Journal of Computer Science 5 (7): 476-478, 2009
ISSN 1549-3636
© 2009 Science Publications

Compar ative Perfor mance Study of Improved Heap Sort
Algorithm on Different Hardware

'Vandana Sharm&Satwinder Singh aritk.S. Kahlon
'Department of Computer Science and Engineering,

Chitkara Institute of Engineering and Technolognsla, Punjab, India
Department of Computer Science and Engineerindrsfodmation Technology,
Baba Banda Singh Bahadur Engineering College, GatblSahib, Punjab, India

3Department of Computer Science and Engineering,
Guru Nanak Dev University, Amritsar, Punjab, India

Abstract: Problem statement: Several efficient algorithms were developed to cojid the popular
task of sorting. Improved heap sort is a new vardmeap sort. Basic idea of new algorithm is &mi

to classical Heap sort algorithm but it builds héa@nother way. The improved heap sort algorithm
requires nlogn-0.788928n comparisons for worst @aknlogn-n comparisons in average case. This
algorithm uses only one comparison at each nodedvitae has impact on performance of an
algorithm. Since improved heap sort is a new athonj its performance on different hardware is
required to be measurefpproach: In this comparative study the mathematical respiitsnproved
heap sort were verified experimentally on differdatrdware. To have some experimental data to
sustain this comparison five representative hardwaere chosen and code was executed and
execution time was noted to verify and analyze peeformance Results; Hardware impact was
shown on the performance of improved heap sortrilfgn. Performance of algorithm varied for
different datasets als@onclusion: The Improved Heap sort algorithm performance veasd better

as compared to traditional heap sort on differantitvare, but on certain hardware it was found best.

Key words: Complexity, performance of algorithms, sorting

INTRODUCTION children, if they exist; (5) The heap property @ &ll
2<i<n, a{parent(i)} a[i]. Thus the largest element in a
As Knuth describes i theoretical lower bound heap is always at the root of the heap. There e t

for general sorting algorithms is: phases of in any heap sort algorithm. First, thgutin

array is transformed into heap. Secondly elemethet

log (n!) = nlogn-n loge H(log n) root is exchanged with the last element of the reap
~ nlogn — 1.442695n the heap is rearranged to build an new heap with on

fewer element. This is the most important phase and

For the worst-case numbers of comparisons, thisepeated (n-2 times) until the input array is efyir
lower bound makes sorting by merging, sorting bysorted. Algorithm of Williarff' uses nlogn + O(n)
insertion and binary search very efficient. comparisons in the worst case to build a heap on n

Cormerf describes Heap Sort is a divide andelements and more than 2nlogn comparisons in the
conquer algorithm that first orders keys in a bjrfagsap worst case to sort the elements.
and then reorders the heap into sorted order. Floyd” improved William's algorithm. His

Heap sort was originally proposed by Willian®lin ~ algorithm uses 2n comparisons in the worst case to
A heap of size n is an array a[l..n] containing nbuild a heap. The sorting phase requires at mdeggn
elements satisfying the following conditions (1)cka comparisons. The average case is hardly betterttigan
component of the array stores exactly one elen{ght; worst case.
The array represents a binary tree completelydfita Wegnel’ proposed new variant of heap sort
all levels except possibly at the lowest, whicHilied Bottom up heap sort which works like a heap but it
from the left up to appoint; (3) The root of thedris rearranges the remaining heap in different way.
a[l1]; (4) for a node | in thdinary tree, a[i] is its key Carlson iff! proposed a variant of Heap sort needs
parent(i) = |_ i/2 _| is its parent and 2i and 2ar#& its nlogn + (nlogn) comparisons.
Corresponding Author: Vandana Sharma, Department of Computer Scienc&agitheering,

Chitkara Institute of Engineering and Technolatgnsla, Punjab, India
476

J. Computer Sci., 5 (7): 476-478, 2009

McDiarmid and Reed propos8da new variant of Test bed 1I: AMD 2800+, 512 MB RAM, 40 GB

bottom up heap to reduce number of comparisons ThiHDD, Windows XP Professional with service Pack 2,

algorithm uses 2 |_(n-1)/2 _| additional bits, & Wer Microsoft Visual C++ compiler.

internal nodes for storing three values u(unknolwn),

(left) and r(right). It has been shown that theoathm Test bed IIl: Pentium 4, 2.4 GHz, 512 MB RAM, 80

uses (n+1) log n + 1.086072 n key comparisons én thGB HDD, Windows XP Professional with Service Pack

worst case. IfY algorithm for only heap creation phase 2, Microsoft Visual C++ compiler.

was presented. Complete algorithm is foundl.in

Wegner if! showed that McDiarmid and Reed's Test bed 1V: AMD 64 bit, 1.8 GHz, 512 MB RAM,

variant of Bottom-up-heap sort needs nlogn +1.1 80 GB HDD, Windows XP Service Pack 2, Microsoft

comparisons. Wegner showed that worst case numbé&fisual C++ compiler.

of comparisons of the algorithm is about 1.5nlogénr0

In the average case although in worst case. Test bed V: Pentium, 1.6 GHz, 1 GB RAM, 60 GB
Bojesenet al.” studied behavior of three methods HDD, Windows XP Professional Service Pack 2,

for constructing a binary heap on different arattitee = Microsoft Visual C++ compiler.

and compilers. The methods considered were proposed

by Williams, in which elements are repeatedly itesr For the experiments randomly generated integer

into a single heap; the improvement by Floyd, inath numbers have been used. Data files were used &nobt

small heaps are repeatedI?/ merged to bigger heapds ; results. To study the performance of the algoritidais

another method proposedyin which a heap is built sets with 5-100 K items were used and code was

layer wise. IR} they showed that with careful memory executed 50 times and average execution time in ms

tuning and code tuning performance of heapwas recorded for average case. Execution time for

construction could be improved by a factor of two o every dataset on each test bed was compared and

three. analyzed.
Wang and Wu i presented a new variant of
Heap Sort which is improved heap sort. Basic idea o RESULTSAND DISCUSSION
this new algorithm is similar to classical Heaptsor _)
algorithm but it builds heap in another way. Basliea Results of all five Test beds are shown in Table 1

is to use only one comparison at each node. In thi§ shows the execution times of improved heap sort
algorithm shift walks down a path in the heap uatil algorithm for no. of data items ranging from 5-1K0
leaf is reached. The request of p|acing the elenmrent OnN all flve_Test beds. It is observed that as ike sf

the root immediately to its destination is relax@tis the data increases the performance of the Improved
new algorithm requires nlogn-0.788928n comparisondeap sort algorithm improves dramatically as shawn
for worst-case and nlogn-n comparisons in average ¢ Fig- 1. o _

which is only about 0.4n more than necessary. Ubés In Fig. 1 it is observed that improved heap sort
Gonnet and Munro®? fastest algorithm for building Shows better performance on Test bed II. This tesul
heaps_ It beats on average even the clever vapfant Was further Compared with the rgsults of traditiona
Quick sort, if n is not very small. In it is showhat heap sort on Test bed Il as shown in Table 2.

there is effect of platform on performance of aityon. Comparison of performance of traditional heap sort
Performance of this new variant of heap sort wagnd improved heap sort is shown in Fig. 2 whiclaiie
required to be measured on different platformsitgo shows that improved heap sort performed better than
research was carried out to check the behaviohef t the traditional heap sort algorithm.

algorithm on different platforms in comparison tiner

traditional algorithms Table 1: Average sorting time (ms) of improved heag algorithm

on random data averaged 50 runs

No. of dataitems 5000 10000 50000 100000

MATERIALSAND METHODS Testbed | 000420 0.00822 006974 0.15444

Test bed II 0.00420 0.00900 0.04774 0.04870

It improvement of complexity was shown Test bed Il 0.00530 0.01248 0.05942 0.11612
mathematically and this was verified on five digiet ~ Testbed IV 0.00570 0.01350 0.04540 0.05112
Test bed V 0.00464 0.01050 0.06178 0.13174

hardware test beds. The experiments were condocted

foIIowmg Test beds: Table 2: Average sorting time (ms) of improved heap algorithm

and traditional Heap sort on Test bed Il
Test bed I: Celeron 2.5 GHz, 512 MB RAM, 40 GB "No. of data items 5000 10000 50000 100000

HDD, Windows XP Professional with service Pack 2,improved Heap sort 0.0042 _ 0.009 004774 0.04870
Microsoft Visual C++ compiler. Traditional Heap sort ~ 0.0045 0.009 0.04174 0.08648

477

J. Computer Sci., 5 (7): 476-478, 2009

of algorithm effect of caching can be taken in to
account. By including memory system performance an
algorithm analysis may lead to more correct resiis
future work cache performance of improved heap can
be studied which may lead more optimization.

0.18
M Testbed I
0161 M Testbed T _
014 [Testbed IIT
[Testbed IV
0.12 MW Testbed V
/_éj 0.1
£ oos
1.
0.06
0.04
2.
0.02
0 3.
5000 10000 50000 100000
No. of data items
4.
Fig. 1: Comparison of improved heap sort
5.
0.1+
000 O Improved heap sort
77 @ Traditional heapsort
0.08
007 4
> 0.06 -
S 0.05 6.
= 0.04 -
0.03
0.02 7
0.01
mem [| 8.
5000 10000 50000 100000
No. of data items
Fig. 2: Comparison of improved heap sort and
traditional heap sort
CONCLUSION 9

It was verified that improved heap sort showed

better performance on all Test beds. On Test edl|

Test bed V improved heap sort took less time for
small dataset 5 and 10 K than other Test beds. For

higher datasets of 50 and 100 K it took more time o 10.

Test bed | and V than on any other Test beds.

Performance of
Test bed Il for all datasets in comparison withesth

improved heap sort was best on

Test beds. However it's performance on Test bed Il
was comparable with performance on Test bed IV.

Performance of improved heap sort on Test bedill f 11.
all datasets was consistent for all datasets. Sis it

recommended that improved heap sort is most saitabl

for the hardware configuration mentioned in Test be
It takes more time to sort larger datasets on Pedt|

and V. In applications where algorithm performance

needs to be consistent for all data ranges imprbeag
sort is suitable for Test bed llin design and analysis

12.

478

REFERENCES

Knuth, D.E., 1988. The Art of programming-
Sorting and Searching. 2nd Edn., Addison Wesley,
ISBN: 020103803X, pp: 780.

Cormen, T.H. et al. 2001. Introduction to
Algorithms. 2nd Edn.SBN: 0262032937, pp: 1180.
Williams, J.W.J., 1964. ACM algorithm 232: Heap
sort. Commun. ACM., 7: 347-348.

Floyd, R.W., 1964. ACM algorithm 245; Tree sort
3. Commun. ACM., 7: 701.

Wegner, 1., 1990. Bottom-up-heap sortnaw
variant of heap sort beating on average quick sort
(if n is not very small). Proceedings of the
Mathematical Foundations of Computer Science
1990, Aug. 27-31, Springer-Verlag, London, UK.,
pp: 516-522.
http://portal.acm.org/citation.cfm?id=663561
Carlsson, S., 1987. A variant of Heap sort with
almost optimal number of comparisons. Inform.
Process. Lett., 24: 247-250.
http://portal.acm.org/citation.cfm?id=30995
McDiarmid, C.J.H. and B.A. Reed, 1989. Building
heaps fast. J. Algorithms, 10: 352-365. April 1993
Wegner, 1., 1991. The worst case complexity af M
diarmid and Reed's variant of bottom-up-heap sort
is less than nlogn+1.1n. Proceedings of the 8th
annual symposium on Theoretical aspects of
computer science, (ASTSCS'91), Springer-Verlag,
Hamburg, Germany, pp: 137-147.
http://portal.acm.org/citation.cfm?id=112114
Bojesen, J., J. Katajainen and M. Spork, 2000.
Performance engineering case study: Heap
construction.Lecture Notes Comput. Sci.,
1668: 301-315.
http://cat.inist.fr/?aModele=afficheN&cpsidt=182723
Fadel, R., K.V. Jackobsen, J. Katajainand

J. Teuhola, 1999. Heaps and heap sorty on
secondary storage. Theor. Comput. Sci., 220: 345-36
http://www.diku.dk/hjemmesider/ansatte/jyrki/Cou
rse/Performance-Engineering-
1998/TCS(9.11.1998).ps

Wanga, X.D. and Y.J. Wu, 2007. An improved
heap sort algorithm with nlogn-0.788928n
comparisons in worst case. J. Comput. Sci.
Technol., 22: 898-903.
http://d.wanfangdata.com.cn/Periodical_jsjkxjsxb-
€200706012.aspx

Gonnet, G.H. and J.I. Munro, 1986. Heaps on
heaps. SIAM J. Comput., 15: 964-971.

