
Journal of Computer Science 5 (12): 962-973, 2009
ISSN 1549-3636
© 2009 Science Publications

Corresponding Author: Chai Wen Chuah, School of Computer Sciences, University Sains Malaysia, Pulau Pinang, Malaysia
Tel: (+604) 6533635 Fax: (+604) 6573335

962

Omega Network Hash Construction

Chai Wen Chuah and Azman Samsudin

School of Computer Sciences, University Sains Malaysia, Pulau Pinang, Malaysia

Abstract: Problem statement: Cryptographic hash functions are important cryptographic primitives.
They are commonly used for data integrity checking and data authentication. Most of the
cryptographic hash functions are based on the Merkle-Damgård construction. The basic Merkle-
Damgård construction runs over the input sequentially, which can lead to problems when the input size
is large since the computation time increases linearly. Approach: Therefore, an alternative architecture
which can reduce the computation time is needed, especially in today’s world where multi-core
processors and multithreaded programming are common. An Omega Network Hash Construction
(ONHC) run parallel in multi-core machine has been proposed as an alternative to the existing hash
constructions. Result: The ONHC performed better than the Merkle-Damgård construction. ONHC
permutation architecture also showed improved security strength in term of digest value randomness
when compared to Merkle-Damgård construction. Conclusion: Therefore, it is believed that the
proposed ONHC is a valuable structure that can improve the performance of any hash function that can
run on top of it.

Key words: Hash function, Merkle-Damgård construction, Omega network, Secure Hash Function

(SHA)

INTRODUCTION

 Cryptography is becoming more and more
important for ensuring various types of security over
insecure connections. Among data security primitives,
data integrity check and data origin authentication are
the common security services that must be applied in
many electronic applications, such as electronic
commerce, electronic financial transactions, software
distribution, electronic mail, data storage and others.
Data integrity check is accomplished through the use of
cryptographic hash functions, which operate at the root
of many other cryptographic methods in achieving
these security services.
 The basic operation of a hash function is to
transform a variable-size input or message into a fixed-
length string called a “hash value” or “message digest.”
A hash value is generated by a function H of the form
H(M) = n, where n is the hash value and M is the
variable-length input or message. Hash functions are
one-way functions; it is easy to generate the digest n
from a given message M, but given only n, it is
computationally infeasible to generate M. Hash
functions are designed to produce unambiguous and
condense message digests that are uniquely identifiable
with their source messages. However, the source
messages cannot be deduced from the message digests
and for this reason, the hash function is sometimes
known as a digital fingerprint.

Fig. 1: Merkle-Damgård Construction [adopted from 2,

3, 5]

 The architecture of most hash functions is based
on the Merkle-Damgård construction[2,3,5,8] (Fig. 1),
which is sequential in nature. This means that when the
size of the input increases, the computational time will
increase linearly. Each step in the Merkle-Damgård
construction processes a message block and returns a
vector. The first vector is pre-defined, but the remaining
vectors are fully dependent on the previous function’s
output, which slows down the runtime. This in turn has
a major effect on the performance of a hash function,
SHA, for example. Therefore, there is a need to
enhance the performance and efficiency of hashing.
 This research proposes the omega network hash
construction as an alternative hashing architecture to
the Merkle-Damgård construction. Because of the

J. Computer Sci., 5 (12): 962-973, 2009

963

design of the omega network hash construction, the
original inputs cannot be retrieved from their
corresponding hash values. In the era of multithreading
and multi-core technology, the omega network hash
construction runs in parallel to improve the hashing
performance. The goal of this architecture is to improve
performance without sacrificing the security provided
by the existing Merkle-Damgård architecture.

Related work: National Institute of Standards and
Technology (NIST) organized a competition for
selecting SHA-3 currently (2009). ESSENCE[7] is a
candidate for this competition. ESSENCE is a
cryptographic hashing algorithm from which the
construction for hashing algorithm is based on Tree
Based Merkle-Damgård construction. The ESSENCE
design has been optimized using the parallel
implementation and obtained better performance than
the sequential Merkle-Damgård construction, but it had
a poor performance on short messages.
 Pipeline is one of the methods for function
decomposition in the field of parallel. Pongyupinpanich
and Choomchuay utilized the pipeline method to runs
SHA-1, to enhance the performance of Digital
Signature Algorithm (DSA) by overcoming
unreasonable overhead in small applications[11]. There
is small modification done on SHA-1, from which
SHA-1 is coded to run in a pipeline mode. E + Wt + Kt

is computed parallel with A + B + C + D. The authors
claimed that the major drawback from this pipeline
design is when there exist a higher number of pipeline
states in which the design is cumbersome and the gate
count increases dramatically. Thus, this pipeline SHA-1
with DSA is not scalable for all size application
because it can only perform well in small size
applications.
 The Secure Hash Dynamic Structure Algorithm
(SHDSA)[2] is used in many applications such as public
key cryptosystems, digital signature, digital encryption,
message authentication code and random number
generators. All of these application’s requirements are
different from each other. As a result, Elkamchouchi’s
group proposed SHDSA which comes in a variety of
configurations. This dynamic scheme is based on SHA
but with one major difference-the hash value is variable
length with possible sizes of 128, 192 and 256 bits.
Besides that, the iterations in each function can be
changeable based on the requirement of the
applications. Thus, this dynamic scheme provides
different levels of security for satisfying the choices for
those practical applications. Although SHDSA is
designed to be changeable based on the requirement of
the application, the architecture is formulated

sequentially and the functions for SHDSA also
executed sequentially. The performance is affected; the
execution time will increase linearly and reach the
highest degree of throughput when the size of input is
high. The high speed requirement of SHDSA is highly
needed, which is why SHDSA should be parallelized.
 Once again, in 2008, Elkamchouchi et. al.[3]
proposed another secure and fast algorithm called
SFHA-256. This one was specifically designed for
SHA-256. It is based on the 3C construction, which is
based on the Merkle-Damgård construction. The author
claims that the proposed architecture is more secure and
performs better than the existing SHA-256. He claims
that performance is better because the number of
operations performed in a step function is reduced and
because the architecture consists of two branches
running in parallel. SFHA-256 has fewer processing
steps, but it is still secure because each step function
contains operations that make it difficult for attackers to
analyze SFHA-256. The added operations are simple
XOR, addition and shift rotation operations. However,
performance still suffers due to the waiting time that
occurs during the processing of hash values.
 Gauravaram et al.[5] proposed the 3C+ hash
construction which is based on the Merkle-Damgård
construction. This 3C+ construction is an enhancement
of 3C construction where a third internal chain has been
added on top of the cascade and accumulation chains of
3C. With this enhancement, the security level of 3C+ is
better than both 3C construction and the Merkle-
Damgård construction. 3C+ contains more XOR
operations which also improves its security. However,
in this new algorithm, there exist conditions where the
hashing functions are required to wait for the input
from the previous hash function. Moreover, the whole
construction is sequential. Thus, waiting times can be
extremely high in the 3C+ construction.
 Mirvaziri et al.[8] came up with an enhancement to
the Merkle-Damgård construction by developing a
single-length compression function implemented on the
Miyaguchi-Preneel block cipher. The architecture has
intelligent repetition optimize hash process, which leads
to better security. Though the architecture is designed
in double levels, it runs sequentially across the
message, which means its computation time increases
linearly when the input size increases.
 In conclusion, most of the proposed architectures
run sequentially, which means the computation time
increases linearly when the input size increases. Given
that multi-core technology and multithreaded
programming are common in today’s world, these
architectures are unacceptably slow.

J. Computer Sci., 5 (12): 962-973, 2009

964

MATERIALS AND METHODS

 Five different sizes of omega network are
designed-omega network hash construction 8 (Fig. 2),
omega network hash construction 16 (Fig. 3), omega
network hash construction 32 (Fig. 3), omega network
hash construction 64 (Fig. 3) and omega network hash
construction 128 (Fig. 7). They serve as prototypes to
determine the optimum size that gives us the best
performance when the hash constructs are simulated
on dual-core and quad-core processors machines.
 As a prototype, SHA-512 algorithm is used as the
function for Omega Network Hash Construction.
Merkle-Damgård construction run sequentially, SHA-
512 algorithm needs only one set of constant values (80
constant 64-bit words which are parts of the cube roots
of the first eighty prime numbers[9]). In Omega
Network Hash Construction, the constant values are
taken from part of the square root of 2 (√2) and the
number of constant value used depends on the number
blocks (Table 1).
 In the design of Omega Network Hash
Construction (Fig. 2 and 3), the blocks on the left
column (Column 1) takes two categories of input-1024
and 512 bits. Both inputs are taken from user messages.
Those inputs serve as the initial vector for the SHA 512
function. However, in Merkle-Damgård construction,
the initial vector is predefined. Each block of column 2
and above takes the input vector from the XOR of two
blocks of digested values from previous column. For
example (Fig. 2), block function number F4 gets its
input vector value from the XOR of two digest values
of block F0 and F2.

 There are some constraints for the design of
Omega Network Hash Construction. To start executing
the block function’s column, it must wait for the
previous column to complete its execution before it
starts. This is because the block function’s column
input vector depends on the XOR of digest values of the
previous column; so variables dependency does exist in
Omega Network Hash Construction. For example,
second column of Omega Network Hash Construction
can start execute only after the first column completed
its execution, because the input vector of second
column depends on the XOR of first column digested
values.
 One round of Omega Network Hash Construction
is completed, after XORing the digest values of the
last column. This process continues until the entire
message is hashed. Finally, to form the final digest
value, digest values of every round is XORed. The
XOR process is executed sequentially, so that when
the size of Omega Network Hash Construction
increases, this process will take longer time to XOR
the digest value.
 If the input message is not enough in terms of the
input length to complete one round of Omega Network
Hash Construction, the pre-defined message will be
used to execute the remaining blocks. The pre-defined
message is a non-repeated number, taken from the
irrational number √2.

Table 1: Set of constant value for omega network hash construction
Size of omega network hash construction 8 16 32 64 128
Set of constant value 12 32 80 192 448

Fig. 2: Omega network hash construction 8

J. Computer Sci., 5 (12): 962-973, 2009

965

F0

F1

F2

F3

F

F

F

F

F

F

F

F

F

F

X OR

X OR

X OR

X OR

X OR

X OR

X OR

F

F

F

F

F

F

F

X O R

X O R

X O R

X O R

X O R

X O R

X O R

X O R

X O R

X O R

X O R

X OR

X OR

X OR

X O R

F FX OR FX O R

.

.

.

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .

. . .
.
.
.

.

.

.

.

.

.

X OR

X OR

X OR

X OR

X OR

.

.

.

Column 1
Column

n-1 Column n
. . .

Total
Columns (n)

Total
Layer (l)

Total Blocks
(Hash

Function)

 448 7 6

32

Size of Omega
Network Hash
Construction

64

128

192

80

6

5

5

4

Layer, l

Run sequential – XORed the digest

16 32 4 3

1024 bits input 512 bits input

SHA-512
Function

References:

F
512 bits intermediate

hash digest

Fig. 3: Overview of 4 types of omega network hash construction

 Overall, the executions phase of the different
versions of omega network hash construction are
similar to each other. The difference is the number of
columns and the number of function blocks that form
an omega network hash construction. Besides that, the
total rounds needed to complete hashing a message are
different for these five designs of omega network hash
construction.

Simulation and performance evaluation: All designs
are simulated in dual core and quad core machines.
Section on test design describes the complete test
design for this research. Section on performance test
explains how to generate the test file and the sizes of
test final. Section on security test describes the security
test for this research.

Test design: Omega network hash construction is
proposed to be an alternative architecture to the Merkle-

Damgård construction with the goal of improving the
performance of hashing. SHA-512 algorithm is used as
our case study in this research. The source code of the
SHA-512 function is taken from Olivier Gay version
2007[10].
 In our test, there are five major designs of omega
network hash construction, with different sizes, being
simulated on both dual-core processors and quad-core
processors. To execute omega network hash
construction in parallel, two lines of OpenMP
commands are used.

• omp_get_num_procs (): This command is used to

get the number of processors in the machine. The
command will help us to indicate the number of
threads created. Two threads will be created in a
dual-core processor and four threads will be
created for a quad-core processor, respectively

J. Computer Sci., 5 (12): 962-973, 2009

966

• #pragma omp parallel for schedule (dynamic)
ordered private (iCount): This OpenMP command
provides the Omega Network Hash
Construction’s function (SHA-512) to execute
parallel schedules orderly from F1, F2, F3, F4, F5,
F6, F7, F8…Fn, each thread will execute one
function at a time in parallel with the other thread.
iCount is a private variable for all the functions

 The designs are simulated in two types of machine
which both are using-Microsoft Windows XP
Professional and Visual Studio 2008. The specifications
of the machines are as below:

• Dual-core processors:
 Intel (R) core (TM) 2 duo CPU T7300 @ 2.00 GHz
 1.99 GHz 2.00 GB of RAM
 Physical address extension
 Hard disk: 80 GB
• Quad-core processors
 AMD phenom™ 9650 quad-core processor
 2.30 GHz 3.00 GB of RAM
 Physical address extension
 Hard disk: 230 GB

Performance test: The performance testing for five
types of omega network are done by executing them in
two types of machine as mentioned above. A total of 5
files had been used for testing which are 200, 400, 600
and 800 MB and 1 GB. All types of omega network
hash construction are executed five times for each file;
the average execution times are recorded.

Security test: To evaluate the security strength of
Omega Network Hash Construction, we use DIEHARD
random test[6]. DIEHARD, the security test needs 9-

10 megabytes of files containing the binary value to
produce the test report.
 There are two types of messages digest value being
generated-single block message (Fig. 4) and multiple
blocks message (Fig. 5). Each input file is only one bit
different for both types of messages. A total of
1,600,000 message files are generated to produce 10
MB binary digested value file. For the single block
message, the first byte is “1”, followed by 127 “0”
(Fig. 4). There are 5 types of messages for multiple
blocks-12, 32, 80, 192 and 448 blocks. The number bits
of message for Omega Network Hash Constructions are
greater than Merkle-Damgård construction because the
initial vector for Omega Network Hash Construction is
taken from user input (Fig. 5). The test results are
written in an output file. The test value ‘-p’ between 0
and 1 indicates a pass for the DIEHARD test.

10000000000000000000000 ...000000000

01000000000000000000000 ...000000000.
.
.

11111111111111111111111 ...111111111
:
.

20000000000000000000000 ...000000000

02000000000000000000000 ...000000000

22222222222222222222222 ...222222222

.

.

.

:
.

90000000000000000000000 ...000000000

09000000000000000000000 ...000000000

99999999999999999999999 ...999999999

.

.

.

First byte,
(byte no. 1)

Last byte,
(byte no. 128)

Input file 1

Input file 2

.

.

.

.

.

.

.

.

.

Input file 1600000

Fig. 4: Test data, single block of message

Fig. 5: Test data, multiple blocks of message

J. Computer Sci., 5 (12): 962-973, 2009

967

RESULTS

Performance test: The performance analysis measures
speed up, security level, efficiency and running cost.
There are three types of run-time tests: serial run-time
(Ts), parallel run-time (Tp) and overhead function (T0).
Ts is the time elapsed between the beginning and the
end of execution time in a serial manner. Tp is the
elapse time between the moment a parallel computation
starts and the moment that the last processor finishes
execution. Overhead is calculated by To = p Tp-Ts,
where p is the number of threads.
 Speed up is defined as the execution time of a
sequential program divided by the execution time of
a parallel program, S = Ts/Tp, where Ts is the
sequential time and Tp is the parallel time running on
n processors[1]. Theoretically, speed up will not
exceed the number of processors or threads that is
being used.

 The efficiency is calculated as E = Speed up/n.
This measurement is the fraction of time for which the
computer is employed. Ideally, the efficiency should
equal to one. But in practice, the efficiency is normally
between zero and one, which depends on the degree of
effectiveness the processors are being utilized.
 Running cost is another measurement we considered
in our performance analysis. Cost or (p×Tp) is the
product of parallel runtime and the number of processing
elements which reflects the sum of the time that each
processing element spends to solve a problem.
 Performance of omega network hash construction
8, omega network hash construction 16, omega network
hash construction 32, omega network hash construction
64 and omega network hash construction 128 are shown
in Table 2-6 respectively. Figure 6-15 shows
performance analysis of Omega Network Hash
Construction simulated on a dual core machine and
quad core machine in the line graph format.

Table 2: Performance analysis of omega network hash construction 8

Omega network hash construction 8

 2 Threads 4 Threads
Sizes -- ---
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost

200 16.188 11.416 6.643 1.418 0.355 22.831 14.734 10.844 28.642 1.359 0.340 43.376
400 32.375 23.742 15.110 1.364 0.341 47.485 29.407 21.875 58.093 1.344 0.336 87.500
600 48.547 35.080 21.613 1.384 0.346 70.160 44.109 32.719 86.767 1.348 0.337 130.876
800 64.778 46.538 28.297 1.392 0.348 93.075 58.891 42.375 110.609 1.390 0.347 169.500
1000 80.942 58.542 36.143 1.383 0.346 117.085 73.625 56.922 154.063 1.293 0.323 227.688

Table 3: Performance analysis of omega network hash construction 16

Omega network hash construction 16

 2 Threads 4 Threads
Sizes -- ---
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost

200 16.188 12.064 7.940 1.342 0.335 24.128 14.734 10.219 26.142 1.442 0.360 40.876
400 32.375 24.177 15.978 1.339 0.335 48.353 29.407 20.687 53.341 1.422 0.355 82.748
600 48.547 35.978 23.410 1.349 0.337 71.957 44.109 31.062 80.139 1.420 0.355 124.248
800 64.778 47.890 31.002 1.353 0.338 95.780 58.891 41.765 108.169 1.410 0.353 167.06
1000 80.942 59.878 38.813 1.352 0.338 119.755 73.625 53.594 140.751 1.374 0.343 214.376

Table 4: Performance analysis of omega network hash construction 32

Omega network hash construction 32

 2 Threads 4 Threads
Sizes -- ---
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost

200 16.188 12.485 8.782 1.297 0.324 24.970 14.734 8.281 18.390 1.779 0.445 33.124
400 32.375 24.910 17.445 1.300 0.325 49.820 29.407 16.219 35.469 1.813 0.453 64.876
600 48.547 37.232 25.917 1.304 0.326 74.464 44.109 24.516 53.955 1.799 0.450 98.064
800 64.778 49.563 34.348 1.307 0.327 99.126 58.891 32.516 71.173 1.811 0.453 130.064
1000 80.942 61.922 42.902 1.307 0.327 123.844 73.625 41.031 90.499 1.794 0.449 164.124

J. Computer Sci., 5 (12): 962-973, 2009

968

Table 5: Performance analysis of omega network hash construction 64
Omega network hash construction 64

 2 Threads 4 Threads
Sizes -- ---
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost
200 16.188 12.516 8.844 1.293 0.323 25.032 14.734 9.813 24.518 1.501 0.375 39.252
400 32.375 25.141 17.907 1.288 0.322 50.282 29.407 19.719 49.469 1.491 0.373 78.876
600 48.547 37.532 26.517 1.293 0.323 75.064 44.109 29.469 73.767 1.497 0.374 117.876
800 64.778 50.641 36.504 1.279 0.320 101.282 58.891 39.734 100.045 1.482 0.371 158.936
1000 80.942 63.219 45.496 1.280 0.320 126.438 73.625 49.469 124.251 1.488 0.372 197.876

Table 6: Performance analysis of omega network hash construction 128
Omega network hash construction 128

 2 Threads 4 Threads
Sizes -- ---
(MB) Ts (sec) Tp (sec) To S E Running cost Ts (sec) Tp (sec) To S E Running cost
200 16.188 13.047 9.906 1.241 0.310 26.094 14.734 22.563 75.518 0.653 0.163 90.252
400 32.375 26.125 19.875 1.239 0.310 52.250 29.407 45.422 152.281 0.647 0.162 181.688
600 48.547 39.032 29.517 1.244 0.311 78.064 44.109 68.718 230.763 0.642 0.160 274.872
800 64.778 52.078 39.378 1.244 0.311 104.156 58.891 91.313 306.361 0.645 0.161 365.252
1000 80.942 65.203 49.464 1.241 0.310 130.406 73.625 108.437 360.123 0.679 0.170 433.748

Fig. 6: Execution time comparison between omega

network hash construction and Merkle-
Damgård Construction, simulated on a dual
core machine

Fig. 7: Overhead of omega network hash construction

simulated on dual core machine

Fig. 8: Speed up of omega network hash construction

simulated on a dual core machine

Fig. 9: Efficiency of omega network hash construction

simulated on a dual core machine

J. Computer Sci., 5 (12): 962-973, 2009

969

Fig. 10: Running cost of omega network hash

construction simulated on a dual core
machine

Fig. 11: Execution time comparison between omega

network hash construction and Merkle-
Damgård construction, simulated on a quad
core machine

Fig. 12: Overhead of omega network hash construction

simulated on a quad core machine

Security analysis: DIEHARD is chosen as the security
test tool to examine whether the omega network hash
constructions are secure enough by evaluating the
randomness of the digest value. There are two types of

Fig. 13: Speed up of omega network hash construction

simulated on a quad core machine

Fig. 14: Efficiency of omega network hash

construction simulated on a quad core
machine

Fig. 15: Running cost of omega network hash

construction simulated on a quad core
machine

input file, single block of message and multiple blocks of
message. Each input file is only one bit different for both
types of message. The result of security analysis for
single block message is shown in Table 7 and 8 shows
the security analysis for multiple block messages.

J. Computer Sci., 5 (12): 962-973, 2009

970

Table 7: DIEHARD security test, single block of message to generate binary test file
Single block of message MD ONHC 8 ONHC 16 ONHC 32 ONHC 64 ONHC 128
1. Birthday spacings Fail* 0.6484800*** 0.9209820*** 0.343668*** 0.7568980*** 0.627634***
2. Overlapping permutations 1.000000** 0.1214495*** 0.5986095*** 0.506419*** 0.8482345*** 0.303512***
3. Ranks of 31×31 and 32×32 matrices
31×31 matrices 1.000000** 0.6794880*** 0.525663*** 0.360214*** 0.6628150*** 0.772463***
32×32 matrices 1.000000** 0.7980960*** 0.642444*** 0.521738*** 0.3315500*** 0.380405***
4. Ranks of 6×8 matrices 1.000000** 0.6799860*** 0.201000*** 0.594762*** 0.1440980*** 0.623201***
5. Monkey tests on 20 bit words 1.000000** 0.5627780*** 0.566308*** 0.379957*** 0.4361720*** 0.411402***
6. Monkey tests OPSO, OQSO, DNA
OPSO 1.000000** 0.5375000*** 0.589404*** 0.621691*** 0.5285300*** 0.560243***
OQSO 1.000000** 0.5275430*** 0.514518*** 0.431471*** 0.4967710*** 0.545821***
DNA 1.000000** 0.5299740*** 0.512017*** 0.559690*** 0.5366310*** 0.566177***
7. Count the 1's in a stream of bytes 1.000000** 0.5343885*** 0.652317*** 0.638018*** 0.3421095*** 0.594358***
8. Count the 1's in specific bytes 1.000000** 0.5106000*** 0.584141*** 0.520437*** 0.6004920*** 0.544833***
9. Parking lot test 1.000000** 0.6257840*** 0.263863*** 0.610674*** 0.5914920*** 0.504483***
10. Minimum distance test 1.000000** 0.9708900*** 0.957626*** 0.087640*** 0.6157280*** 0.904798***
11. Random spheres test 1.000000** 0.9898730*** 0.018399*** 0.980629*** 0.9839010*** 0.900696***
12. The squeeze test 1.000000** 0.6085880*** 0.104880*** 0.486552*** 0.8308000*** 0.919765***
13. Overlapping sums test 1.000000** 0.4132320*** 0.836154*** 0.487671*** 0.7555970*** 0.694437***
14. Runs test 1.000000** 0.2870380*** 0.541360*** 0.743451*** 0.5838500*** 0.514282***
15. The craps test 0.04061*** 0.1290400*** 0.048140*** 0.085660*** 0.8882300*** 0.172820***
Note: MD: Merkle-Damgård construction; ONHC: Omega Network Hash Construction; *: Fail to test; ***: Pass the DIEHARD test; **: Fail the
DIEHARD test

Table 8: DIEHARD security test, multiple blocks of message to generate binary test file
 MD -8 MD-16 MD-32 MD-64 MD-128 ONHC
Multiple blocks of message blocks ONHC 8 blocks ONHC 16 blocks ONHC 32 blocks ONHC 64 blocks 128

1. Birthday spacings Fail* 0.746930*** 0.999999*** 0.745669*** 0.9251170*** 0.654962*** 0.918840*** 0.296097*** 0.8663900*** 0.081941***
2. Overlapping permutations 0.991743*** 0.403184*** 0.686777*** 0.160407*** 0.1904655*** 0.274975*** 0.831856*** 0.761285*** 0.2887360*** 0.839987***
3. Ranks of 31×31 and 32×32 matrices
31×31 Matrices 1.000000** 0.378031*** 1.000000** 0.580842*** 0.3808820*** 0.323987*** 0.613335*** 0.439781*** 0.6478570*** 0.700023***
32×32 Matrices 1.000000** 0.342838*** 1.000000** 0.431458*** 0.3309560*** 0.997820*** 0.507316*** 0.320859*** 0.8975000*** 0.384348***
4. Ranks of 6×8 Matrices 0.994176*** 0.663811*** 0.487267*** 0.596087*** 0.8598710*** 0.321908*** 0.913995*** 0.696835*** 0.4728510*** 0.809089***
5. Monkey tests on 20 bit words 0.972868*** 0.469094*** 0.911032*** 0.515542*** 0.5202000*** 0.605502*** 0.440477*** 0.562937*** 0.5420770*** 0.540819***
6. Monkey Tests OPSO, OQSO, DNA
OPSO 1.000000** 0.651809*** 1.000000** 0.440704*** 0.6097480*** 0.567804*** 0.446613*** 0.517261*** 0.5947910*** 0.535348***
OQSO 1.000000** 0.476664*** 1.000000** 0.508654*** 0.4990460*** 0.360325*** 0.460171*** 0.572464*** 0.4527750*** 0.486843***
DNA 1.000000** 0.410194*** 1.000000** 0.462739*** 0.5689680*** 0.526210*** 0.517032*** 0.411974*** 0.4490290*** 0.564490***
7. Count the 1's in a stream of bytes 1.000000** 0.381799*** 0.998289*** 0.736791*** 0.0668032*** 0.754137*** 0.506117*** 0.490607*** 0.6764915*** 0.851321***
8. Count the 1's in specific bytes 0.709227*** 0.570537*** 0.683469*** 0.545262*** 0.5214650*** 0.495342*** 0.475061*** 0.514982*** 0.5365590*** 0.671321***
9. Parking lot test 0.996457*** 0.232971*** 0.513322*** 0.992594*** 0.6289940*** 0.863783*** 0.621359*** 0.378580*** 0.4936960*** 0.794248***
10. Minimum distance test 1.000000** 0.980371*** 1.000000** 0.515071*** 1.0000000** 0.985678*** 0.961815*** 0.717499*** 0.9486340*** 0.080092***
11. Random spheres test 0.994149*** 0.625952*** 0.414147*** 0.121640*** 0.9591750*** 0.479698*** 0.635821*** 0.622163*** 0.5002240*** 0.712335***
12. The squeeze test 1.000000** 0.420809*** 1.000000** 0.217036*** 0.0604030*** 0.907871*** 0.104538*** 0.165316*** 0.3754680*** 0.737879***
13. Overlapping sums test 0.797626*** 0.073680*** 0.321314*** 0.673886*** 0.9730550*** 0.939852*** 0.466093*** 0.536601*** 0.5133860*** 0.027135***
14. Runs test 0.578203*** 0.359220*** 0.306128*** 0.436846*** 0.3360040*** 0.500120*** 0.441318*** 0.410291*** 0.5390950*** 0.494026***
15. The craps test 0.042190*** 0.551850*** 0.185690*** 0.651640*** 0.3910200*** 0.379050*** 0.528770*** 0.927670*** 0.9575200*** 0.621430***

Note: MD: Merkle-Damgård construction; ONHC: Omega Network Hash Construction; *: Fail to test; ***: Pass the DIEHARD test; **: Fail the
DIEHARD test

DISCUSSION

Performance analysis: All sizes of omega network
hash construction and Merkle-Damgård construction
are simulated on dual core and quad core machines
respectively. The features of each machines are
describe in the section of Test Design. The amount of
RAM of the quad core machine (2.30 GHz 3.00 GB of
RAM) is higher than dual core machine (1.99 GHz
2.00 GB of RAM). Thus, execution time for omega
network hash constructions and Merkle-Damgård
construction which are simulated on the quad core
machine is faster than the simulation result on dual
core machine.

 As mentioned earlier, waiting time and serial time
are two constraints exist in the design of omega
network hash constructions. The waiting time is higher
when the size of omega network hash construction is
small. (e.g., omega network hash construction 8). The
serial time is higher when the size of Omega Network
Hash Construction is large (e.g., omega network hash
construction 128). On the other hand, when more
threads are created, the communication time or
overhead will be higher. Thus, communication time for
four threads is higher than two threads. Waiting time,
serial time, communication time (overhead) are three
factors that affect the performance of omega network
hash constructions.

J. Computer Sci., 5 (12): 962-973, 2009

971

 On dual core processors, the execution time among
all sizes of omega network hash construction are almost
the same with each other. The differences in the
execution time among the difference sizes are created
by digest XORing process happen in the last column of
the design which runs sequentially. When the size of
Omega Network Hash Construction increases, it
requires longer time to complete the XORing process.
 Omega network hash construction 8 runs faster on
dual core processors, while omega network hash
construction 128 runs slowest on dual core processors.
The reason is the communication time between these
two threads for omega network hash construction 8 is
less than the overhead time of omega network hash
construction 128. Omega network hash construction
128 required more time to generate the digest value by
XORing the digest value from the last column compare
with omega network hash construction 8.
 On a quad core machine, the program will
automatically generate four threads to run four block
functions of omega network hash construction
simultaneously. Omega network hash construction 32
runs faster on quad core processors, while omega
network hash construction 128 runs the slowest on quad
core processors. Omega network hash construction 8
and 16 had similar execution time. However, omega
network hash construction 16 is slower than omega
network hash construction 8 because the serial
execution of omega network hash construction 16 for
XORing the digest value requires more processing time.
However, both constructions are still slower than

omega network hash construction 32. This happens due
to the waiting time that exists in omega network hash
construction 8 and 16 are higher than omega network
hash construction 32; the more number of execution
round the more waiting time is required.
 Omega network hash construction 128 runs the
slowest on dual core and quad core machines. However,
it still runs faster than Merkle-Damgård construction on
dual core processors but run slower than Merkle-
Damgård construction on quad core processors. This is
because the serial time to XOR the digest values is
higher on both machines but the communication time
for four threads are higher than two threads.
 There are three types of speed up calculation being
presented: The speed up calculation based on (Ts/Tp),
the speed up based on Amdahl’s law and the speed-up
based on Gustafson Barsis’s law (Table 10). The fastest
speed up is achieved by the omega network hash
construction 32 with four threads, 1.813 sec, for input
file size of 400 MB (Fig. 7 and 12) and the average
speed up is 1.8 sec (Table 9). Based on Amdahl’s law
and Gustafson Barsis’s law, the speed up for omega
network hash construction 8 is the highest because the
serial execution in omega network hash construction 8
is only 10% for the entire execution. The lowest speed
up is by omega network hash construction 128 which
consists 50% execution (Table 10). Consequently, the
efficiency for Omega Network Hash Construction 32
with four threads is also among the highest (Fig. 8 and
13, Table 11 and 12).

Table 9: Comparison of speed up among the omega network hash constructions
ONHC

 2 Threads 4 Threads
Sizes -- --
(MB) 8 16 32 64 128 8 16 32 64 128
200 1.418 1.342 1.297 1.293 1.241 1.359 1.442 1.779 1.501 0.653
400 1.364 1.339 1.300 1.288 1.239 1.344 1.422 1.813 1.491 0.647
600 1.384 1.349 1.304 1.293 1.244 1.348 1.420 1.799 1.497 0.642
800 1.392 1.353 1.307 1.279 1.244 1.390 1.410 1.811 1.482 0.645
1000 1.383 1.352 1.307 1.280 1.241 1.293 1.374 1.794 1.488 0.679
Average 1.388 1.347 1.303 1.287 1.242 1.347 1.414 1.799 1.492 0.653

Table 10: Comparison of speed up among the omega network hash constructions based on Amdahl’s law and Gustafson Barsis’s law

 Average speed up Amdahl’s law speed up Gustafson Barsis’s law
 S = Ts/Tp S = N /[βN+(1–β)] speed up S = N-(N-1)a
 Parallel ---------------------------- ----------------------------- ----------------------------
ONHC Serial code code 2T 4T 2T 4T 2T 4T
8 0.1 0.9 1.388 1.347 1.818 3.077 1.900 3.700
16 0.2 0.8 1.347 1.414 1.667 2.500 1.800 3.400
32 0.3 0.7 1.303 1.799 1.538 2.105 1.700 3.100
64 0.4 0.6 1.287 1.492 1.428 1.818 1.600 2.800
128 0.5 0.5 1.242 0.653 1.333 1.600 1.500 2.500

J. Computer Sci., 5 (12): 962-973, 2009

972

Table 11: Comparison of the efficiency among the omega network hash constructions
ONHC

 2 Threads 4 Threads
Sizes -- --
(MB) 8 16 32 64 128 8 16 32 64 128
200 0.355 0.335 0.324 0.323 0.310 0.340 0.360 0.445 0.375 0.163
400 0.341 0.335 0.325 0.322 0.310 0.336 0.355 0.453 0.373 0.162
600 0.346 0.337 0.326 0.323 0.311 0.337 0.355 0.450 0.374 0.160
800 0.348 0.338 0.327 0.320 0.311 0.347 0.353 0.453 0.371 0.161
1000 0.346 0.338 0.327 0.320 0.310 0.323 0.343 0.449 0.372 0.170
Average 0.347 0.337 0.326 0.322 0.310 0.337 0.353 0.450 0.373 0.163

Table 12: Comparison of the efficiency among the omega network hash constructions based on Amdahl’s law and Gustafson Barsis’s law
 Efficiency based on Amdahl’s law Efficiency based on Gustafson
 Efficiency speed up Barsis’s law Speed up
 ----------------------------------- --- --------------------------------------
 E = (Ts/Tp)/p E ={ N /[βN+(1-β)]}/p E = [N-(N-1)a]/p
ONHC 2T 4T 2T 4T 2T 4T
8 0.694 0.336 0.909 0.769 0.950 0.925
16 0.673 0.353 0.833 0.625 0.900 0.850
32 0.651 0.449 0.769 0.526 0.850 0.775
64 0.643 0.373 0.714 0.454 0.800 0.700
128 0.621 0.163 0.666 0.400 0.750 0.625

 Running cost is calculated by multiplying the
number of threads by the execution time. Therefore, the
more the number of processors, the higher the running
cost will be recorded for the simulation (Fig. 10 and
15). Thus, the cost of running four threads is higher
than that of two threads.
 Overall, omega network hash construction 32 runs
faster on quad core processors while Omega Network
Hash Construction 8 runs faster on dual core
processors.

Security analysis: Merkle-Damgård Construction fails
one of the security tests-Birthday Spacings. This is
because the binary digest value of Merkle-Damgård
construction for both cases (single and multiple blocks
message) did not fulfill the requirement for Birthday
Spacings test. Merkle-Damgård construction generates
the lambda equal to 3.000 which is over the maximum
lambda setting (2.000) for Birthday Spacings.
 For single block of message, all the omega network
hash constructions passed the test. On the other hand,
Merkle-Damgård construction failed most of the tests
except for the craps test (Table 7).
 The second test utilizes multiple blocks of
message. All the omega network hash construction
passed the test, the test value ‘-p’ for each test lie
between 0 and 1. Merkle-Damgård construction failed
some of the tests when the block size messages are 12
(failed 8 tests), 32 (failed 7 tests) and 80 (failed 1 tests)
(Table 8). This implies that, Merkle-Damgård
construction can only provide better security in term of
randomness when the size of message is higher,

because bigger size message will produce more equal
size of block message and the digest value will be
mixed with each other better and therefore produces the
better randomize digest value.
 To conclude the security analysis, in term of
randomness, for omega network hash construction and
with Merkle-Damgård construction, it can be deduced
that omega network hash construction produces better
randomized digest value even though the message is
small and passed basic security test-DIEHARD.

CONCLUSION

 The main objective of this research is to design a
better hash constructions mechanism that can help
improve the hash function performance in general. The
propose omega network hash constructions were tested
on dual core and quad core processors which allowed
the block functions to run in parallel. Waiting time and
serial time are two major weaknesses for omega
network hash construction which affect its
performance. For bigger size omega network hash
construction, higher degree of serial execution has been
recorded (e.g., omega network hash construction 128).
While for the smaller size omega network hash
construction, higher degree of waiting time has been
recorded (omega network hash construction 8).
However, in all cases, omega network hash
constructions perform better than Merkle-Damgård
construction, especially for the omega network hash
construction 32 with four threads, which runs the fastest
among all the constructions. In terms of security, all

J. Computer Sci., 5 (12): 962-973, 2009

973

sizes of omega network hash constructions passed the
basic security test of DIEHARD. On the other hand,
Merkle-Damgård construction failed most of the
security tests when the input size is small. Based on
both of the tests, performance test and random test, the
omega network hash construction performs better than
the well known Merkle-Damgård construction.
Therefore Omega Network Hash Construction is a
viable alternative for hash construction, especially
when multi-core processors are being considered.

REFERENCES

1. Bal, H.E. and M. Haines, 1998. Approaches for

integrating task and data parallelism. IEEE
Concurr., 6: 78-84.
http://portal.acm.org/citation.cfm?id=614113

2. Elkamchouchi, H.M., A.A.M. Einarah and
E.A.A. Hagras, 2006. A new Secure Hash
Dynamic Structure Algorithm (SHDSA) for public
key digital signature schemes. Proceeding of the
23rd Radio Science Conference, Mar. 14-16, IEEE
Xplore Press, Menoufiya, pp: 1-9. DOI:
10.1109/NRSC.2006.386347

3. Elkamchouchi, H.M., M.E. Nasr and R.I. Abdelfatah,
2008. A new Secure and Fast Hashing Algorithm
(SFHA-256). Proceeding of the 25th National
Radio Science Conference, Mar. 18-20, IEEE
Xplore Press, Tanta, pp: 1-8. DOI:
10.1109/NRSC.2008.4542348

4. Emam, S.A. and S.S. Emami, 2007. Design and
implementation of a fast, combined SHA-512 on
FPGA. Int. J. Comput. Sci. Network Secur., 7: 165-168.
http://paper.ijcsns.org/07_book/200705/20070524.
pdf

5. Gauravaran, P., W. Millan, E. Dawson and
K. Viswanathan, 2006. Constructing secure hash
functions by enhancing Merkle-Damgård
construction. Lecture Notes Comput. Sci., 4058:
407-420. DOI: 10.1007/11780656_34

6. Marsaglia, G., 1996. DIEHARD: A battery of test
of randomness. http://i.cs.hku.hk/~diehard/cdrom

7. Martin, J.W., 2009. ESSENCE: A candidate
hashing algorithm for the NIST competition.

http://www.math.jmu.edu/~martin/essence/Support
ing_Documentation/essence_NIST.pdf

8. Mirvaziri, H., K. Jumari, M. Ismail and M. Hanapi,
2007. Collision free hash function based on
Miyaguchi-Preneel and enhanced Merkel-Damgard
scheme. Proceeding of the 5th Student Conference
on Research and Development-SCOReD, Dec. 11-
12, IEEE Xplore Press, Malaysia, pp: 1-6. DOI:
10.1109/SCORED.2007.4451411

9. NIST., 1993. Announcing the standard for secure
hash standard.

 http://www.itl.nist.gov/fipspubs/fip180-1.htm
 10. Olivar, G., 2007. FIPS 180-2 SHA-

224/256/384/512 implementation.
 http://www.ouah.org/ogay/sha2/
11. Pongyupinpanich, S. and S. Choomchuay, 2004.

An architecture for a SHA-1 applied for DSA.
Proceedings of the 3rd Asian International Mobile
Computing Conference, May 26-28, Thailand,
pp: 1-5.

 http://www.kmitl.ac.th/~kchsomsa/somsak/papers/
amoc04-022.pdf

