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Abstract: Problem statement: Cryptographic hash functions are important cryptographic primitives. 
They are commonly used for data integrity checking and data authentication. Most of the 
cryptographic hash functions are based on the Merkle-Damgård construction. The basic Merkle-
Damgård construction runs over the input sequentially, which can lead to problems when the input size 
is large since the computation time increases linearly. Approach: Therefore, an alternative architecture 
which can reduce the computation time is needed, especially in today’s world where multi-core 
processors and multithreaded programming are common. An Omega Network Hash Construction 
(ONHC) run parallel in multi-core machine has been proposed as an alternative to the existing hash 
constructions. Result: The ONHC performed better than the Merkle-Damgård construction. ONHC 
permutation architecture also showed improved security strength in term of digest value randomness 
when compared to Merkle-Damgård construction. Conclusion: Therefore, it is believed that the 
proposed ONHC is a valuable structure that can improve the performance of any hash function that can 
run on top of it. 
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(SHA) 
 

INTRODUCTION 
 
 Cryptography is becoming more and more 
important for ensuring various types of security over 
insecure connections. Among data security primitives, 
data integrity check and data origin authentication are 
the common security services that must be applied in 
many electronic applications, such as electronic 
commerce, electronic financial transactions, software 
distribution, electronic mail, data storage and others. 
Data integrity check is accomplished through the use of 
cryptographic hash functions, which operate at the root 
of many other cryptographic methods in achieving 
these security services. 
 The basic operation of a hash function is to 
transform a variable-size input or message into a fixed-
length string called a “hash value” or “message digest.” 
A hash value is generated by a function H of the form 
H(M) = n, where n is the hash value and M is the 
variable-length input or message. Hash functions are 
one-way functions; it is easy to generate the digest n 
from a given message M, but given only n, it is 
computationally infeasible to generate M. Hash 
functions are designed to produce unambiguous and 
condense message digests that are uniquely identifiable 
with their source messages. However, the source 
messages cannot be deduced from the message digests 
and for this reason, the hash function is sometimes 
known as a digital fingerprint. 

 
 
Fig. 1: Merkle-Damgård Construction [adopted from 2, 

3, 5]  

 
  The architecture of most hash functions is based 
on the Merkle-Damgård construction[2,3,5,8] (Fig. 1), 
which is sequential in nature. This means that when the 
size of the input increases, the computational time will 
increase linearly. Each step in the Merkle-Damgård 
construction processes a message block and returns a 
vector. The first vector is pre-defined, but the remaining 
vectors are fully dependent on the previous function’s 
output, which slows down the runtime. This in turn has 
a major effect on the performance of a hash function, 
SHA, for example. Therefore, there is a need to 
enhance the performance and efficiency of hashing.  
 This research proposes the omega network hash 
construction as an alternative hashing architecture to 
the Merkle-Damgård construction. Because of the 
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design of the omega network hash construction, the 
original inputs cannot be retrieved from their 
corresponding hash values. In the era of multithreading 
and multi-core technology, the omega network hash 
construction runs in parallel to improve the hashing 
performance. The goal of this architecture is to improve 
performance without sacrificing the security provided 
by the existing Merkle-Damgård architecture.  
 
Related work: National Institute of Standards and 
Technology (NIST) organized a competition for 
selecting SHA-3 currently (2009). ESSENCE[7] is a 
candidate for this competition. ESSENCE is a 
cryptographic hashing algorithm from which the 
construction for hashing algorithm is based on Tree 
Based Merkle-Damgård construction. The ESSENCE 
design has been optimized using the parallel 
implementation and obtained better performance than 
the sequential Merkle-Damgård construction, but it had 
a poor performance on short messages. 
 Pipeline is one of the methods for function 
decomposition in the field of parallel. Pongyupinpanich 
and Choomchuay utilized the pipeline method to runs 
SHA-1, to enhance the performance of Digital 
Signature Algorithm (DSA) by overcoming 
unreasonable overhead in small applications[11]. There 
is small modification done on SHA-1, from which 
SHA-1 is coded to run in a pipeline mode. E + Wt + Kt 

is computed parallel with A + B + C + D. The authors 
claimed that the major drawback from this pipeline 
design is when there exist a higher number of pipeline 
states in which the design is cumbersome and the gate 
count increases dramatically. Thus, this pipeline SHA-1 
with DSA is not scalable for all size application 
because it can only perform well in small size 
applications. 
 The Secure Hash Dynamic Structure Algorithm 
(SHDSA)[2] is used in many applications such as public 
key cryptosystems, digital signature, digital encryption, 
message authentication code and random number 
generators. All of these application’s requirements are 
different from each other. As a result, Elkamchouchi’s 
group proposed SHDSA which comes in a variety of 
configurations. This dynamic scheme is based on SHA 
but with one major difference-the hash value is variable 
length with possible sizes of 128, 192 and 256 bits. 
Besides that, the iterations in each function can be 
changeable based on the requirement of the 
applications. Thus, this dynamic scheme provides 
different levels of security for satisfying the choices for 
those practical applications. Although SHDSA is 
designed to be changeable based on the requirement of 
the application, the architecture is formulated 

sequentially and the functions for SHDSA also 
executed sequentially. The performance is affected; the 
execution time will increase linearly and reach the 
highest degree of throughput when the size of input is 
high. The high speed requirement of SHDSA is highly 
needed, which is why SHDSA should be parallelized. 
 Once again, in 2008, Elkamchouchi et. al.[3] 
proposed another secure and fast algorithm called 
SFHA-256. This one was specifically designed for 
SHA-256. It is based on the 3C construction, which is 
based on the Merkle-Damgård construction. The author 
claims that the proposed architecture is more secure and 
performs better than the existing SHA-256. He claims 
that performance is better because the number of 
operations performed in a step function is reduced and 
because the architecture consists of two branches 
running in parallel. SFHA-256 has fewer processing 
steps, but it is still secure because each step function 
contains operations that make it difficult for attackers to 
analyze SFHA-256. The added operations are simple 
XOR, addition and shift rotation operations. However, 
performance still suffers due to the waiting time that 
occurs during the processing of hash values. 
 Gauravaram et al.[5] proposed the 3C+ hash 
construction which is based on the Merkle-Damgård 
construction. This 3C+ construction is an enhancement 
of 3C construction where a third internal chain has been 
added on top of the cascade and accumulation chains of 
3C. With this enhancement, the security level of 3C+ is 
better than both 3C construction and the Merkle-
Damgård construction. 3C+ contains more XOR 
operations which also improves its security. However, 
in this new algorithm, there exist conditions where the 
hashing functions are required to wait for the input 
from the previous hash function. Moreover, the whole 
construction is sequential. Thus, waiting times can be 
extremely high in the 3C+ construction. 
 Mirvaziri et al.[8] came up with an enhancement to 
the Merkle-Damgård construction by developing a 
single-length compression function implemented on the 
Miyaguchi-Preneel block cipher. The architecture has 
intelligent repetition optimize hash process, which leads 
to better security. Though the architecture is designed 
in double levels, it runs sequentially across the 
message, which means its computation time increases 
linearly when the input size increases. 
 In conclusion, most of the proposed architectures 
run sequentially, which means the computation time 
increases linearly when the input size increases. Given 
that multi-core technology and multithreaded 
programming are common in today’s world, these 
architectures are unacceptably slow. 
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MATERIALS AND METHODS 
 
 Five different sizes of omega network are 
designed-omega network hash construction 8 (Fig. 2), 
omega network hash construction 16 (Fig. 3), omega 
network hash construction 32 (Fig. 3), omega network 
hash construction 64 (Fig. 3) and omega network hash 
construction 128 (Fig. 7). They serve as prototypes to 
determine the optimum size that gives us the best 
performance when the hash constructs are simulated 
on dual-core and quad-core processors machines.  
 As a prototype, SHA-512 algorithm is used as the 
function for Omega Network Hash Construction. 
Merkle-Damgård construction run sequentially, SHA-
512 algorithm needs only one set of constant values (80 
constant 64-bit words which are parts of the cube roots 
of the first eighty prime numbers[9]). In Omega 
Network Hash Construction, the constant values are 
taken from part of the square root of 2 (√2) and the 
number of constant value used depends on the number 
blocks (Table 1). 
 In the design of Omega Network Hash 
Construction (Fig. 2 and 3), the blocks on the left 
column (Column 1) takes two categories of input-1024 
and 512 bits. Both inputs are taken from user messages. 
Those inputs serve as the initial vector for the SHA 512 
function. However, in Merkle-Damgård construction, 
the initial vector is predefined. Each block of column 2 
and above takes the input vector from the XOR of two 
blocks of digested values from previous column. For 
example (Fig. 2), block function number F4 gets its 
input vector value from the XOR of two digest values 
of block F0 and F2.  

  There are some constraints for the design of 
Omega Network Hash Construction. To start executing 
the block function’s column, it must wait for the 
previous column to complete its execution before it 
starts. This is because the block function’s column 
input vector depends on the XOR of digest values of the 
previous column; so variables dependency does exist in 
Omega Network Hash Construction. For example, 
second column of Omega Network Hash Construction 
can start execute only after the first column completed 
its execution, because the input vector of second 
column depends on the XOR of first column digested 
values. 
 One round of Omega Network Hash Construction 
is completed, after XORing the digest values of the 
last column. This process continues until the entire 
message is hashed. Finally, to form the final digest 
value, digest values of every round is XORed. The 
XOR process is executed sequentially, so that when 
the size of Omega Network Hash Construction 
increases, this process will take longer time to XOR 
the digest value. 
 If the input message is not enough in terms of the 
input length to complete one round of Omega Network 
Hash Construction, the pre-defined message will be 
used to execute the remaining blocks. The pre-defined 
message is a non-repeated number, taken from the 
irrational number √2. 
 
Table 1: Set of constant value for omega network hash construction 
Size of omega network hash construction 8 16 32 64 128 
Set of constant value 12 32 80 192 448 

 

 
 

Fig. 2: Omega network hash construction 8 
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Fig. 3: Overview of 4 types of omega network hash construction 
 
 Overall, the executions phase of the different 
versions of omega network hash construction are 
similar to each other. The difference is the number of 
columns and the number of function blocks that form 
an omega network hash construction. Besides that, the 
total rounds needed to complete hashing a message are 
different for these five designs of omega network hash 
construction.  
 
Simulation and performance evaluation: All designs 
are simulated in dual core and quad core machines. 
Section on test design describes the complete test 
design for this research. Section on performance test 
explains how to generate the test file and the sizes of 
test final. Section on security test describes the security 
test for this research. 
 
Test design: Omega network hash construction is 
proposed to be an alternative architecture to the Merkle-

Damgård construction with the goal of improving the 
performance of hashing. SHA-512 algorithm is used as 
our case study in this research. The source code of the 
SHA-512 function is taken from Olivier Gay version 
2007[10].  
 In our test, there are five major designs of omega 
network hash construction, with different sizes, being 
simulated on both dual-core processors and quad-core 
processors. To execute omega network hash 
construction in parallel, two lines of OpenMP 
commands are used. 
 
• omp_get_num_procs (): This command is used to 

get the number of processors in the machine. The 
command will help us to indicate the number of 
threads created. Two threads will be created in a 
dual-core processor and four threads will be 
created for a quad-core processor, respectively 
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• #pragma omp parallel for schedule (dynamic) 
ordered private (iCount): This OpenMP command 
provides the Omega Network Hash 
Construction’s function (SHA-512) to execute 
parallel schedules orderly from F1, F2, F3, F4, F5, 
F6, F7, F8…Fn, each thread will execute one 
function at a time in parallel with the other thread. 
iCount is a private variable for all the functions 

 
 The designs are simulated in two types of machine 
which both are using-Microsoft Windows XP 
Professional and Visual Studio 2008. The specifications 
of the machines are as below: 
 
• Dual-core processors: 
 Intel (R) core (TM) 2 duo CPU T7300 @ 2.00 GHz 
 1.99 GHz 2.00 GB of RAM 
 Physical address extension 
 Hard disk: 80 GB 
• Quad-core processors 
 AMD phenom™ 9650 quad-core processor 
 2.30 GHz 3.00 GB of RAM 
 Physical address extension 
 Hard disk: 230 GB 
 
Performance test: The performance testing for five 
types of omega network are done by executing them in 
two types of machine as mentioned above. A total of 5 
files had been used for testing which are 200, 400, 600 
and 800 MB and 1 GB. All types of omega network 
hash construction are executed five times for each file; 
the average execution times are recorded. 
 
Security test: To evaluate the security strength of 
Omega Network Hash Construction, we use DIEHARD 
random  test[6].  DIEHARD,  the security test needs 9-

10 megabytes of files containing the binary value to 
produce the test report. 
 There are two types of messages digest value being 
generated-single block message (Fig. 4) and multiple 
blocks message (Fig. 5). Each input file is only one bit 
different for both types of messages. A total of 
1,600,000   message  files  are  generated to produce 10 
MB binary digested value file. For the single block 
message,  the first byte is “1”, followed by 127 “0” 
(Fig. 4). There are 5 types of messages for multiple 
blocks-12, 32, 80, 192 and 448 blocks. The number bits 
of message for Omega Network Hash Constructions are 
greater than Merkle-Damgård construction because the 
initial vector for Omega Network Hash Construction is 
taken from user input (Fig. 5). The test results are 
written in an output file. The test value ‘-p’ between 0 
and 1 indicates a pass for the DIEHARD test. 
 

10000000000000000000000 ...000000000

01000000000000000000000 ...000000000.
.
.

11111111111111111111111 ...111111111
:
.

20000000000000000000000 ...000000000

02000000000000000000000 ...000000000

22222222222222222222222 ...222222222

.

.

.

:
.

90000000000000000000000 ...000000000

09000000000000000000000 ...000000000

99999999999999999999999 ...999999999

.

.

.

First byte,
(byte  no. 1)

Last byte,
(byte no. 128)

Input file 1

Input file 2

.

.

.

.

.

.

.

.

.

Input file 1600000  
 
Fig. 4: Test data, single block of message 

 

 
 

Fig. 5: Test data, multiple blocks of message 
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RESULTS 
 
Performance test: The performance analysis measures 
speed up, security level, efficiency and running cost. 
There are three types of run-time tests: serial run-time 
(Ts), parallel run-time (Tp) and overhead function (T0). 
Ts is the time elapsed between the beginning and the 
end of execution time in a serial manner. Tp is the 
elapse time between the moment a parallel computation 
starts and the moment that the last processor finishes 
execution. Overhead is calculated by To = p Tp-Ts, 
where p is the number of threads. 
 Speed up is defined as the execution time of a 
sequential   program divided by the execution time of 
a parallel program, S = Ts/Tp, where Ts is the 
sequential  time and Tp is the parallel time running on 
n processors[1]. Theoretically, speed up will not 
exceed the number of processors or threads that is 
being used.  

 The efficiency is calculated as E = Speed up/n. 
This measurement is the fraction of time for which the 
computer is employed. Ideally, the efficiency should 
equal to one. But in practice, the efficiency is normally 
between zero and one, which depends on the degree of 
effectiveness the processors are being utilized.  
 Running cost is another measurement we considered 
in our performance analysis. Cost or (p×Tp) is the 
product of parallel runtime and the number of processing 
elements which reflects the sum of the time that each 
processing element spends to solve a problem.  
 Performance of omega network hash construction 
8, omega network hash construction 16, omega network 
hash construction 32, omega network hash construction 
64 and omega network hash construction 128 are shown 
in Table 2-6 respectively. Figure 6-15 shows 
performance analysis of Omega Network Hash 
Construction simulated on a dual core machine and 
quad core machine in the line graph format.  

 
Table 2: Performance analysis of omega network hash construction 8  

Omega network hash construction 8 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads      4 Threads 
Sizes -------------------------------------------------------------------------------- --------------------------------------------------------------------------------- 
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost 

200 16.188 11.416 6.643 1.418 0.355 22.831 14.734 10.844 28.642 1.359 0.340 43.376 
400 32.375 23.742 15.110 1.364 0.341 47.485 29.407 21.875 58.093 1.344 0.336 87.500 
600 48.547 35.080 21.613 1.384 0.346 70.160 44.109 32.719 86.767 1.348 0.337 130.876 
800 64.778 46.538 28.297 1.392 0.348 93.075 58.891 42.375 110.609 1.390 0.347 169.500 
1000 80.942 58.542 36.143 1.383 0.346 117.085 73.625 56.922 154.063 1.293 0.323 227.688 

 
Table 3: Performance analysis of omega network hash construction 16  

Omega network hash construction 16 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads      4 Threads 
Sizes -------------------------------------------------------------------------------- --------------------------------------------------------------------------------- 
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost 

200 16.188 12.064 7.940 1.342 0.335 24.128 14.734 10.219 26.142 1.442 0.360 40.876 
400 32.375 24.177 15.978 1.339 0.335 48.353 29.407 20.687 53.341 1.422 0.355 82.748 
600 48.547 35.978 23.410 1.349 0.337 71.957 44.109 31.062 80.139 1.420 0.355 124.248 
800 64.778 47.890 31.002 1.353 0.338 95.780 58.891 41.765 108.169 1.410 0.353 167.06 
1000 80.942 59.878 38.813 1.352 0.338 119.755 73.625 53.594 140.751 1.374 0.343 214.376 

 
Table 4: Performance analysis of omega network hash construction 32 

Omega network hash construction 32 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads      4 Threads 
Sizes -------------------------------------------------------------------------------- --------------------------------------------------------------------------------- 
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost 

200 16.188 12.485 8.782 1.297 0.324 24.970 14.734 8.281 18.390 1.779 0.445 33.124 
400 32.375 24.910 17.445 1.300 0.325 49.820 29.407 16.219 35.469 1.813 0.453 64.876 
600 48.547 37.232 25.917 1.304 0.326 74.464 44.109 24.516 53.955 1.799 0.450 98.064 
800 64.778 49.563 34.348 1.307 0.327 99.126 58.891 32.516 71.173 1.811 0.453 130.064 
1000 80.942 61.922 42.902 1.307 0.327 123.844 73.625 41.031 90.499 1.794 0.449 164.124 
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Table 5: Performance analysis of omega network hash construction 64 
Omega network hash construction 64 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads      4 Threads 
Sizes -------------------------------------------------------------------------------- --------------------------------------------------------------------------------- 
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost 
200 16.188 12.516 8.844 1.293 0.323 25.032 14.734 9.813 24.518 1.501 0.375 39.252 
400 32.375 25.141 17.907 1.288 0.322 50.282 29.407 19.719 49.469 1.491 0.373 78.876 
600 48.547 37.532 26.517 1.293 0.323 75.064 44.109 29.469 73.767 1.497 0.374 117.876 
800 64.778 50.641 36.504 1.279 0.320 101.282 58.891 39.734 100.045 1.482 0.371 158.936 
1000 80.942 63.219 45.496 1.280 0.320 126.438 73.625 49.469 124.251 1.488 0.372 197.876 

 
Table 6: Performance analysis of omega network hash construction 128 
Omega network hash construction 128 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads      4 Threads 
Sizes -------------------------------------------------------------------------------- --------------------------------------------------------------------------------- 
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost 
200 16.188 13.047 9.906 1.241 0.310 26.094 14.734 22.563 75.518 0.653 0.163 90.252 
400 32.375 26.125 19.875 1.239 0.310 52.250 29.407 45.422 152.281 0.647 0.162 181.688 
600 48.547 39.032 29.517 1.244 0.311 78.064 44.109 68.718 230.763 0.642 0.160 274.872 
800 64.778 52.078 39.378 1.244 0.311 104.156 58.891 91.313 306.361 0.645 0.161 365.252 
1000 80.942 65.203 49.464 1.241 0.310 130.406 73.625 108.437 360.123 0.679 0.170 433.748 

 

 
 
Fig. 6: Execution time comparison between omega 

network hash construction and Merkle-
Damgård Construction, simulated on a dual 
core machine 

 

 
 
Fig. 7: Overhead of omega network hash construction 

simulated on dual core machine 

 
 
Fig. 8: Speed up of omega network hash construction 

simulated on a dual core machine 
 

 
 
Fig. 9: Efficiency of omega network hash construction 

simulated on a dual core machine 
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Fig. 10: Running cost of omega network hash 

construction simulated on a dual core 
machine 

 

 
 
Fig. 11: Execution time comparison between omega 

network hash construction and Merkle-
Damgård construction, simulated on a quad 
core machine 

 

 
 
Fig. 12: Overhead of omega network hash construction 

simulated on a quad core machine 
 
Security analysis: DIEHARD is chosen as the security 
test tool to examine whether the omega network hash 
constructions are secure enough by evaluating the 
randomness of the digest value. There are two types of  

 
 
Fig. 13: Speed up of omega network hash construction 

simulated on a quad core machine 
 

 
 
Fig. 14: Efficiency of omega network hash 

construction simulated on a quad core 
machine 

 

 
 
Fig. 15: Running cost of omega network hash 

construction simulated on a quad core 
machine 

 
input file, single block of message and multiple blocks of 
message. Each input file is only one bit different for both 
types of message. The result of security analysis for 
single block message is shown in Table 7 and 8 shows 
the security analysis for multiple block messages. 
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Table 7: DIEHARD security test, single block of message to generate binary test file 
Single block of message MD ONHC 8 ONHC 16 ONHC 32 ONHC 64 ONHC 128 
1. Birthday spacings Fail* 0.6484800*** 0.9209820*** 0.343668*** 0.7568980*** 0.627634*** 
2. Overlapping permutations 1.000000** 0.1214495*** 0.5986095*** 0.506419*** 0.8482345*** 0.303512*** 
3. Ranks of 31×31 and 32×32 matrices       
31×31 matrices 1.000000** 0.6794880*** 0.525663*** 0.360214*** 0.6628150*** 0.772463*** 
32×32 matrices 1.000000** 0.7980960*** 0.642444*** 0.521738*** 0.3315500*** 0.380405*** 
4. Ranks of 6×8 matrices 1.000000** 0.6799860*** 0.201000*** 0.594762*** 0.1440980*** 0.623201*** 
5. Monkey tests on 20 bit words 1.000000** 0.5627780*** 0.566308*** 0.379957*** 0.4361720*** 0.411402*** 
6. Monkey tests OPSO, OQSO, DNA       
OPSO 1.000000** 0.5375000*** 0.589404*** 0.621691*** 0.5285300*** 0.560243*** 
OQSO 1.000000** 0.5275430*** 0.514518*** 0.431471*** 0.4967710*** 0.545821*** 
DNA 1.000000** 0.5299740*** 0.512017*** 0.559690*** 0.5366310*** 0.566177*** 
7. Count the 1's in a stream of bytes 1.000000** 0.5343885*** 0.652317*** 0.638018*** 0.3421095*** 0.594358*** 
8. Count the 1's in specific bytes 1.000000** 0.5106000*** 0.584141*** 0.520437*** 0.6004920*** 0.544833*** 
9. Parking lot test 1.000000** 0.6257840*** 0.263863*** 0.610674*** 0.5914920*** 0.504483*** 
10. Minimum distance test 1.000000** 0.9708900*** 0.957626*** 0.087640*** 0.6157280*** 0.904798*** 
11. Random spheres test 1.000000** 0.9898730*** 0.018399*** 0.980629*** 0.9839010*** 0.900696*** 
12. The squeeze test 1.000000** 0.6085880*** 0.104880*** 0.486552*** 0.8308000*** 0.919765*** 
13. Overlapping sums test 1.000000** 0.4132320*** 0.836154*** 0.487671*** 0.7555970*** 0.694437*** 
14. Runs test 1.000000** 0.2870380*** 0.541360*** 0.743451*** 0.5838500*** 0.514282*** 
15. The craps test 0.04061*** 0.1290400*** 0.048140*** 0.085660*** 0.8882300*** 0.172820*** 
Note: MD: Merkle-Damgård construction; ONHC: Omega Network Hash Construction; *: Fail to test; ***: Pass the DIEHARD test; **: Fail the 
DIEHARD test 
 
Table 8: DIEHARD security test, multiple blocks of message to generate binary test file 
 MD -8  MD-16  MD-32  MD-64  MD-128 ONHC 
Multiple blocks of message blocks ONHC 8 blocks ONHC 16 blocks ONHC 32 blocks ONHC 64 blocks 128 

1. Birthday spacings Fail* 0.746930*** 0.999999*** 0.745669*** 0.9251170*** 0.654962*** 0.918840*** 0.296097*** 0.8663900*** 0.081941*** 
2. Overlapping permutations 0.991743*** 0.403184*** 0.686777*** 0.160407*** 0.1904655*** 0.274975*** 0.831856*** 0.761285*** 0.2887360*** 0.839987*** 
3. Ranks of 31×31 and 32×32 matrices           
31×31 Matrices 1.000000** 0.378031*** 1.000000** 0.580842*** 0.3808820*** 0.323987*** 0.613335*** 0.439781*** 0.6478570*** 0.700023*** 
32×32 Matrices 1.000000** 0.342838*** 1.000000** 0.431458*** 0.3309560*** 0.997820*** 0.507316*** 0.320859*** 0.8975000*** 0.384348*** 
4. Ranks of 6×8 Matrices 0.994176*** 0.663811*** 0.487267*** 0.596087*** 0.8598710*** 0.321908*** 0.913995*** 0.696835*** 0.4728510*** 0.809089*** 
5. Monkey tests on 20 bit words 0.972868*** 0.469094*** 0.911032*** 0.515542*** 0.5202000*** 0.605502*** 0.440477*** 0.562937*** 0.5420770*** 0.540819*** 
6. Monkey Tests OPSO, OQSO, DNA           
OPSO 1.000000** 0.651809*** 1.000000** 0.440704*** 0.6097480*** 0.567804*** 0.446613*** 0.517261*** 0.5947910*** 0.535348*** 
OQSO 1.000000** 0.476664*** 1.000000** 0.508654*** 0.4990460*** 0.360325*** 0.460171*** 0.572464*** 0.4527750*** 0.486843*** 
DNA 1.000000** 0.410194*** 1.000000** 0.462739*** 0.5689680*** 0.526210*** 0.517032*** 0.411974*** 0.4490290*** 0.564490*** 
7. Count the 1's in a stream of bytes 1.000000** 0.381799*** 0.998289*** 0.736791*** 0.0668032*** 0.754137*** 0.506117*** 0.490607*** 0.6764915*** 0.851321*** 
8. Count the 1's in specific bytes 0.709227*** 0.570537*** 0.683469*** 0.545262*** 0.5214650*** 0.495342*** 0.475061*** 0.514982*** 0.5365590*** 0.671321*** 
9. Parking lot test 0.996457*** 0.232971*** 0.513322*** 0.992594*** 0.6289940*** 0.863783*** 0.621359*** 0.378580*** 0.4936960*** 0.794248*** 
10. Minimum distance test 1.000000** 0.980371*** 1.000000** 0.515071*** 1.0000000** 0.985678*** 0.961815*** 0.717499*** 0.9486340*** 0.080092*** 
11. Random spheres test 0.994149*** 0.625952*** 0.414147*** 0.121640*** 0.9591750*** 0.479698*** 0.635821*** 0.622163*** 0.5002240*** 0.712335*** 
12. The squeeze test 1.000000** 0.420809*** 1.000000** 0.217036*** 0.0604030*** 0.907871*** 0.104538*** 0.165316*** 0.3754680*** 0.737879*** 
13. Overlapping sums test 0.797626*** 0.073680*** 0.321314*** 0.673886*** 0.9730550*** 0.939852*** 0.466093*** 0.536601*** 0.5133860*** 0.027135*** 
14. Runs test 0.578203*** 0.359220*** 0.306128*** 0.436846*** 0.3360040*** 0.500120*** 0.441318*** 0.410291*** 0.5390950*** 0.494026*** 
15. The craps test 0.042190*** 0.551850*** 0.185690*** 0.651640*** 0.3910200*** 0.379050*** 0.528770*** 0.927670*** 0.9575200*** 0.621430*** 

Note: MD: Merkle-Damgård construction; ONHC: Omega Network Hash Construction; *: Fail to test; ***: Pass the DIEHARD test; **: Fail the 
DIEHARD test 
 

DISCUSSION 
 
Performance analysis: All sizes of omega network 
hash construction and Merkle-Damgård construction 
are simulated on dual core and quad core machines 
respectively. The features of each machines are 
describe in the section of Test Design. The amount of 
RAM of the quad core machine (2.30 GHz 3.00 GB of 
RAM)  is higher than dual core machine (1.99 GHz 
2.00 GB of RAM). Thus, execution time for omega 
network hash constructions and Merkle-Damgård 
construction which are simulated on the quad core 
machine is faster than the simulation result on dual 
core machine. 

 As mentioned earlier, waiting time and serial time 
are two constraints exist in the design of omega 
network hash constructions. The waiting time is higher 
when the size of omega network hash construction is 
small. (e.g., omega network hash construction 8). The 
serial time is higher when the size of Omega Network 
Hash Construction is large (e.g., omega network hash 
construction 128). On the other hand, when more 
threads are created, the communication time or 
overhead will be higher. Thus, communication time for 
four threads is higher than two threads. Waiting time, 
serial time, communication time (overhead) are three 
factors that affect the performance of omega network 
hash constructions. 
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 On dual core processors, the execution time among 
all sizes of omega network hash construction are almost 
the same with each other. The differences in the 
execution time among the difference sizes are created 
by digest XORing process happen in the last column of 
the design which runs sequentially. When the size of 
Omega Network Hash Construction increases, it 
requires longer time to complete the XORing process.  
 Omega network hash construction 8 runs faster on 
dual core processors, while omega network hash 
construction 128 runs slowest on dual core processors. 
The reason is the communication time between these 
two threads for omega network hash construction 8 is 
less than the overhead time of omega network hash 
construction 128. Omega network hash construction 
128 required more time to generate the digest value by 
XORing the digest value from the last column compare 
with omega network hash construction 8.  
 On a quad core machine, the program will 
automatically generate four threads to run four block 
functions of omega network hash construction 
simultaneously. Omega network hash construction 32 
runs faster on quad core processors, while omega 
network hash construction 128 runs the slowest on quad 
core processors. Omega network hash construction 8 
and 16 had similar execution time. However, omega 
network hash construction 16 is slower than omega 
network hash construction 8 because the serial 
execution of omega network hash construction 16 for 
XORing the digest value requires more processing time. 
However, both constructions are still slower than 

omega network hash construction 32. This happens due 
to the waiting time that exists in omega network hash 
construction 8 and 16 are higher than omega network 
hash construction 32; the more number of execution 
round the more waiting time is required. 
 Omega network hash construction 128 runs the 
slowest on dual core and quad core machines. However, 
it still runs faster than Merkle-Damgård construction on 
dual core processors but run slower than Merkle-
Damgård construction on quad core processors. This is 
because the serial time to XOR the digest values is 
higher on both machines but the communication time 
for four threads are higher than two threads. 
 There are three types of speed up calculation being 
presented: The speed up calculation based on (Ts/Tp), 
the speed up based on Amdahl’s law and the speed-up 
based on Gustafson Barsis’s law (Table 10). The fastest 
speed up is achieved by the omega network hash 
construction 32 with four threads, 1.813 sec, for input 
file size of 400 MB (Fig. 7 and 12) and the average 
speed up is 1.8 sec (Table 9). Based on Amdahl’s law 
and Gustafson Barsis’s law, the speed up for omega 
network hash construction 8 is the highest because the 
serial execution in omega network hash construction 8 
is only 10% for the entire execution. The lowest speed 
up is by omega network hash construction 128 which 
consists 50% execution (Table 10). Consequently, the 
efficiency for Omega Network Hash Construction 32 
with four threads is also among the highest (Fig. 8 and 
13, Table 11 and 12).  

 
Table 9: Comparison of speed up among the omega network hash constructions 
ONHC 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads     4 Threads 
Sizes ------------------------------------------------------------------------ ---------------------------------------------------------------------------- 
(MB) 8 16 32 64 128 8 16 32 64 128 
200 1.418 1.342 1.297 1.293 1.241 1.359 1.442 1.779 1.501 0.653 
400 1.364 1.339 1.300 1.288 1.239 1.344 1.422 1.813 1.491 0.647 
600 1.384 1.349 1.304 1.293 1.244 1.348 1.420 1.799 1.497 0.642 
800 1.392 1.353 1.307 1.279 1.244 1.390 1.410 1.811 1.482 0.645 
1000 1.383 1.352 1.307 1.280 1.241 1.293 1.374 1.794 1.488 0.679 
Average 1.388 1.347 1.303 1.287 1.242 1.347 1.414 1.799 1.492 0.653 

 
Table 10: Comparison of speed up among the omega network hash constructions based on Amdahl’s law and Gustafson Barsis’s law 

   Average speed up Amdahl’s law speed up Gustafson Barsis’s law  
   S = Ts/Tp  S = N /[βN+(1–β)] speed up S = N-(N-1)a 
  Parallel ---------------------------- ----------------------------- ---------------------------- 
ONHC Serial code code 2T 4T 2T 4T 2T 4T 
8 0.1 0.9 1.388 1.347 1.818 3.077 1.900 3.700 
16 0.2 0.8 1.347 1.414 1.667 2.500 1.800 3.400 
32 0.3 0.7 1.303 1.799 1.538 2.105 1.700 3.100 
64 0.4 0.6 1.287 1.492 1.428 1.818 1.600 2.800 
128 0.5 0.5 1.242 0.653 1.333 1.600 1.500 2.500 
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Table 11: Comparison of the efficiency among the omega network hash constructions 
ONHC 
------------------------------------------------------------------------------------------------------------------------------------------------------------------------------- 
 2 Threads     4 Threads 
Sizes ------------------------------------------------------------------------ ---------------------------------------------------------------------------- 
(MB) 8 16 32 64 128 8 16 32 64 128 
200 0.355 0.335 0.324 0.323 0.310 0.340 0.360 0.445 0.375 0.163 
400 0.341 0.335 0.325 0.322 0.310 0.336 0.355 0.453 0.373 0.162 
600 0.346 0.337 0.326 0.323 0.311 0.337 0.355 0.450 0.374 0.160 
800 0.348 0.338 0.327 0.320 0.311 0.347 0.353 0.453 0.371 0.161 
1000 0.346 0.338 0.327 0.320 0.310 0.323 0.343 0.449 0.372 0.170 
Average 0.347 0.337 0.326 0.322 0.310 0.337 0.353 0.450 0.373 0.163 

 
Table 12: Comparison of the efficiency among the omega network hash constructions based on Amdahl’s law and Gustafson Barsis’s law 
   Efficiency based on Amdahl’s law Efficiency based on Gustafson  
 Efficiency  speed up  Barsis’s law Speed up 
 ----------------------------------- ----------------------------------------- -------------------------------------- 
 E = (Ts/Tp)/p  E ={ N /[βN+(1-β)]}/p  E = [N-(N-1)a]/p 
ONHC 2T 4T 2T 4T 2T 4T 
8 0.694 0.336 0.909 0.769 0.950 0.925 
16 0.673 0.353 0.833 0.625 0.900 0.850 
32 0.651 0.449 0.769 0.526 0.850 0.775 
64 0.643 0.373 0.714 0.454 0.800 0.700 
128 0.621 0.163 0.666 0.400 0.750 0.625 

 
 Running cost is calculated by multiplying the 
number of threads by the execution time. Therefore, the 
more the number of processors, the higher the running 
cost will be recorded for the simulation (Fig. 10 and 
15). Thus, the cost of running four threads is higher 
than that of two threads.  
 Overall, omega network hash construction 32 runs 
faster on quad core processors while Omega Network 
Hash Construction 8 runs faster on dual core 
processors. 
 
Security analysis: Merkle-Damgård Construction fails 
one of the security tests-Birthday Spacings. This is 
because the binary digest value of Merkle-Damgård 
construction for both cases (single and multiple blocks 
message) did not fulfill the requirement for Birthday 
Spacings test. Merkle-Damgård construction generates 
the lambda equal to 3.000 which is over the maximum 
lambda setting (2.000) for Birthday Spacings. 
 For single block of message, all the omega network 
hash constructions passed the test. On the other hand, 
Merkle-Damgård construction failed most of the tests 
except for the craps test (Table 7). 
 The second test utilizes multiple blocks of 
message. All the omega network hash construction 
passed the test, the test value ‘-p’ for each test lie 
between 0 and 1. Merkle-Damgård construction failed 
some of the tests when the block size messages are 12 
(failed 8 tests), 32 (failed 7 tests) and 80 (failed 1 tests) 
(Table 8). This implies that, Merkle-Damgård 
construction can only provide better security in term of 
randomness when the size of message is higher, 

because bigger size message will produce more equal 
size of block message and the digest value will be 
mixed with each other better and therefore produces the 
better randomize digest value. 
 To conclude the security analysis, in term of 
randomness, for omega network hash construction and 
with Merkle-Damgård construction, it can be deduced 
that omega network hash construction produces better 
randomized digest value even though the message is 
small and passed basic security test-DIEHARD. 
 

CONCLUSION 
 
 The main objective of this research is to design a 
better hash constructions mechanism that can help 
improve the hash function performance in general. The 
propose omega network hash constructions were tested 
on dual core and quad core processors which allowed 
the block functions to run in parallel. Waiting time and 
serial time are two major weaknesses for omega 
network hash construction which affect its 
performance. For bigger size omega network hash 
construction, higher degree of serial execution has been 
recorded (e.g., omega network hash construction 128). 
While for the smaller size omega network hash 
construction, higher degree of waiting time has been 
recorded (omega network hash construction 8). 
However, in all cases, omega network hash 
constructions perform better than Merkle-Damgård 
construction, especially for the omega network hash 
construction 32 with four threads, which runs the fastest 
among all the constructions. In terms of security, all 
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sizes of omega network hash constructions passed the 
basic security test of DIEHARD. On the other hand, 
Merkle-Damgård construction failed most of the 
security tests when the input size is small. Based on 
both of the tests, performance test and random test, the 
omega network hash construction performs better than 
the well known Merkle-Damgård construction. 
Therefore Omega Network Hash Construction is a 
viable alternative for hash construction, especially 
when multi-core processors are being considered. 
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