Journal of Computer Science 5 (12): 962-973, 2009
ISSN 1549-3636
© 2009 Science Publications

Omega Network Hash Construction

Chai Wen Chuah and Azman Samsudin
School of Computer Sciences, University Sains M&tyPulau Pinang, Malaysia

Abstract: Problem statement: Cryptographic hash functions are important crypapgic primitives.
They are commonly used for data integrity checkimgd data authentication. Most of the
cryptographic hash functions are based on the Mebemgard construction. The basic Merkle-
Damgard construction runs over the input sequéewtiahich can lead to problems when the input size
is large since the computation time increases tipeApproach: Therefore, an alternative architecture
which can reduce the computation time is needepeaislly in today’s world where multi-core
processors and multithreaded programming are commionOmega Network Hash Construction
(ONHC) run parallel in multi-core machine has beeoposed as an alternative to the existing hash
constructionsResult: The ONHC performed better than the Merkle-Damgéodstruction. ONHC
permutation architecture also showed improved sigcsirength in term of digest value randomness
when compared to Merkle-Damgard constructi@unclusion: Therefore, it is believed that the
proposed ONHC is a valuable structure that canawgthe performance of any hash function that can
run on top of it.

Key words: Hash function, Merkle-Damgard construction, Omegawvork, Secure Hash Function

(SHA)
INTRODUCTION Meossage | Message| Message
bloek 1 | block2 blockn
Cryptography is becoming more and more — [[7
important for ensuring various types of securityeiov
insecure connections. Among data security primstive Message | Messsge| Message | Length
data integrity check and data origin authenticatoe block1 | block2 | | blockn | paddig

the common security services that must be apphied i
many electronic applications, such as electronic e @
commerce, electronic financial transactions, saftwa

distribution, electronic mail, data storage andeoth

Data Integrlty Check |S accompllshed through tmm Flg. 1: Merk'e-DamgéI’d COﬂStrUCtIOﬂ [adOpted from 2

cryptographic hash functions, which operate atrtot 3, 5]
of many other cryptographic methods in achieving
these security services. The architecture of most hash functions is based

The basic operation of a hash function is togn the Merkle-Damgérd constructfoh®® (Fig. 1),
transform a vanable-s“lze Input or message ittt \which is sequential in nature. This means that when
length string called a *hash value” or “messagesiy gjze of the input increases, the computational tivile

A hash value is generated by a function H of thenfo ;,crease linearly. Each step in the Merkle-Damgard

H(M) = n, where n is the hash value and M is the, o ction processes a message block and returns
variable-length input or message. Hash functiores ar

one-wav functions: it is easy to generate the diges vector. The first vector is pre-defined, but thenaéning
y! ' y to ge %S vectors are fully dependent on the previous fumctio

from a given message M, but given only n, it 'S butput, which siows down the runtime. This in tinas

computationally infeasible to generate M. Hash put, '

functions are designed to produce unambiguous an majofr effect onlthe pherfo][manceh of a_hash fun;(:jtlo
condense message digests that are uniquely iddafi HA, for example. Therefore, there Is a need to
with their source messages. However, the sourcgMhance the performance and efficiency of hashing.
messages cannot be deduced from the message digests This research proposes the omega network hash

and for this reason, the hash function is sometime8&onstruction as an alternative hashing architectare
known as a digital fingerprint. the Merkle-Damgard construction. Because of the

Corresponding Author: Chai Wen Chuah, School of Computer Sciences, UsityeSains Malaysia, Pulau Pinang, Malaysia
Tel: (+604) 6533635 Fax: (+604) 6573335
962

J. Computer Sci., 5 (12): 962-973, 2009

design of the omega network hash construction, theequentially and the functions for SHDSA also
original inputs cannot be retrieved from their executed sequentially. The performance is affedtes;
corresponding hash values. In the era of multidirep ~ execution time will increase linearly and reach the
and multi-core technology, the omega network haskhighest degree of throughput when the size of input
construction runs in parallel to improve the haghin high. The high speed requirement of SHDSA is highly
performance. The goal of this architecture is tpriowve needed, which is why SHDSA should be parallelized.
performance without sacrificing the security predd Once again, in 2008, Elkamchouclet. al.”!
by the existing Merkle-Damgard architecture. proposed another secure and fast algorithm called
SFHA-256. This one was specifically designed for
Related work: National Institute of Standards and SHA-256. It is based on the 3C construction, whgh
Technology (NIST) organized a competition for based on the Merkle-Damgard construction. The autho
selecting SHA-3 currently (2009). ESSENE&Hs a claims that the proposed architecture is more seand
candidate for this competition. ESSENCE is aperforms better than the existing SHA-256. He ctim
cryptographic hashing algorithm from which the that performance is better because the number of
construction for hashing algorithm is based on Treeperations performed in a step function is redumed
Based Merkle-Damgard construction. The ESSENCEbecause the architecture consists of two branches
design has been optimized using the paralletunning in parallel. SFHA-256 has fewer processing
implementation and obtained better performance thasteps, but it is still secure because each stegtifum
the sequential Merkle-Damgard construction, bitaid ~ contains operations that make it difficult for akars to
a poor performance on short messages. analyze SFHA-256. The added operations are simple
Pipeline is one of the methods for function XOR, addition and shift rotation operations. Howeve
decomposition in the field of parallel. Pongyupinigh performance still suffers due to the waiting tinmatt
and Choomchuay utilized the pipeline method to runsccurs during the processing of hash values.
SHA-1, to enhance the performance of Digital Gauravaramet al.”! proposed the 3C+ hash
Signature Algorithm (DSA) by overcoming construction which is based on the Merkle-Damgéard
unreasonable overhead in small applicatidhsThere construction. This 3C+ construction is an enhancgme
is small modification done on SHA-1, from which of 3C construction where a third internal chain basn
SHA-1 is coded to run in a pipeline mode. E +¥K; added on top of the cascade and accumulation cbéins
is computed parallel with A + B + C + D. The author 3¢ with this enhancement, the security level of 3€
claimed that the major drawback from this pipelinepeatter than both 3C construction and the Merkle-

design is when there exist a higher number of pipel Damgard construction. 3C+ contains more XOR
states in which the design is cumbersome and ttee ga

.) S operations which also improves its security. Howeve
count increases dramatically. Thus, th'$ p'pel'hbt‘\s. in this new algorithm, there exist conditions whére
with DSA is not scalable for all size application

. . . hashing functions are required to wait for the ipu
because it can only perform well in small size . .
applications. from the previous hash function. Moreover, the whol

The Secure Hash Dynamic Structure AlgorithmconStrUCtion_ is _sequential. Thus, waiting times ban
(SHDSAJ? is used in many applications such as pubncextremely h'_gh n t[ge 3C+ const_ruct|0n.
Mirvaziri et al.””! came up with an enhancement to

key cryptosystems, digital signature, digital eiptign, . _ -
message authentication code and random numbdh€ Merkle-Damgard construction by developing a
generators. All of these application’s requiremearts ~ Single-length compression function implementedun t
different from each other. As a result, Elkamchdsch Miyaguchi-Preneel block cipher. The architectures ha
group proposed SHDSA which comes in a variety ofintelligent repetition optimize hash process, wHeds
configurations. This dynamic scheme is based on SHAO better security. Though the architecture is gheesil

but with one major difference-the hash value isaldle in double levels, it runs sequentially across the
length with possible sizes of 128, 192 and 256. bitsmessage, which means its computation time increases
Besides that, the iterations in each function can blinearly when the input size increases.

changeable based on the requirement of the In conclusion, most of the proposed architectures
applications. Thus, this dynamic scheme providesun sequentially, which means the computation time
different levels of security for satisfying the ates for increases linearly when the input size increaségerG
those practical applications. Although SHDSA isthat multi-core technology and multithreaded
designed to be changeable based on the requirevhentprogramming are common in today’'s world, these
the application, the architecture is formulatedarchitectures are unacceptably slow.

963

J. Computer Sci., 5 (12): 962-973, 2009

MATERIALSAND METHODS There are some constraints for the design of
Omega Network Hash Construction. To start executing
Five different sizes of omega network arethe block function's column, it must wait for the
designed-omega network hash construction 8 (Fig. 2)previous column to complete its execution before it
omega network hash construction 16 (Fig. 3), omegatarts. This is because the block function’s column
network hash construction 32 (Fig. 3), omega nektwor input vector depends on the XOR of digest valuehef
hash construction 64 (Fig. 3) and omega network hasprevious column; so variables dependency does iexist
construction 128 (Fig. 7). They serve as prototyjges Omega Network Hash Construction. For example,
determine the optimum size that gives us the bes{econd column of Omega Network Hash Construction

performance when the hash constructs are simulatedy, start execute only after the first column cated

on dual-core and quad-core processors machines. ; ; ;
; . its execution, because the input vector of second
As a prototype, SHA-512 algorithm is used as the b

function for Omega Network Hash Construction. column depends on the XOR of first column digested
Merkle-Damgard construction run sequentially, SHA—VaIugSr;e round of Omeaa Network Hash Construction
512 algorithm needs only one set of constant va(g@s . ga .

constant 64-bit words which are parts of the culms is completed, af_ter XORing the_ digest va_llues of the
of the first eighty prime numbé®. In Omega last column. This process continues until the entir
Network Hash Construction, the constant values ar€ssage is hashed. Finally, to form the final diges
taken from part of the square root of 92 and the Value, digest values of every round is XORed. The

number of constant value used depends on the numb&©R process is executed sequentially, so that when
blocks (Table 1). the size of Omega Network Hash Construction

In the design of Omega Network Hash increases, this process will take longer time toRXO
Construction (Fig. 2 and 3), the blocks on the lefithe digest value.
column (Column 1) takes two categories of input4.02 If the input message is not enough in terms of the
and 512 bits. Both inputs are taken from user ngessa input length to complete one round of Omega Network
Those inputs serve as the initial vector for theA812 Hash Construction, the pre-defined message will be
function. However, in Merkle-Damgéard construction, used to execute the remaining blocks. The pre-défin
the initial vector is predefined. Each block ofwoh 2 message is a non-repeated number, taken from the
and above takes the input vector from the XOR af tw jrrational numben/2.
blocks of digested values from previous column. For
example (Fig. 2), block function number Bets its Table 1: Set of constant value for omega netwoshw@nstruction
input vector value from the XOR of two digest vaue size of omega network hash constructon 8 16 32 £28
of block iy and k. Set of constant value 12 32 80 192 448

Fun sequential- XORed the digest

Feferences:

— = 1024 bits mnput | —w 512 bits nput 512 bits mtermediate F SHA-512
hash digest function

Fig. 2: Omega network hash construction 8
964

J. Computer Sci., 5 (12): 962-973, 2009

\/
Ei
o

\ \/ V vV \V \/ \V

—»>
—»>
—>

«__» «__»
“Commn Laver. |
Column 1 n-1 Column n ayer,
Run sequential - XORed the digest
Size of Omega | Total Blocks Total Total
Network Hash (Hash
3 N Columns (n Layer (I
Construction Function) m ver () References:
16 32 4 3
—> 1024 bits input > 512 bits input
32 80 5 4
512 bits intermediate
64 6 5 ¥ SHA-512
192 hash digest Function
128 448 7 6

Fig. 3: Overview of 4 types of omega network hashstruction

Overall, the executions phase of the differentDamgard construction with the goal of improving the
versions of omega network hash construction arg@erformance of hashing. SHA-512 algorithm is used a
similar to each other. The difference is the numiifer our case study in this research. The source codlieeof
columns and the number of function blocks that formSHA-512 function is taken from Olivier Gay version
an omega network hash construction. Besides that, t 2007'%.
total rounds needed to complete hashing a message a In our test, there are five major designs of omega
different for these five designs of omega netwoakth network hash construction, with different sizesinge
construction. simulated on both dual-core processors and quagl-cor
processors. To execute omega network hash
gonstruction in parallel, two lines of OpenMP
g’f)mmands are used.

Simulation and performance evaluation: All designs
are simulated in dual core and quad core machine
Section on test design describes the complete te
design for this research. Section on performansé te
explains how to generate the test file and thessife * Omp_get_num_procs (): This command is used to
test final. Section on security test describessturity get the number of processors in the machine. The
test for this research. command will help us to indicate the number of
threads created. Two threads will be created in a
Test design: Omega network hash construction is dual-core processor and four threads will be
proposed to be an alternative architecture to teeki- created for a quad-core processor, respectively
965

J. Computer Sci., 5 (12): 962-973, 2009

« #pragma omp parallel for schedule (dynamic)10 megabytes of files containing the binary valae t
ordered private (iCount): This OpenMP commandproduce the test report.
provides the Omega Network Hash There are two types of messages digest value being
Construction’s function (SHA-512) to execute generated-single block message (Fig. 4) and meiltipl
parallel schedules orderly from,F=, Fs, F4, Fs, blocks message (Fig. 5). Each input file is onlg doit
Fe, F, Fs...F, each thread will execute one different for both types of messages. A total of
function at a time in parallel with the other thdea 1,600,000 message files are generated to peotid
iCount is a private variable for all the functions MB binary digested value file. For the single block
message, the first byte is “1”, followed by 127 “0
The designs are simulated in two types of maching¢Fig. 4). There are 5 types of messages for meltipl
which both are usin@dicrosoft Windows XP blocks-12, 32, 80, 192 and 448 blocks. The numiisr b
Professional and Visual Studio 2008. The specificat of message for Omega Network Hash Constructions are

of the machines are as below: greater than Merkle-Damgard construction because th
initial vector for Omega Network Hash Constructien
» Dual-core processors: taken from user input (Fig. 5). The test results ar
Intel (R) core (TM) 2 duo CPU T7300 @ 2.00 GHz Wwritten in an output file. The test value *-p’ beten 0
1.99 GHz 2.00 GB of RAM and 1 indicates a pass for the DIEHARD test.
Physical address extension
Hard disk: 80 GB First byte, Last byte,

(byte no. 1)
« Quad-core processors (byte no. 126)

AMD phenom™ 9650 quad-core processor
2.30 GHz 3.00 GB of RAM

Physical address extension

Hard disk: 230 GB

Input file 1 10000000000000000000000 ...00000000
Input file 2 01000000000000000000000 ...00000000

‘11’1’1111’11111‘]1.‘]‘11‘]11‘1‘1‘1 .. 11111111

Performance test: The performance testing for five 20000000000000000000000 ...00000000
types of omega network are done by executing them i 02000000000000000000000 ..00000000
two types of machine as mentioned above. A totdl of : ;

files had been used for testing which are 200, 400, . 22202222222022222202222 .. 22222222
and 800 MB and 1 GB. All types of omega network I

hash construction are executed five times for déeh 90000000000000000000000 ..00000000
the average execution times are recorded. ; 09000000000000000000000 ...00000000
Security test: To evaluate the security strength of Input file 1600000 99999999999999999999999 ...99999999

Omega Network Hash Construction, we use DIEHARD
random te$l. DIEHARD, the security test needs 9- Fig. 4: Test data, single block of message

Omega network Total | The last bitf
hash construction blocks total bits

8 12 14336

16 32 36864

32 80 aon112

First bit,

(bit ne. 1) Last bit & 132 | 212992

128 448 491530

Tnput file 1— 1 0000000000000000000000...00000000 O
Input file 2—m 0 1000000000000000000000...00000000 0
Input file 3—= 0 0100000000000000000000. .. 00000000 O

Total | The last bitf
blocks total bits

12 12288

Merkle-damgérd 32 32768

Input file 1600000 construction

80 81920
182 196608
448 458752

Fig. 5: Test data, multiple blocks of message
966

J. Computer ci., 5 (12): 962-973, 2009

RESULTS The efficiency is calculated as E = Speed up/n.
This measurement is the fraction of time for whikh
Performance test: The performance analysis measurescomputer is employed. Ideally, the efficiency slibul
speed up, security level, efficiency and runningtco equal to one. But in practice, the efficiency ismally
There are three types of run-time tests: serialtime between zero and one, which depends on the defree o
(Ty, parallel run-time (J) and overhead function I effectiveness the processors are being utilized.
Ts is the time elapsed between the beginning and the Running cost is another measurement we considered
end of execution time in a serial manney, i$ the in our performance analysis. Cost orxTp) is the
elapse time between the moment a parallel compatati product of parallel runtime and the number of pssasy
starts and the moment that the last processorésis elements which reflects the sum of the time thahea
execution. Overhead is calculated by ¥ p T,Ts, processing element spends to solve a problem.
where p is the number of threads. Performance of omega network hash construction

Speed up is defined as the execution time of &, omega network hash construction 16, omega nktwor
sequential program divided by the execution twfie hash construction 32, omega network hash constructi
a parallel program, S = J,, where T is the 64 and omega network hash construction 128 arershow
sequential time and,is the parallel time runningn in Table 2-6 respectively. Figure 6-15 shows
n processoff. Theoretically, speed up will not performance analysis of Omega Network Hash
exceed the number of processors or threads that Gonstruction simulated on a dual core machine and
being used. quad core machine in the line graph format.

Table 2: Performance analysis of omega network bashtruction 8
Omega network hash construction 8

2 Threads 4 Threads
Sizes
(MB) Ts(sec) T(sec) T S E Running cost s[sec) T(sec) T S E Running cost
200 16.188 11.416 6.643 1.418 0.355 22.831 14.7340.842 28.642 1.359 0.340 43.376
400 32.375 23.742 15110 1.364 0.341 47.485 29.471.875 58.093 1.344 0.336 87.500
600 48.547 35.080 21.613 1.384 0.346 70.160 44.1082.719 86.767 1.348 0.337 130.876
800 64.778 46.538 28.297 1.392 0.348 93.075 58.8%42.375 110.609 1.390 0.347 169.500
1000 80.942 58.542 36.143 1.383 0.346 117.085 83.656.922 154.063 1.293 0.323 227.688
Table 3: Performance analysis of omega network bashtruction 16
Omega network hash construction 16

2 Threads 4 Threads
Sizes
(MB) Ts(sec) T(sec) T S Running cost s[sec) T(sec) T S E Running cost
200 16.188 12.064 7.940 1.342 0.335 24.128 14.7340.219 26.142 1.442 0.360 40.876
400 32.375 24177 15978 1.339 0.335 48.353 29.4020.687 53.341 1422 0.355 82.748
600 48.547 35978 23.410 1.349 0.337 71.957 44.1091.062 80.139 1420 0.355 124.248
800 64.778 47.890 31.002 1.353 0.338 95.780 58.8941.765 108.169 1410 0.353 167.06
1000 80.942 59.878 38.813 1.352 0.338 119.755 33.6253.594 140.751 1.374 0.343 214.376
Table 4: Performance analysis of omega network basktruction 32
Omega network hash construction 32

2 Threads 4 Threads
Sizes
(MB) Ts(sec) T(sec) T S Running cost s[sec) T(sec) T S Running cost
200 16.188 12.485 8.782 1.297 0.324 24.970 14.734 .2818 18.390 1.779 0.445 33.124
400 32.375 24910 17.445 1.300 0.325 49.820 29.40006.219 35.469 1813 0.453 64.876
600 48.547 37.232 25917 1.304 0.326 74.464 44.1094.516 53.955 1.799 0.450 98.064
800 64.778 49.563 34.348 1.307 0.327 99.126 58.832.516 71.173 1811 0.453 130.064
1000 80.942 61.922 42902 1.307 0.327 123.844 33.6241.031 90.499 1.794 0.449 164.124

967

J. Computer Sci., 5 (12): 962-973, 2009

Table 5: Performance analysis of omega network bashtruction 64
Omega network hash construction 64

2 Threads 4 Threads

Sizes

(MB) Ts(sec) T(sec) T S E Running cost s[sec) T(sec) T S E Running cost
200 16.188 12.516 8.844 1.293 0.323 25.032 14.734 8139 24518 1501 0.375 39.252
400 32.375 25.141 17.907 1.288 0.322 50.282 29.4079.719 49.469 1491 0.373 78.876
600 48.547 37532 26.517 1.293 0.323 75.064 44.1029.469 73.767 1497 0.374 117.876
800 64.778 50.641 36.504 1.279 0.320 101.282 58.8939.734 100.045 1.482 0.371 158.936
1000 80.942 63.219 45496 1.280 0.320 126.438 83.6249.469 124.251 1.488 0.372 197.876

Table 6: Performance analysis of omega network basktruction 128
Omega network hash construction 128

2 Threads 4 Threads
Sizes
(MB) Ts(sec) T(sec) T S E Running cost s[sec) T(sec) T S E Running cost
200 16.188 13.047 9.906 1.241 0.310 26.094 14.732.563 75.518 0.653 0.163 90.252
400 32.375 26.125 19.875 1.239 0.310 52.250 29.4@15.422 152.281 0.647 0.162 181.688

600 48.547 39.032 29517 1.244 0.311 78.064 44.1@8.718 230.763 0.642 0.160 274.872
800 64.778 52.078 39.378 1.244 0.311 104.156 58.8@M.313 306.361 0.645 0.161 365.252
1000 80.942 65.203 49.464 1.241 0.310 130.406 33.6208.437 360.123 0.679 0.170 433.748

20 145
80
140
5 70
8
= 80 B 135 — . ——————a
2 i
E o -8~ ONHC 3 o ~+— ONHC 8
5 4 e ONHC 16 5‘ —_— 8- ONHZ 16
bl — ONHC 32 $ 1os ONHC 32
& 30 ONHC 64 & e
f: - e ONHC 4
5 o CNHC 128 1.20 + OMHC 133
e 115
0
200 400 600 800 1000 1.10
Message file (MB) 200 400 600 800 1000

Message file (MB)
Fig. 6: Execution time comparison between omega
network hash construction and Merkle- Fig. 8: Speed up of omega network hash construction
Damgard Construction, simulated on a dual simulated on a dual core machine
core machine
0.36

0
035
50 g 034

5 P il
= 35 / &S: 0.33 : = ONHC &
% == DHHGE % 032 '———-__-———----_._M— ~@- ONHC 16
5 30 ~m- ONHC 16 T J
= ONHC 32 b= —
i} M o031 r——— Mo— —— OMHC 64
& 20 L ONHC 128
- OMHC 138 030 .
1o 0.29
9 0.28
200 400 £00 300 1000 200 400 500 200 1000
Message file (MB) Message file (MB)

Fig. 7: Overhead of omega network hash constructiofrig. 9: Efficiency of omega network hash constmieti
simulated on dual core machine simulated on a dual core machine

968

Running cost

Fig.

Execution time (sec)

Fig.

Overhead (Ty)

Fig.

J. Computer Sci., 5 (12): 962-973, 2009

140 20.0
120 / 118
118
160 L e ———a
a0 o ONHC S & 112 — ONHC S
~@- ONHC 16 % 110 ~@- ONHC 16
60 OMNHC 32 = ONHC 32
—— ONHC 64 X 2) e ONHC 64
40 — ONHC 123 0.06 —— —— ONHC 123
0.04

=4 0.02

o 0.00
200 200 600 200 1000 200 400 600 800 1000

Message file (ME) Message file (MB)

10: Running cost of omega network hashFig.- 13: Speed up of omega network hash constmictio
construction simulated on a dual core simulated on a quad core machine
machine

0.50
045 -
120
P 0.40
—4= D b —
100 | L~ 035 —_—
wffl= ONHC & % 0.30 —+— ONHC &
80 - 2 025 ~@- ONHC 16
e ONHC 16 g ONHC 32
. E 0.20 - e ONHC 64
| e ONHC 32 0.15 = e —— ~ ONHC 128
0.10
40
0.05
20 0.00
200 400 600 800 1000
o Message file (MB)
200 400 800 200 1000
Iessage file (MB) . . .
Fig. 14: Efficiency of omega network hash
, , i construction simulated on a quad core
11: Execution time comparison between omega machine
network hash construction and Merkle-
Damgard construction, simulated on a quad -
core machine ol :
-~
400 -
400 ¥ 350 ‘/
3 P
250 2 300 ~— ONHC 3
g - ~m— ONHC 16
300 5 ONHC 32
fr 200 e ONHC 64
228 +SEHH§1 150 . - ONHC 138
——
20 ONHC 32 100
150 e ONHC 64 50
OMHC 128 0
100 = - 200 400 600 800 1000
50 Message file (MB)
o]
T i Fig. 15: Running cost of omega network hash
construction simulated on a quad core
12: Overhead of omega network hash constmctio machine

simulated on a quad core machine
input file, single block of message and multiplediis of

Security analysis: DIEHARD is chosen as the security message. Each input file is only one bit differientboth
test tool to examine whether the omega network hastypes of message. The result of security analysis f
constructions are secure enough by evaluating thsingle block message is shown in Table 7 and 8 show
randomness of the digest value. There are two types the security analysis for multiple block messages.

969

J. Computer Sci., 5 (12): 962-973, 2009

Table 7: DIEHARD security test, single block of reage to generate binary test file

Single block of message MD ONHC 8 ONHC 16 ONHC 32 NHT 64 ONHC 128

1. Birthday spacings Fail* 0.6484800*** 0.9209820*%0.343668*** 0.7568980*** 0.627634***
2. Overlapping permutations .000000* 0.1214495** 0.5986095*** 0.506419*** (0.8482345*** (.303512***
3. Ranks of 3231 and 3232 matrices

31x31 matrices D00000* 0.6794880*** 0.525663*** 0.360214*** 0.6628150*** 0.772463***
32x32 matrices D00000* 0.7980960*** 0.642444** (0.521738** 0.3315500*** 0.380405***
4. Ranks of 88 matrices Dooooo* 0.6799860*** 0.201000*** 0.594762** 0.1440980*** 0.623201***
5. Monkey tests on 20 bit words .000000* 0.5627780*** 0.566308*** 0.379957*** 0.4361720*** 0.411402***
6. Monkey tests OPSO, OQSO, DNA

OPSO 1.000000%* 0.5375000*** 0.589404*** (0.621691** 0.5285300*** 0.560243***
0Qso 1.000000* 0.5275430** 0.514518*** 0.431471** 0.4967710** (0.545821***
DNA 1.000000%* 0.5299740** 0.512017** 0.559690*** 0.5366310*** 0.566177***
7. Count the 1's in a stream of bytes .000000* 0.5343885*** 0.652317*** 0.638018*** 0.3421095*** (0.594358***
8. Count the 1's in specific bytes .0d0000* 0.5106000*** 0.584141** (0.520437** 0.6004920*** (0.544833***
9. Parking lot test .000000* 0.6257840*** 0.263863*** 0.610674** 0.5914920*** (0.504483***
10. Minimum distance test .aboooo* 0.9708900*** 0.957626*** 0.087640*** 0.6157280*** (0.904798***
11. Random spheres test .0do000* 0.9898730*** 0.018399*** (0.980629*** 0.9839010*** 0.900696***
12. The squeeze test .000000* 0.6085880*** 0.104880*** 0.486552*** 0.8308000*** (0.919765***
13. Overlapping sums test .000000% 0.4132320*** 0.836154*** (0.487671** 0.7555970*** (0.694437***
14. Runs test .000000* 0.2870380*** 0.541360*** 0.743451** 0.5838500*** (0.514282***
15. The craps test 0.04061** (0.1290400*** 0.0481#0 0.085660*** 0.8882300*** 0.172820%***

Note: MD: Merkle-Damgard construction; ONHC: Omega Netwblash Construction; *: Fail to test; ***: Pass ttEHARD test; **: Fail the
DIEHARD test

Table 8: DIEHARD security test, multiple blocksrobssage to generate binary test file

MD -8 MD-16 MD-32 MD-64 MD-128 ONHC
Multiple blocks of message blocks ONHC 8 blocks ANES blocks ONHC 32 blocks ONHC 64 blocks 128
1. Birthday spacings Fail* 0.746930*** 0.999999**0.745669*** 0.9251170*** 0.654962*** 0.918840*** @96097*** 0.8663900*** 0.081941***
2. Overlapping permutations 0.991743** 0.403184**0.686777*** 0.160407*** 0.1904655*** 0.274975*** (B31856*** 0.761285*** 0.2887360*** 0.839987***
3. Ranks of 3831 and 3232 matrices
31x31 Matrices 1.000000** 0.378031** 1.000000** 0.58@2*** 0.3808820*** 0.323987*** 0.613335*** 0.43978*** 0.6478570*** 0.700023***
32x32 Matrices 1.000000** 0.342838** 1.000000** 0.4838*** (0.3309560*** 0.997820** 0.507316*** 0.32088*** 0.8975000*** (0.384348***
4. Ranks of 88 Matrices 0.994176** 0.663811** 0.487267** 0.\@87*** 0.8598710*** 0.321908*** 0.913995*** 0.69685*** 0.4728510*** 0.809089***
5. Monkey tests on 20 bit words 0.972868** 0.46809 0.911032** 0.515542*** 0.5202000*** 0.605502** 0.440477** 0.562937*** 0.5420770*** 0.540819***
6. Monkey Tests OPSO, OQSO, DNA
OPSO 1.000000** 0.651809*** 1.000000** 0.440704**0.6097480*** 0.567804*** 0.446613*** 0.517261*** {BI47910*** 0.535348***
0QSsO 1.000000** 0.476664** 1.000000** 0.508654***0.4990460*** 0.360325*** 0.460171*** 0.572464*** Q@527750*** 0.486843***
DNA 1.000000** 0.410194*** 1.000000** 0.462739*** G689680*** 0.526210*** 0.517032*** 0.411974*** 0.490290*** 0.564490***
7. Count the 1's in a stream of bytes 1.000000** 380799*** 0.998289*** 0.736791** 0.0668032*** 0.78137*** 0.506117** 0.490607*** 0.6764915*** (.85131***
8. Count the 1's in specific bytes 0.709227** @537** 0.683469*** 0.545262*** 0.5214650*** 0.49582*** 0.475061*** 0.514982*** 0.5365590*** 0.67132%*
9. Parking lot test 0.996457** 0.232971** 0.51382* 0.992594*** 0.6289940*** 0.863783*** 0.621359** 0.378580*** 0.4936960*** 0.794248***
10. Minimum distance test 1.000000** 0.980371** 0@O000** 0.515071** 1.0000000** 0.985678** 0.961F*** 0.717499*** 0.9486340*** 0.080092***
11. Random spheres test 0.994149** (0.625952*** 1@BA7*** 0.121640*** 0.9591750*** 0.479698*** 0.63821*** 0.622163*** 0.5002240*** (.712335***
12. The squeeze test 1.000000** 0.420809*** 1.0@¥G0 0.217036*** 0.0604030*** 0.907871** 0.104538* 0.165316*** 0.3754680*** 0.737879***
13. Overlapping sums test 0.797626*** 0.073680***.3P1314*** 0.673886*** 0.9730550*** 0.939852*** (.86093*** 0.536601** 0.5133860*** 0.027135***
14. Runs test 0.578203*** 0.359220*** 0.306128*** .4B6846*** (.3360040*** 0.500120*** 0.441318*** 0.20291** 0.5390950*** 0.494026***
15. The craps test 0.042190*** 0.551850*** 0.185690 0.651640*** 0.3910200*** 0.379050*** 0.528770** 0.927670*** 0.9575200*** 0.621430***

Note: MD: Merkle-Damgard construction; ONHC: Omega Netwblash Construction; *: Fail to test; ***: Pass tldEHARD test; **: Fail the
DIEHARD test

DISCUSSION As mentioned earlier, waiting time and serial time
are two constraints exist in the design of omega

Performance analysis. All sizes of omega network network hash constructions. The waiting time ishkig
hash construction and Merkle-Damgard constructiorwhen the size of omega network hash construction is
are simulated on dual core and quad core machinesmall. (e.g., omega network hash construction 8¢ T
respectively. The features of each machines arserial time is higher when the size of Omega Nekwor
describe in the section of Test Design. The amofint Hash Construction is large (e.g., omega networlh has
RAM of the quad core machine (2.30 GHz 3.00 GB ofconstruction 128). On the other hand, when more
RAM) is higher than dual core machine (1.99 GHzthreads are created, the communication time or
2.00 GB of RAM). Thus, execution time for omega overhead will be higher. Thus, communication tiroe f
network hash constructions and Merkle-Damgardfour threads is higher than two threads. Waitimgeti
construction which are simulated on the quad coreserial time, communication time (overhead) are ehre
machine is faster than the simulation result onl duafactors that affect the performance of omega networ
core machine. hash constructions.

970

J. Computer Sci., 5 (12): 962-973, 2009

On dual core processors, the execution time amongmega network hash construction 32. This happeas du
all sizes of omega network hash construction aremsi to the waiting time that exists in omega networktha
the same with each other. The differences in theonstruction 8 and 16 are higher than omega network
execution time among the difference sizes are edeat hash construction 32; the more number of execution
by digest XORing process happen in the last coloimn round the more waiting time is required.
the design which runs sequentially. When the size o0 Omega network hash construction 128 runs the
Omega Network Hash Construction increases, islowest on dual core and quad core machines. Haweve
requires longer time to complete the XORing process it still runs faster than Merkle-Damgard constrootbn

Omega network hash construction 8 runs faster oQual core processors but run slower than Merkle-
dual core processors, while omega network hasfhamgard construction on quad core processors. ighis
construction 128 runs slowest on dual core prossso pecause the serial time to XOR the digest values is
The reason is the communication time between thesgigher on both machines but the communication time
two threads for omega network hash constructios 8 ifoy four threads are higher than two threads.
less thaq the overhead time of omega network hf';\sh There are three types of speed up calculationgbein
construct!on 128. Qmega network hash_ Co”StrUCt'o'?)resented: The speed up calculation based g JT
128 required more time to generate the digest viajue o speed up based on Amdahl’s law and the speed-up
XORing the digest value from the last column corepar pased on Gustafson Barsis's law (Table 10). Thesas
with omega network hash construction 8. _speed up is achieved by the omega network hash

On a quad core machine, the program W'”construction 32 with four threads, 1.813 sec, fgout
automatlcally generate four threads to run fourclolp file size of 400 MB (Fig. 7 and 12) and the average
functions of omega network hash construction peed up is 1.8 sec (Table 9). Based on Amdahiis la

simultaneously. Omega network hash construction 3 nd Gustafson Barsis's law. the speed up for omeda
runs faster on quad core processors, while omeg% ' P P 9

network hash construction 128 runs the slowestuat g netyvork hash co_nstructlon 8 is the highest bec“““?e
core processors. Omega network hash construction %erlal execution In omega netwo_rk hash construdion
and 16 had similar execution time. However, omegdS Only 10% for the entire execution. The lowestesp
network hash construction 16 is slower than omeg4'P IS by omega network hash construction 128 which
network hash construction 8 because the serigfonsists 50% execution (Table 10). Consequently, th
execution of omega network hash construction 16 fogfficiency for Omega Network Hash Construction 32
XORing the digest value requires more processimg.ti With four threads is also among the highest (Figné
However, both constructions are still slower thanl3, Table 11 and 12).

Table 9: Comparison of speed up among the omegariehash constructions

ONHC
2 Threads 4 Threads

Sizes

(MB) 8 16 32 64 128 8 16 32 64 128
200 1.418 1.342 1.297 1.293 1.241 1.359 1.442 1.779 1.501 0.653
400 1.364 1.339 1.300 1.288 1.239 1.344 1.422 1.813 1.491 0.647
600 1.384 1.349 1.304 1.293 1.244 1.348 1.420 1.799 1.497 0.642
800 1.392 1.353 1.307 1.279 1.244 1.390 1.410 1.811 1.482 0.645
1000 1.383 1.352 1.307 1.280 1.241 1.293 1.374 41.79 1.488 0.679
Average 1.388 1.347 1.303 1.287 1.242 1.347 1.414 7991 1.492 0.653

Table 10: Comparison of speed up among the omegariehash constructions based on Amdahl's law@nstafson Barsis’s law

Average speed up Amdahl’s law speed up Gustdsosis’s law
S=TT, S = N /BN+(1-8)] speed up S = N-(N-1)a
Parallel
ONHC Serial code code 2T 4T 2T AT 2T 4T
8 0.1 0.9 1.388 1.347 1.818 3.077 1.900 3.700
16 0.2 0.8 1.347 1.414 1.667 2.500 1.800 3.400
32 0.3 0.7 1.303 1.799 1.538 2.105 1.700 3.100
64 0.4 0.6 1.287 1.492 1.428 1.818 1.600 2.800
128 0.5 0.5 1.242 0.653 1.333 1.600 1.500 2.500

971

J. Computer Sci., 5 (12): 962-973, 2009

Table 11: Comparison of the efficiency among theganetwork hash constructions

ONHC
2 Threads 4 Threads

Sizes

(MB) 8 16 32 64 128 8 16 32 64 128
200 0.355 0.335 0.324 0.323 0.310 0.340 0.360 0.445 0.375 0.163
400 0.341 0.335 0.325 0.322 0.310 0.336 0.355 0.453 0.373 0.162
600 0.346 0.337 0.326 0.323 0.311 0.337 0.355 0.450 0.374 0.160
800 0.348 0.338 0.327 0.320 0.311 0.347 0.353 0.453 0.371 0.161
1000 0.346 0.338 0.327 0.320 0.310 0.323 0.343 90.44 0.372 0.170
Average 0.347 0.337 0.326 0.322 0.310 0.337 0.353 4500 0.373 0.163

Table 12: Comparison of the efficiency among thegannetwork hash constructions based on AmdalVsited Gustafson Barsis's law

Efficiency based on Amdahl’s law Efficiency bdsm Gustafson
Efficiency speed up Barsis'’s law Speed up
E=(1Ty)ip E ={ N/BN+1-p)]}/p E = [N-(N-1)al/p
ONHC 2T 4T 2T 4T 2T 4T
8 0.694 0.336 0.909 0.769 0.950 0.925
16 0.673 0.353 0.833 0.625 0.900 0.850
32 0.651 0.449 0.769 0.526 0.850 0.775
64 0.643 0.373 0.714 0.454 0.800 0.700
128 0.621 0.163 0.666 0.400 0.750 0.625

Running cost is calculated by multiplying the because bigger size message will produce more equal
number of threads by the execution time. Therefihe, size of block message and the digest value will be
more the number of processors, the higher the ngnni mixed with each other better and therefore prodtives
cost will be recorded for the simulation (Fig. 18da better randomize digest value.

15). Thus, the cost of running four threads is &igh To conclude the security analysis, in term of
than that of two threads. randomness, for omega network hash construction and

Overall, omega network hash construction 32 runsvith Merkle-Damgard construction, it can be deduced
faster on quad core processors while Omega Networthat omega network hash construction producesrbette
Hash Construction 8 runs faster on dual corerandomized digest value even though the message is
processors. small and passed basic security test-DIEHARD.

Security analysis: Merkle-Damgard Construction fails CONCLUSION
one of the security tests-Birthday Spacings. This i
because the binary digest value of Merkle-Damgard The main objective of this research is to design a
construction for both cases (single and multiplecks better hash constructions mechanism that can help
message) did not fulfill the requirement for Birlyd improve the hash function performance in generbé T
Spacings test. Merkle-Damgard construction gengratepropose omega network hash constructions weredteste
the lambda equal to 3.000 which is over the maximunon dual core and quad core processors which allowed
lambda setting (2.000) for Birthday Spacings. the block functions to run in parallel. Waiting gnand

For single block of message, all the omega networlserial time are two major weaknesses for omega
hash constructions passed the test. On the othmet, ha network hash construction which affect its
Merkle-Damgard construction failed most of the sest performance. For bigger size omega network hash
except for the craps test (Table 7). construction, higher degree of serial executionbeen

The second test utilizes multiple blocks of recorded (e.g., omega network hash construction.128
message. All the omega network hash constructionVhile for the smaller size omega network hash
passed the test, the test value ‘-p’ for each kiest construction, higher degree of waiting time hasnbee
between 0 and 1. Merkle-Damgard construction failedecorded (omega network hash construction 8).
some of the tests when the block size messaget?are However, in all cases, omega network hash
(failed 8 tests), 32 (failed 7 tests) and 80 (fhiletests) constructions perform better than Merkle-Damgard
(Table 8). This implies that, Merkle-Damgard construction, especially for the omega network hash
construction can only provide better security imtedf ~ construction 32 with four threads, which runs thstést
randomness when the size of message is higheamong all the constructions. In terms of securitl,

972

J. Computer Sci., 5 (12): 962-973, 2009

sizes of omega network hash constructions passed th. Gauravaran, P.,
basic security test of DIEHARD. On the other hand,
Merkle-Damgard construction failed most of the

security tests when the input size is small. Baged
both of the tests, performance test and random ttesst

omega network hash construction performs bettar tha6.

the well known Merkle-Damgard construction.

Therefore Omega Network Hash Construction is ar.

viable alternative for hash construction, espegiall
when multi-core processors are being considered.

REFERENCES

1. Bal, H.E. and M. Haines, 1998. Approaches for
IEEE

integrating task and data parallelism.
Concurr., 6: 78-84.
http://portal.acm.org/citation.cfm?id=614113

2. Elkamchouchi, H.M., A.A.M. Einarah and
E.A.A. Hagras,
Dynamic Structure Algorithm (SHDSA) for public

key digital signature schemes. Proceeding of the
23rd Radio Science Conference, Mar. 14-16, IEEE10.

Xplore Press, Menoufiya, pp: 1-9. DOI:
10.1109/NRSC.2006.386347

3. Elkamchouchi, H.M., M.E. Nasr and R.l. Abdelfatah 11.
2008. A new Secure and Fast Hashing Algorithm

(SFHA-256). Proceeding of the 25th National

Radio Science Conference, Mar. 18-20, |IEEE

Xplore Press, Tanta, pp: 1-8. DOL:
10.1109/NRSC.2008.4542348

4. Emam, S.A. and S.S. Emami, 2007. Design and
implementation of a fast, combined SHA-512 on

FPGA. Int. J. Comput. Sci. Network Secur., 7: 168-1
http://paper.ijcsns.org/07_book/200705/20070524.
pdf

973

2006. A new Secure Hash9.

W. Millan, E. Dawson a
K. Viswanathan, 2006. Constructing secure hash
functions by enhancing Merkle-Damgard
construction. Lecture Notes Comput. Sci., 4058:
407-420. DOI: 10.1007/11780656_34

Marsaglia, G., 1996. DIEHARD: A battery of test
of randomness. http://i.cs.hku.hk/~diehard/cdrom
Martin, J.W., 2009. ESSENCE: A candidate
hashing algorithm for the NIST competition.
http://www.math.jmu.edu/~martin/essence/Support
ing_Documentation/essence_NIST.pdf

Mirvaziri, H., K. Jumari, M. Ismail and M. Haniap
2007. Collision free hash function based on
Miyaguchi-Preneel and enhanced Merkel-Damgard
scheme. Proceeding of the 5th Student Conference
on Research and Development-SCOReD, Dec. 11-
12, IEEE Xplore Press, Malaysia, pp: 1-6. DOI:
10.1109/SCORED.2007.4451411

NIST., 1993. Announcing the standard for secure
hash standard.
http://www.itl.nist.gov/fipspubs/fip180-1.htm
Olivar, G., 2007. FIPS 180-2
224/256/384/512 implementation.
http://www.ouah.org/ogay/sha2/
Pongyupinpanich, S. and S. Choomchuay, 2004.
An architecture for a SHA-1 applied for DSA.
Proceedings of the 3rd Asian International Mobile
Computing Conference, May 26-28, Thailand,
pp: 1-5.
http://www.kmitl.ac.th/~kchsomsa/somsak/papers/
amoc04-022.pdf

SHA-

