @gec Debugging: Logic error that may exist in plan

Plan connection: Other plans that connects to this
plans
Meaning: Explanation of the plan

Plan formalism for conceiver ++: The plan formalism
is based on the plan formalism by Al-Onffati
Kozaczynskiet al.™® and Ning®. CONCEIVER++
adds the debugging function in the plan formalismd a This is the plan formalism that is going to bedise
modifies the plan formalism for object-oriented tg create the programming plans.

language. One of the program understanding systems

that has the debugging facilites is PET The MATERIALSAND METHODS

difference between PAT and CONCEIVER++ is that _

the plans inside PAT represent the algorithms wihiée For ~ development and testing of the

plan for CONCEIVER++ represents the stereotyped©ONCEIVER++, methodology that will be use is
fragments of statement line of code. Unified Approach (UA). The process involved from

The plan formalism developed for UA for developing and testing the system is iteeati

CONCEIVER++ is based on the Java programmimgevelopment and continuous testing. The process mus

language syntax. The main role of the understandin§® iterate _and reiterate until satisfied with tlystem.
engine is to find plans that match the program sotfe ince testing often uncovers the weaknesses of the

it is found, then the explanation will be generatiédt design, usually it will provi_des additic_mal inforti_tm
is not found it may due to the presence of erorthe that want to use, by repeating the entire prodesing

given plan. So, the debugging engine will check theVhat have been learned and reworking on the design
program based on the bugs segment of plan to deerm MOViNg to re-prototyping and retesting. This refti
the error, which is the output. The initial designplan ~ c¥cle will be continuing through the development
formalism has been discussed in Sanial 2. After Process until satisfied with the reskifts Then finally,
some refining process on the formalism to reprasentl€ Prototype will be transformed into actual syste
the knowledge, we found that some of the progrargminThe_ process of I|ter§t|ve development and continuous
language structure itself is very important to supghe €Sting |]§fshown In F'hg' 1. i ‘th
recognition process. Therefore, the plan formalism . !N €ffort to test the quality assurance of theteys
refined based on the structure of the Java progyam is by choosing the black box testing strategiesaln

cliché. Based on the object-oriented program girect black box, the teO?t item is treated as “black”ceirts
L : logic is unknowk. In this testing, we are trying to put
or cliché, the structure of a Java program is conigno

ist f f bl | f bl Java program codes and examine the resulting output
consists ~of name ot variable, vaiué ol varable.t.q,qy, he recognition engine of CONCEIVER++. We
operator, relational operator, modifier, class nam

) AMEhad chosen this strategy because according to
method name and object reference. The result is thﬁahramﬁ”], black box testing works very nicely in
plan formalism for Java programming languagetesting objects in an object-oriented environmeTihe
contains of several segments. Each segment repgeseRteps involved in doing the test are as below:

certain information for the plan that will use to

recognize a statement line of code. The explanatfon « A program code will be taking as source to the

all segments of plan is as follows: system:
e This source code has to be parsed and

* Plan number: Each plan is refer through a number transformed to produce the abstract syntax tree
* Plan name: Each plan has a name (AST)
» Modifier: Will recognize public, private or e AST will be structured into nodes of line of

protected modifier program codes. This is for the nodes
e Class name: Name of the class representing the AST will then use for creating
« Method name: Name of a method in certain class. the control flow graph (CFG)

1012

J. Computer i, 5 (12): 1009-1019, 2009

Component based inferred by the system. At the same time, plan$ lval
development accessed from plan base for the purpose of infgthie
X codes. Below discuss on each part of the underistgind
Continuous module. In presenting the results, one exampleagh J
v testing programming code is used to describe the detall
Quality assurance testing processes. This is importance in the implementatith
: testing process in order to check the accuracyhef t

system output. The discussion below starts by 8etec

Fig. 1: lterative development and continuous testin & Select sort program as the input or source progra
into the module.

* CFG will be created for the source code:

* CFG will show the execution flow of the
source code. The CFG is created manually
during this step

 The information of data flow also will be
annotated in the CFG

* Information of each CFG’s node will be saved
in text file and will be as input to recognition
engine of understanding module

e File which kept information of CFG will be
generated and all the information will be hold by
binary search tree (BST) data structure. Whilen pla

that been saved in the plan base will be accessegxample of select sort program: The implementation
and put in the linked list Qata structure. These_ W of the select sort program written in object-orezht
stru_ctures will be run and input into the recogiti programming language that is Java. The select sort
engine) . . program covers the fundamental concepts. The
* The BST and linked list will be matched to come concepts are variable initialization, assignment! an
out with the understanding result. The result forcontro| statement, methods and array. Figure 2 show
each node of BST will be shown the normalized select sort program. This normalized
)) program has undergone the parsing and transforming
Understanding module of Conceiver++: An overall 5r5cess to produce the AST. Normalization is net th

process in the understanding module Ofmain focus of this study, but for this explanation
CONCEIVER++ is that, programming code written by nrhoses, we just take it as the normalize codesésd

students has to be parsed and transform us_in_gaﬂserp for implementation purposes. AST is a tree
and transformer components. Output from it is imfo enresentation of the abstract syntactic structofe

of Control Flow Graph (CFG) and being kept in onepqqram code. It is originates from the parse tree
file. The CFG file will read by the code/CFG oyt including the semantic of the program. The

processor and then all the CFG information willdte AST of each line of code of the select sort progiam
in binary search tree structure. In the other sd@n ;,strated in Table 1.

which has been kept in plan base will be acceshby

plan processor. Plans is read and put into linked | cEG for the select sort program: The AST only show
structure. These tree and linked list will be gsunto e simplified form of the program after undergothg
the recognition engine. The recognition engine W'”parsing and transforming process. The flow of the

match the data from both structure type and willyrogram is actually shown in the CFG. The CFG ibat
come out with the result of understanding to there roqyced for the select sort program is illustraied
this system. The detailed model of CONCEIVER++giq 3 The Fig. 3 shows the nodes and arrow fer th

i 4] [831] . . .
can be read from Sai al.™". select sort program implementation. One node in the

This module has been divided into three parts thagrg represents one line of program source code.
are code/CFG processor, plan processor and remgnit The CFG starts with the node that is written as
engine. In this research, the user in this modsle igiart and then to node number 2. The node number 2

students or lecturers. Users will write a Java 00 corresponds with line 2 of the select sort progiam
codes and then insert to the understanding moduie t Fig. 2 and line of code number 2 Table 1.

RESULTSAND DISCUSSION

The implementation is discussed and described by
using the example shows the execution process of a
select sort program that will be understood by etsl

The original program is parsed and transformed $d A
form and then converted into CFG. The resulted CFG
form is then will be executed using Understanding
Module of CONCEIVER++. The document of
understanding for each line of the program codé vl
shown.

1013

J. Computer i, 5 (12): 1009-1019, 2009

L Puiiz?;‘:‘;gg{?;&z&i;: ?"mbm using selection sort Table 1: AST for the select sort program
3 Line of Abstract Syntax Tree Line of Abstract SynTaee
4 public static void main{string args[]) { code (AST) Code (AST)
g |z e la R N 2 Root 4 Method Name: main
S double[] myList = {5.0. 4.4, 19.2.9. 3.4, 3.5}; Modifier: public Ident: String
s / Print the original list Class Name: SelectionSort Declarator: args
9 System.out.println("My list before sort is: "); 6 Type_specifier: dOUble 9 Statement
10 printList(myList): Declarator: myList Ident: System
11 Ident: out
12 //Som thelist Ident: printin
1_31 selectionSort(myList), String: "My list before
: . ‘ sortis: "
<
- Si‘:?;‘?if;;fﬁgt 10 Statement 13 Statement
17 System.out println("My list after sort is: "); Ident: printList Ident: seIe_ctlonSort
18 printList(myList); Ident: myList Ident: myList
19 } 16 Statement 17 Statement
20 Ident: System Ident: System
21 /** The method for printing numbers */ Ident: out Ident: out
22 static void printList(double[] list) { Id L e
R s ent: printin Ident: printin
23 inti=0: N . -
24 while (i <1list length) { String: | My list after
25 System . out print(list[i] + " "): sort is: . .
26 i+ 18 Statement 22 Method Name: printList
27 ¥ Ident: printList Type_specifier: double
28 System.out.println(); Ident: myList Declarator: list
%g ¥ 23 Statement 24 Ident: |
31 /** The method for sorting thenumbers =/ 'Igyptle_speqﬂer: int Igmp_lle.vel op: <
3 static void selectionSort(double[] list) { eclarator: | ent: list
33 int i = list length - 1; Int: 0 Ident: length
34 while (i == 1) { Ident: i
35 // Find maximum mumber in list[0..4] 25 Statement 28 Statement
36 double currentMax = list[0]; Ident: System Ident: System
g; L I U = Ident: out Ident: out
39 nti=1; Ident: print Ident: printin
40 while § <=1) { Ident: list
41 if (currentMax < list[j]) { Ident: i
42 currentMax = list[j]; Operator: +
43 currentMaxIndex = S[ring: no
jj e 32 Method Name: selectionSort 33 Statement
1%) i Type_specifier: double Type_specifier: int
47 / Swap list[i] with fist [currentMaxTndex] if necessary Declarator: list Declarator: i
48 if (comentMaxIndex =) { Ident: list
49 list[currentMaxIndex] = list[i]: Ident: length
30 list[i] = currentMax: Operator: -
51 } Int: 1
:; i 34 Ident: i 36 Statement
5) } Cmp level op: >= Type_specifier: double
55 3 Int: 1 Declarator: currentMax
Ident: i Ident: list
Int: 0
37 Type_specifier: int 39 Statement

Fig. 2: The select sort program

The process continues until the last node, which is
written as End. Every node carries the informatién 40
each line of code. Fig. 3 also shows the flow dbadz

the node, which is represented as dotted arrowtfzend
variable name represented as dotted box. The flow o
data annotated with CFG is the value that will Bedu 42
in the understanding or recognition process.

Generation of Binary Search Tree (BST) for 48
CFG: The information of each line of code for each
node and the flow of data is used as the input to
code/CFG processor in the understanding module.
After the system has produced the CFG, information,,
for each node is transformed and saved into the BST
data structure. The result of CONCEIVER++ for
the code/CFG processor part is shown ig. &i

Declarator: currentMaxindex
Int: 0

Cmp level op: <= 41
Ident: i
Ident: j

Statement 43
Ident: currentMax

Operator: =

Ident: list

Ident: j

Statement 49
If

Ident: currentMaxIndex

Ident: i

Statement

Ident: list

Ident: i

Operator: =
Ident: currentMax

Type_specifier: int
Declarator: j
Int: 1
Ident: j
Statement
If
Ident: currentMax
Cmp level op: <
Ident: list
Ident: j
Statement
Ident: currentMaxIndex
Operator: =
Ident: j

Statement
Ident: list
Ident: currentMaxIndex
Operator: =
Ident: list
Ident: i

1014

J. Computer i, 5 (12): 1009-1019, 2009

Nodes of flow graph transfer into tree (BST)

Tree's node number: 35.0

Flow graph's node number: 2.0
Modifier of node: Public
Classname of node: SelectionSort
Methodname of node: None
Declarator of node: None
Comparison operator of node: None
Identifier 1 for node: None
Identifier 2 for node: None
Identifier 3 for node: None
Integer of node: None
Understanding statement: None
Plan matched: None

Tree's node number: 34.0

Flow Graph's node number: 4.0
Modifier of node: None
Classname of node: None
Methodname of node: Main
Declarator of node: Args
Comparison operator of node: None
Identifier 1 for node: String
Identifier 2 for node: None
Identifier 3 for node: None
Integer of node: None
Understanding statement: None
Plan matched: None

Fig. 5: Information of two BST nodes

Fig. 3: CFG for the select sort program In addition, this information will also be used for
higher-level recognition. In Fig. 5, the first CR@®&de
Node of flow graph number 2 and tree node number 35, has the modifier
[NODES OF FLOW GRAPH TRANSFER INTO | mformatlon that is public and class name of thde®
TREE(BST) & SelectionSort. The second CFG node number 4 agad tre
node number 34, has the main method name
Tree's node number | 35.0 information, args for declarator and String ideatif
i low Graph's node number; 2.0
PModifier of node: public Generation of linked list for programming plan:
[Classnamc o aole ; SelechanSor. Plan processor is one of major part in CONCEIVER++.
[dekondmaece: 8 ez o The process involve in this plan processor partois
ik d the plan in the plan base. Linked list stmectg
ICnmpansnnapa'atarnfnode.nane 5 rea p p . e . L
- generated and each node in the linked list willtaon

_ plan, including the information of the plan. This
Fig. 4: Result of code/CFG processor of generated linked list with plan inside is the otitfsam

CONCEIVER++ this plan processor part and will be as input foe t
o _ recognition engine or understanding processor.
The detail information of the BST node cannot bense All the information is the data about knowledge of

from Fig. 4 Because of this, Fig. 5 shows the ¢®@ |Janguage based on the plan formalism that had been
two nodes that have been generated. The number @fentioned above. Because of the design of the plan
BST node is also displayed. formalism is not the focus of this study, reseadchas

From Fig. 5, the information of each BST nodepeen done and the resulted plans are based on
are tree’'s node number, flow graph's node numbediscussion has agreed on specifying the information
modifier of node, class name of node, method naine meeded for representing the knowledge. For the
node, declarator of node, comparison operator d&no execution purposes of the plan or plan base process
identifier of node, integer value of node, underdtag data or information for all plans has been kepa irext
of node and plan matched. However, not all nodes ha file (in.dat). All of these plans will be generatédo
all these information. There is no information for jinked list data structure mentioned, will input tioe
understanding and plan matched. These twainderstanding engine. This part or processor isrthie
information will be filled when the CFG are recoggdl knowledge for the recognition process. Table 2 shaw
by the understanding processor or recognitiginen few numbers of plans that contain in the plan base.

1015

J. Computer i, 5 (12): 1009-1019, 2009

Table 2: Plans’ data or information that contaihie text file

Identifier

Plan Plan

No. name Modifier Class Method Declrator CmpOp tden Ident3 Integer Const Plan Meaning

101 AssignAValue None None None none None Varl Nonblone Value None None This.code.is.assigning
.a.variable

102 AssignAVar None None None None None Varl Var2None None None None This.code.is.assigning.
Var2.to.Varl

103 Assign None None None None Final Varl None eNon Value None None This.code.is.assigning

AConstant .a.constant

104 SimpleOut None None None None None System OutPrint None None None This.code.print.output.
to.the.computer.screen

105 SimpleOut None None None None None System OutPrintin None None None This.code.print.output.to
.the.computer.screen

106 SystemExit None None None None None System it Ex None Zero None None This.code.is.a.Java.
predefined.class.to.exit.
the.system

107 BoolLess None None None None Less Varl Var2 neNo None None None This.code.is.a.Boolean.
Expression.which.Varl.
is.less.than.Var2

108 BoolLess None None None None Less Varl None neNo Value None None This.code.is.a.Boolean.

109 BoolLessEq None None None None LessEq VarlVar2

110 BoolLessEq None None None None Lesseq Varl

Expression.which.Varl
.is.less.than.Value

None None None None This.code.is.a.Boolean
.Expression.which.Varl.
is.less.than.or.equal.to.Var2

eNonNone Value None None This.code.is.a.Boolean.

Expression.which.Varl.is
.less.than.or.equal.to.Value

RESULT OF PROGRAM UNDERSTANDING =

umber of flow graph's node: 2.0

TREE - modifier = public, nama kelas = SelectionSorl, nama talacara = none, declarator = none,
ool = none, wentl =none, wWentl = none

PLAN - Modifier = public, Kelas = ClassMame, Tatacara = none, Declarator = none, Op/EqRoot =
none, Idenl] = none, [deni? = none

HMarme of plan = DefClassMarne

Understandmg = This. code define the. class name

ueber of flow graph's node 4.0

TREE :- modifier = none, nama kelas = none, nama latacars = main, declirator = args, root =
I;tnnt. ident] = Siring, ident? = nane
PLAH ;- Modifier = none, Kedas = none, Tatacara = main, Declarator = args Op/Eq/Root = none,
Jident! = String, Ident? = none

HMarme of plan = Defviamethod
Understaniding = This ig the man method of this clags

Fig. 6: Result of matching or recognition engine fo
CONCEIVER++

Result of program understanding

Number of flow graph's node 2.0

~TREE ::- modifier =public. nama kelas = SelectionSort, nama
tatacara =none, declarator =none, root=none, identl =none,
ident? = none

< PLAN::- Modifier = public, Kelas = ClassName, Tatacara =
none, Declarator = none, Op/Eq/Root =none, Identl =none,
Ident2 =none

- Name of plan = DefClassName

- Understanding = This code define the class name

Number of flow graph's node: 4.0

. TREE ::- modifier =none, nama kelas=none, nama tatacara=
main, declarator =args, root=none. identl = String, ident2 =
none

- PLAN:- Modifier = none, Kelas = none, Tatacara = main,
Declarator = args, Op/Eq/Root = none, Identl = String. Ident? =
none

:2Name of plan = DefMainMethod

:-.Understanding = This is.the main method of this class

Fig. 7: Information on understanding result

Result of understanding: The nodes that are stored in
the BST data structure and the plans that are dstore
the linked list are used as the input to the rettmgn
engine in the understanding module. The recognitio
process is by matching the BST with the plans m th
linked list to produce the document of program
understanding.

The process of matching or recognition in th
recognition engine is based on the structure oéaibj
oriented programming language. The structure o
object-oriented programming language that consikts
modifier, class name, method names involve for i
class, object name are some of the structureswitiat
be check to identified for recognizing the line cafde
for the Java programming language.

1016

Some of the result of understanding engine for
(CONCEIVER++ of the select sort program is shown in
Fig. 6. In Fig. 6 shows lists of the plan structuiee
structure of the tree and the result of understandihe
information inside the structures is used in theciriag
ebrocess. The result that assists the student isattme of
the plan and the explanation of that line of cddgure 7
]is the copy of Fig. 6 that shows the clearer infation of
the understanding result and for easy explanation
ppurposes. The structures of the plan that are rmdtch
with the structures of the tree are modifier, claame
(nama kelas), method name (nama tatacara), dexlarat
root (represent comparison operator) and identifidue.

J. Computer i, 5 (12): 1009-1019, 2009

Table 3: Testing result

CFG node Plan matched Meaning of understanding Correctness output
2.0 DefClassName This.code.define.the.class.name N
4.0 DefMainMethod This.is.the.main.method.of.tHess y
6.0 DeclareVar This.code.declare.a.variable y
9.0 SimpleOut This.code.print.output.to.the.compateeen \
10.0 SendMsgToMethod This.code.send.mesej.to.mdthakecution N
22.0 DecMethod This.code.define.a.method \
23.0 DeclareVar This.code.declare.a.variable \
24.0 BoolLess This.code.is.a.Boolean.Expressiomhwvkiarl.is.less.than.Var2 N
25.0 SimpleOut This.code.print.output.to.the.corapstreen N
26.0 Increment This.code.increment.value.of.Val.by. \
28.0 SimpleOut This.code.print.output.to.the.corapstreen N
13.0 SendMsgToMethod This.code.send.mesej.to.mdthakecution N
32.0 DecMethod This.code.define.a.method \
33.0 DecAssignArr This.code.assign.array.to.detdara N
34.0 DecBoolGreaterEq This.code.is.a.Boolean.Exfwasnvhich.Var.is.greater.than.or.equal.to.Value v
36.0 DecAssignVar This.code.assign.variable.toatatbr \
37.0 DeclareVar This.code.declare.a.variable y
39.0 DeclareVar This.code.declare.a.variable \
40.0 DecBoolLessEq This.code.is.a.Boolean.Exprasstuch.Var.is.less.than.or.equal.to.Varl \
41.0 BoolLess This.code.is.a.Boolean.Expressiomhwvkiarl.is.less.than.Var2 N
42.0 AssignAVar This.code.is.assigning.Var2.to.Varl N
43.0 AssignAVar This.code.is.assigning.Var2.to.Varl \
45.0 Increment This.code.increment.value.of.Val.by. \
48.0 BoolNotEq This.code.is.a.Boolean.Expressioithwiarl.is.not.equal.to.Var2 N
49.0 AssignAVar This.code.is.assigning.Var2.to.Varl \
50.0 AssignAVar This.code.is.assigning.Var2.to.Varl y
52.0 Decrement This.code.decrement.value.of.Vdr.by. N
17.0 SimpleOut This.code.print.output.to.the.corapstreen \
18.0 SendMsgToMethod This.code.send.mesej.to.métinakecution y
22.0 DecMethod This.code.define.a.method y
23.0 DeclareVar This.code.declare.a.variable \
24.0 BoolLess This.code.is.a.Boolean.Expressiomlwkiarl.is.less.than.Var2 y
25.0 SimpleOut This.code.print.output.to.the.corapstreen N
26.0 Increment This.code.increment.value.of.Val.by. y
28.0 SimpleOut This.code.print.output.to.the.corapstreen v

\: Indicates that the CFG node and plan is matcbeeatly and give correct understanding for thatipalar code

In Fig. 7 for example, the tree node number 2 ishe logic of the program or the plan base is not
recognized from the plan named DefClassName and theomplete to understand the select sort example.code
line of code explains the definition of the classme. After refining the development of understanding
From the Fig. 7, the tree node number 4 is receghiz module and continuing testing, the result of the
from the plan named DefMainMethod and the meaninginderstanding module is correct for all nodes ia th
of the line of code explains that, it is the maiathods select sort program code. Thus, we can say that th
of the class. correctness of output for the understanding modfile
CONCEIVER++ is 100 percents matched for select sort
Result of testing: The results of black box testing program code. Please refer to Table 3 to prove the
which show the understanding module output for eachesult.
nodes of Control Flow Graph (CFG) has been
recognized by the specific plan. Each node which ha CONCLUSION
been identified with the correct plan and gives the
correct meaning of the node shows the correctness The implementation of CONCEIVER++ has been
output of the understanding module that containseth discussed in detail in this study. The process of
parts as mentioned above. understanding, specifically the understanding medul
The result of the generated understanding modulevhich contains three parts, which are code/CFG
for all CFG nodes of the select sort program cae iprocessor, plan processor and recognition engirse ha
check to make sure that the output is correctt I§i been tested and explained. Java programming source
wrong or do not have meaning for certain progranmcode, the select sort program is used to show the
code, we check whether there is something wrong oresulted of correct output for the understandinglut®

1017

J. Computer i, 5 (12): 1009-1019, 2009

by following the black box testing steps as mergtbn 9.
in the methodology of the study. From this study we
have shown that all nodes of the example source cod
has been recognized and got the correct meanirrg. Fo
future works we will do evaluation to the systemnthwi

difference case studies to check the effectivené#se 10.

recognition process to understand the differenge sff
written programming codes.

ACKNOWLEDGEMENT 11.

The authors acknowledge the financial support
(Science Fund) received from the Ministry of Scienc
Technology and Innovation (MOSTI), Malaysia via
University Putra Malaysia.

REFERENCES 12.

1. Romero, P., R. Cox, B. du Boulay and R. Lutz,
2003. A survey of external representation
employed in object-oriented programming
environments. J. Vis. Languages Comput., 14: 3&7-41
DOI: 10.1016/S1045-926X(03)00036-3

2. Barr, M., S. Holden, D. Philips and T. Greening, 14

1999. An exploration of novice programming
errors in an object-oriented environment. SIGCSE.
Bull., 31: 42-46. DOLl:
http://doi.acm.org/10.1145/349522.349392

3. Stroustrup, B., 1987. What is object-oriented
programming? Lecture Notes Comput. Sci.,

276: 51-70. DOI: 10.1007/3-540-47891-4_6 15.

4. Alagar, V.S. and R. Missaoui 1995. Object-
Oriented Technology for Database and Software
Systems. World Scientific, ISBN: 9810221703, pp2.31

5. Kozaczynski, W. and J.Q. Ning, 1989. SRE: A
knowledge-based environment for large-scale
software re-engineering activities. Proceeding of
the 11th International Conference on Software

Engineering, (SE'89), ACM Press, Pittsburgh, 16.

Pennsylvania, United States, pp: 113-122. DOI:
http://doi.acm.org/10.1145/74587.74603

6. Quicili, A., Q. Yang and S. Woods, 1998.
Applying plan recognition algorithms to program
understanding. Automat. Software Eng., 5: 347-372.

DOI: 10.1023/A:1008608825390 17.

7. Woods, S. and Q. Yang, 1995. Program
Understanding as Constraint Satisfaction. Proc.
Comput. Aid. Software Eng., 7: 318-327. DOI:

10.1109/CASE.1995.465302 18.

8. Kozaczynski, W. and J.Q. Ning, 1994. Automated
program understanding by concept recognition.
Automat. Software Eng., 1. 61-78. DOIL:
10.1007/BF00871692

1018

Wills, L.M., 1993. Flexible control for program
recognition. Proceedings of the Working
Conference on Reverse Engineering, May 21-23,
IEEE Xplore Press, Baltimore, MD., USA., pp:
134-143. DOI: 10.1109/WCRE.1993.287771

Ning, J.Q., 1989. A knowledge-based approach to
automatic program analysis. Ph.D. Thesis,
University of lllinois.
http://portal.acm.org/citation.cfm?id=916199
Mdller, H.A., 1996. Understanding software
systems using reverse engineering technologies
research and practice. Proceeding of the Tutorial
Presented at 18th International Conference on
Software Engineering, Berlin, Germany, pp: 1-9.
http://www.rigi.cs.uvic.ca/downloads/papers/pdf/us
suret.pdf

Rich, C. and L.M. Wills, 1990. Recognizing a
program’s design: A graph-parsing approach.
IEEE. Software, 7: 82-89. DOI: 10.1109/52.43053

13. Kozaczynski, W., J. Ning and A. Engberts, 1992.

Program concept recognition and transformation.
IEEE. Trans. Software Eng., 18: 1065-1075. DOI:
10.1109/32.184761

Sani, N.F.M., A.M. Zin and S. Idris, 2008. COtije
oriented codes representation of program
understanding system. Proceeding of the
International Symposium dnformation Technology,
Aug. 26-28, IEEE Xplore Press, Kuala Lumpur,
Malaysia, pp: 450-454. DOl:
10.1109/ITSIM.2008.4631595

Limpiyakorn, Y. and Burnstein, I., 2003. Appigi
the Signature Concept to Plan-Based Program
Understanding. Proceeding of the 19th IEEE

International Conference on Software
Maintenance, Sept. 22-26, IEEE Computer Society,
USA,, pp: 325. DOl:

http://doi.ieeecomputersociety.org/10.1109/ICSM.
2003.1235438.

Quicili, A., 1993. A Hybrid Approach to
Recognizing Programming Plans. Proceeding of
the IEEE 2nd Workshop on Program
Comprehension, July 8-9, IEEE Xplore Press,
Capri, Italy, pp: 96-103. DOI:
10.1109/WPC.1993.263901

Quicili, A., 1994. A memory-based approach to
recognizing program plans. Commun.. ACM.,
37:84-93.
http://doi.acm.org/10.1145/175290.175301
Hoffman, M.A., 2000. Methodology to support the
maintenance of object-oriented systems using
impact analysis. Ph.D. Thesis, Louisiana State
University.
http://portal.acm.org/citation.cfm?id=933565

19.

20.

21.

22.

23.

24.

25.

26.

J. Computer i, 5 (12): 1009-1019, 2009

Lieberherr, K.J. and .M. Holland, 1989. Asgagri
good style for object-oriented programs. IEEE.
Software, 6: 38-48. DOI: 10.1109/52.35588
Johnson, W.L. and E. Soloway, 1985. PROUST:
Knowledge-based program understanding. IEEE.
Trans. Software Eng., SE-11: 267-275.

http://portal.acm.org/citation.cfm?id=801994 28.

Murray, W.R., 2007.
debugging for intelligent
Comput. Intell., 3: 1-16.
8640.1987.th00169.x
Al-Omari, H.M.A., 1999.
program understanding system. Ph.D. Thesis,
University Kebangsaan Malaysia.

Burnstein, I. and F. Saner, 2000. Using fuzzy
reasoning to support automated program

Automatic program
tutoring systems.
DOI: 10.1111/j.1467-

understanding. Int. J. Software Eng. Knowl. Eng.,30.

10: 115-137.
http://md1.csa.com/partners/viewrecord.php?reque

ster=gs&collection=TRD&recid=516084CI 31.

Arif, E.M., 2000. A methodology for teaching
object-oriented programming concepts in an
advanced programming course. SIGCSE. Bull.,
32: 30-34.
http://doi.acm.org/10.1145/355354.355367

Bruhn, R.E. and P.J. Burton, 2003. An apprdach
teaching java using computers. SIGCSE. Bull.,
35: 94-99.
http://doi.acm.org/10.1145/960492.960537
Gearailt, A., 2002. Using Java to increase v&cti
Learning in Programming Courses. Proceeding of
the Inaugural Conference on the Principles and
Practice of Programming, June 13-14, ACM Press,
pp: 107-112.
http://md1.csa.com/partners/viewrecord.php?reque
ster=gs&collection=TRD&recid=20080280018707
Cl

1019

CONCEIVER: A 29.

27. Madden, M. and D. Chambers, 2002. Evaluation of

student attitudes to learning the java language.
Proceeding of the inaugural conference on the
Principles and Practice of Programmidgne 13-
14, ACM Pres, Dublin, Irelandpp: 125-130.
http://portal.acm.org/citation.cfm?id=638501

Kutti, N.S., Z.A. Al-Khanjari, H.A. Ramadhandan

J. Fiaidhi, 2005. A note towards reshaping java’s
features. J. Comput. Sci.,, 1. 450-453.
http://www.scipub.org/scipub/detail_issue.php?V_
No=4&j _id=jcs

Sani, N.F.M., AM. Zin, S. Idris and Z. Shukur,
2005. Designing an Understanding and Debugging
Tool (UDT) for Object-oriented programming
language. WSEAS. Trans. Comput., 4: 137-142.
http://portal.acm.org/citation.cfm?id=1363663
Bahrami, A., 1999. Object Oriented System
Development using the Unified Modeling
Language. Boston: McGraw-Hill.

Sani, N.F.M., AM. Zin and S. Idris, 2009.
Analysis and design of Object-oriented program
understanding system. Int. J. Comput. Sci. Network
Secur., 9: 125-134.
http://paper.ijcsns.org/07_book/200901/20090118.
pdf

