
Journal of Computer Science 5 (7): 476-478, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Vandana Sharma, Department of Computer Science and Engineering,
 Chitkara Institute of Engineering and Technology, Jansla, Punjab, India

476

Comparative Performance Study of Improved Heap Sort

Algorithm on Different Hardware

1Vandana Sharma, 2Satwinder Singh and 3K.S. Kahlon
1Department of Computer Science and Engineering,

Chitkara Institute of Engineering and Technology, Jansla, Punjab, India
2Department of Computer Science and Engineering and Information Technology,
Baba Banda Singh Bahadur Engineering College, Fatehgarh Sahib, Punjab, India

3Department of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar, Punjab, India

Abstract: Problem statement: Several efficient algorithms were developed to cope with the popular
task of sorting. Improved heap sort is a new variant of heap sort. Basic idea of new algorithm is similar
to classical Heap sort algorithm but it builds heap in another way. The improved heap sort algorithm
requires nlogn-0.788928n comparisons for worst case and nlogn-n comparisons in average case. This
algorithm uses only one comparison at each node. Hardware has impact on performance of an
algorithm. Since improved heap sort is a new algorithm, its performance on different hardware is
required to be measured. Approach: In this comparative study the mathematical results of improved
heap sort were verified experimentally on different hardware. To have some experimental data to
sustain this comparison five representative hardware were chosen and code was executed and
execution time was noted to verify and analyze the performance. Results: Hardware impact was
shown on the performance of improved heap sort algorithm. Performance of algorithm varied for
different datasets also. Conclusion: The Improved Heap sort algorithm performance was found better
as compared to traditional heap sort on different hardware, but on certain hardware it was found best.

Key words: Complexity, performance of algorithms, sorting

INTRODUCTION

 As Knuth describes in[1] theoretical lower bound
for general sorting algorithms is:

log (n!) = nlogn-n loge + θ(log n)
 ≈ nlogn – 1.442695n

 For the worst-case numbers of comparisons, this
lower bound makes sorting by merging, sorting by
insertion and binary search very efficient.
 Cormen[2] describes Heap Sort is a divide and
conquer algorithm that first orders keys in a binary heap
and then reorders the heap into sorted order.
 Heap sort was originally proposed by William in[3].
A heap of size n is an array a[1..n] containing n
elements satisfying the following conditions (1) Each
component of the array stores exactly one element; (2)
The array represents a binary tree completely filled on
all levels except possibly at the lowest, which is filled
from the left up to appoint; (3) The root of the tree is
a[1]; (4) for a node I in the binary tree, a[i] is its key
parent(i) = |_ i/2 _| is its parent and 2i and 2i+1 are its

children, if they exist; (5) The heap property is for all
2≤i≤n, a{parent(i)]≥ a[i].Thus the largest element in a
heap is always at the root of the heap. There are two
phases of in any heap sort algorithm. First, the input
array is transformed into heap. Secondly element at the
root is exchanged with the last element of the heap and
the heap is rearranged to build an new heap with one
fewer element. This is the most important phase and
repeated (n-2 times) until the input array is entirely
sorted. Algorithm of William[3] uses nlogn + O(n)
comparisons in the worst case to build a heap on n
elements and more than 2nlogn comparisons in the
worst case to sort the elements.
 Floyd[4] improved William’s algorithm. His
algorithm uses 2n comparisons in the worst case to
build a heap. The sorting phase requires at most 2nlogn
comparisons. The average case is hardly better than the
worst case.
 Wegner[5] proposed new variant of heap sort
Bottom up heap sort which works like a heap but it
rearranges the remaining heap in different way.
 Carlson in[6] proposed a variant of Heap sort needs
nlogn + (nlogn) comparisons.

J. Computer Sci., 5 (7): 476-478, 2009

477

McDiarmid and Reed proposed[7] a new variant of
bottom up heap to reduce number of comparisons. This
algorithm uses 2 |_(n-1)/2 _| additional bits, 2 bits per
internal nodes for storing three values u(unknown),l
(left) and r(right). It has been shown that the algorithm
uses (n+1) log n + 1.086072 n key comparisons in the
worst case. In[7] algorithm for only heap creation phase
was presented. Complete algorithm is found in[8].
Wegner in[8] showed that McDiarmid and Reed's
variant of Bottom-up-heap sort needs nlogn +1.1 n
comparisons. Wegner showed that worst case number
of comparisons of the algorithm is about 1.5nlogn-0.4n.
In the average case although in worst case.
 Bojesen et al.[9] studied behavior of three methods
for constructing a binary heap on different architecture
and compilers. The methods considered were proposed
by Williams, in which elements are repeatedly inserted
into a single heap; the improvement by Floyd, in which
small heaps are repeatedly merged to bigger heaps ; and
another method proposed by[10] in which a heap is built
layer wise. In[9] they showed that with careful memory
tuning and code tuning performance of heap
construction could be improved by a factor of two or
three.
 Wang and Wu in[11] presented a new variant of
Heap Sort which is improved heap sort. Basic idea of
this new algorithm is similar to classical Heap sort
algorithm but it builds heap in another way. Basic idea
is to use only one comparison at each node. In this
algorithm shift walks down a path in the heap until a
leaf is reached. The request of placing the element in
the root immediately to its destination is relaxed. This
new algorithm requires nlogn-0.788928n comparisons
for worst-case and nlogn-n comparisons in average case
which is only about 0.4n more than necessary. If it uses
Gonnet and Munro’s[12] fastest algorithm for building
heaps. It beats on average even the clever variant of
Quick sort, if n is not very small. In it is shown that
there is effect of platform on performance of algorithm.
Performance of this new variant of heap sort was
required to be measured on different platforms. So the
research was carried out to check the behavior of the
algorithm on different platforms in comparison to other
traditional algorithms.

MATERIALS AND METHODS

 In[11] improvement of complexity was shown
mathematically and this was verified on five different
hardware test beds. The experiments were conducted on
following Test beds:

Test bed I: Celeron 2.5 GHz, 512 MB RAM, 40 GB
HDD, Windows XP Professional with service Pack 2,
Microsoft Visual C++ compiler.

Test bed II: AMD 2800+, 512 MB RAM, 40 GB
HDD, Windows XP Professional with service Pack 2,
Microsoft Visual C++ compiler.

Test bed III: Pentium 4, 2.4 GHz, 512 MB RAM, 80
GB HDD, Windows XP Professional with Service Pack
2, Microsoft Visual C++ compiler.

Test bed IV: AMD 64 bit, 1.8 GHz, 512 MB RAM,
80 GB HDD, Windows XP Service Pack 2, Microsoft
Visual C++ compiler.

Test bed V: Pentium, 1.6 GHz, 1 GB RAM, 60 GB
HDD, Windows XP Professional Service Pack 2,
Microsoft Visual C++ compiler.

 For the experiments randomly generated integer
numbers have been used. Data files were used to obtain
results. To study the performance of the algorithms data
sets with 5-100 K items were used and code was
executed 50 times and average execution time in ms
was recorded for average case. Execution time for
every dataset on each test bed was compared and
analyzed.

RESULTS AND DISCUSSION

 Results of all five Test beds are shown in Table 1.
It shows the execution times of improved heap sort
algorithm for no. of data items ranging from 5-100 K
on all five Test beds. It is observed that as the size of
the data increases the performance of the Improved
heap sort algorithm improves dramatically as shown in
Fig. 1.
 In Fig. 1 it is observed that improved heap sort
shows better performance on Test bed II. This result
was further compared with the results of traditional
heap sort on Test bed II as shown in Table 2.
 Comparison of performance of traditional heap sort
and improved heap sort is shown in Fig. 2 which clearly
shows that improved heap sort performed better than
the traditional heap sort algorithm.

Table 1: Average sorting time (ms) of improved heap sort algorithm

on random data averaged 50 runs
No. of data items 5000 10000 50000 100000
Test bed I 0.00420 0.00822 0.06974 0.15444
Test bed II 0.00420 0.00900 0.04774 0.04870
Test bed III 0.00530 0.01248 0.05942 0.11612
Test bed IV 0.00570 0.01350 0.04540 0.05112
Test bed V 0.00464 0.01050 0.06178 0.13174

Table 2: Average sorting time (ms) of improved heap sort algorithm

and traditional Heap sort on Test bed II
 No. of data items 5000 10000 50000 100000
Improved Heap sort 0.0042 0.009 0.04774 0.04870
Traditional Heap sort 0.0045 0.009 0.04174 0.08648

J. Computer Sci., 5 (7): 476-478, 2009

478

Fig. 1: Comparison of improved heap sort

Fig. 2: Comparison of improved heap sort and

traditional heap sort

CONCLUSION

 It was verified that improved heap sort showed
better performance on all Test beds. On Test bed I and
Test bed V improved heap sort took less time for
small dataset 5 and 10 K than other Test beds. For
higher datasets of 50 and 100 K it took more time on
Test bed I and V than on any other Test beds.
Performance of improved heap sort was best on
Test bed II for all datasets in comparison with other
Test beds. However it’s performance on Test bed II
was comparable with performance on Test bed IV.
Performance of improved heap sort on Test bed III for
all datasets was consistent for all datasets. So it is
recommended that improved heap sort is most suitable
for the hardware configuration mentioned in Test bed II.
It takes more time to sort larger datasets on Test bed I
and V. In applications where algorithm performance
needs to be consistent for all data ranges improved heap
sort is suitable for Test bed III. In design and analysis

of algorithm effect of caching can be taken in to
account. By including memory system performance an
algorithm analysis may lead to more correct results. For
future work cache performance of improved heap can
be studied which may lead more optimization.

REFERENCES

1. Knuth, D.E., 1988. The Art of programming-

Sorting and Searching. 2nd Edn., Addison Wesley,
ISBN: 020103803X, pp: 780.

2. Cormen, T.H. et al. 2001. Introduction to
Algorithms. 2nd Edn., ISBN: 0262032937, pp: 1180.

3. Williams, J.W.J., 1964. ACM algorithm 232: Heap
sort. Commun. ACM., 7: 347-348.

4. Floyd, R.W., 1964. ACM algorithm 245: Tree sort
3. Commun. ACM., 7: 701.

5. Wegner, I., 1990. Bottom-up-heap sort a new
variant of heap sort beating on average quick sort
(if n is not very small). Proceedings of the
Mathematical Foundations of Computer Science
1990, Aug. 27-31, Springer-Verlag, London, UK.,
pp: 516-522.

 http://portal.acm.org/citation.cfm?id=663561
6. Carlsson, S., 1987. A variant of Heap sort with

almost optimal number of comparisons. Inform.
Process. Lett., 24: 247-250.
http://portal.acm.org/citation.cfm?id=30995

 7. McDiarmid, C.J.H. and B.A. Reed, 1989. Building
heaps fast. J. Algorithms, 10: 352-365. April 1993

8. Wegner, I., 1991. The worst case complexity of Mc
diarmid and Reed's variant of bottom-up-heap sort
is less than nlogn+1.1n. Proceedings of the 8th
annual symposium on Theoretical aspects of
computer science, (ASTSCS’91), Springer-Verlag,
Hamburg, Germany, pp: 137-147.
http://portal.acm.org/citation.cfm?id=112114

9. Bojesen, J., J. Katajainen and M. Spork, 2000.
Performance engineering case study: Heap
construction. Lecture Notes Comput. Sci.,
1668: 301-315.

 http://cat.inist.fr/?aModele=afficheN&cpsidt=1827233
10. Fadel, R., K.V. Jackobsen, J. Katajainen and

J. Teuhola, 1999. Heaps and heap sorty on
secondary storage. Theor. Comput. Sci., 220: 345-362.
http://www.diku.dk/hjemmesider/ansatte/jyrki/Cou
rse/Performance-Engineering-
1998/TCS(9.11.1998).ps

11. Wanga, X.D. and Y.J. Wu, 2007. An improved
heap sort algorithm with nlogn-0.788928n
comparisons in worst case. J. Comput. Sci.
Technol., 22: 898-903.

 http://d.wanfangdata.com.cn/Periodical_jsjkxjsxb-
e200706012.aspx

12. Gonnet, G.H. and J.I. Munro, 1986. Heaps on
heaps. SIAM J. Comput., 15: 964-971.

