
Journal of Computer Science 6 (10): 1189-1198, 2010
ISSN 1549-3636
© 2010 Science Publications

Corresponding Author: Rozilawati Razali, School of Computer Science, Faculty of Information Science and Technology,
University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

1189

Usability Requirements of Formal Verification Tools: A Survey

1Rozilawati Razali and 2Paul Garratt

1School of Computer Science, Faculty of Information Science and Technology,
University Kebangsaan Malaysia, 43600 UKM Bangi, Selangor, Malaysia

2School of Electronics and Computer Science,
Faculty of Engineering, Science and Mathematics, University of Southampton,

SO17 1BJ United Kingdom

Abstract: Problem statement: Formal notations employ mathematical symbols and interpretation to
illustrate system elements. The formality imposed by the notations allows the accuracy and consistency
of a system model to be confirmed by verification tools. Formal notations on the other hand are
difficult to understand and use by most users. As supporting instruments, verification tools are
expected to be as usable as possible to overcome this limitation. Approach: This study presented a
survey conducted on two instances of verification tools that support a formal method, namely B. The
focus of the survey was to identify the important features that are necessary for verification tools to
become usable to users. The survey assessed the tools’ usability based on the Cognitive Dimensions of
Notations (CD) framework and several criteria suggested by the International Organization for
Standardization (ISO). Sixty-three participants responded to the survey. The data was analyzed by
using the grounded theory. Results: The analysis enabled the identification of abstract concepts and
properties that formed a design guideline for usable verification tools. The guideline includes there
main aspects; Interface, Utilities and Resources Management. Conclusion: The guideline acts as a
roadmap for tool designers to design verification tools that promote the use of formal notations.

Key words: Usability requirement, formal verification tools, empirical assessment

INTRODUCTION

 Conceptual models specify the characteristics of
the existing and future systems. They are mainly
produced through the use of a designated modeling
notation. Some examples of the existing notations
include graphical notations such as Entity-Relationship
Diagram (ERD) (Chen, 1976) and Unified Modeling
Language (UML) (Object Management Group, 2010)
and formal notations such as Z (Spivey, 1992) and B
(Abrial et al., 1996). In addition, there are also
notations that integrate both graphical and formal such
as UML and Z (Martin, 2003) and UML and B (Snook
and Butler, 2006).
 While graphical notations use visual objects,
formal notations use mathematical symbols and
interpretation to describe a system. The formality
imposed by formal notations enables a model to be
verified systematically by tools, which are designed
specifically to increase model precision and
consistency. In the case of B method for instance, this is
achieved by using B verification tools such as ProB
(Leuschel and Butler, 2003), Atelier-B (ClearSy, 2003)

and B-Toolkit (B-Core(UK) Ltd, 1999). The
verification process begins when a set of system
requirements are specified using the B notation. Later,
the specification is feed into the verification tools for
syntax and semantic checking.
 Whilst having the ability to increase a model’s
precision and consistency, formal notations however are
regarded as being difficult to comprehend (Carew et al.,
2005). Indirectly, the verification tools are expected to
overcome this barrier. In a sense, they are assumed to
be usable and useful. This study presents a survey
conducted on two instances of B tools, namely ProB
and B-Toolkit. The survey aimed to explore which
features are necessary for verification tools to become
useful and usable. The survey employed the Cognitive
Dimensions of Notations (CD) (Green, 1989; Green and
Petre, 1996) framework with several usability criteria
suggested by the International Organization for
Standardization (ISO) (ISO/IEC 9126-1, 2001) as its
instrument. The instrument was used to guide the
discovery of features rather than as a means of
assessment of the tools.

J. Computer Sci., 6 (10): 1189-1198, 2010

1190

Background: Formal methods are defined as methods
that impose the use of mathematically based approaches
to software development. They are seen as a fault
avoidance technique that aims to reduce the
introduction of errors into a system. The methods are
employed at the early stages of system development,
particularly from the specification stage.
 There are many instances of formal methods,
which one of them is the B method (Abrial et al., 1996).
The B method is a collection of mathematically based
techniques for the specification, design and
implementation of software components. It provides
techniques that ensure the consistency of a specification
and guarantee the implementation with respect to that
specification. There are two main verification activities
involved in the B method; Consistency Checking and
Refinement Checking. Consistency Checking ensures
that the component preserves its state conditions
whereas Refinement Checking ensures that the
component is valid at each refinement level.
 Several industrial tools support the verification
activities involving the B method. For instance,
BToolkit by B-Core(UK) Ltd (1999). Figure 1 depicts
an example of B-Toolkit interface. Such tools generate
proof obligations and prove the obligations through
automatic and interactive provers. While the automatic
prover discharges the proof obligations automatically,
the interactive prover requires user intervention for the
proof activities to complete. The automatic prover is
normally capable of proving majority of proof
obligations. Some complex proof obligations however
need to be proved interactively by users through the
interactive prover. Discharging proof obligations with
the interactive prover may be complicated, but it
provides users with a better insight into the system
properties and behaviors.
 Besides the industrial tools, there are also tools
developed within the research community. ProB
(Leuschel and Butler, 2003) for instance, supports the
automated Consistency and Refinement Checking via
Model Checking (Clarke et al., 1999). Unlike other B
tools, ProB comprises a model checker that explores
exhaustively the finite behavior of a component, an
animator that executes the operations and a graphical
tool that displays the states and transitions covered by
the model checker. The tool performs the model
checking by verifying a component against the
specified properties. It traverses all the reachable states
of the component, explores the possible states and finds
potential problems. The animations allow the simulated
behavior of a model to be observed. In particular, users
are provided with the description of the current state,
the history that led to the current state and the enabled
operations along with proper argument instantiations.

Fig. 1: A screenshot of B-Toolkit (B-Core(UK) Ltd,

1999)

Fig. 2: A screenshot of ProB 1.2.6

Figure 2 shows the interface of ProB 1.2.6, which was
used as the object of study in the survey. ProB has
recently been upgraded to ProB 1.3.0 (ProB, 2010).
Despite this fact however, the findings of the survey are
still valid since the analysis was not meant to evaluate
the tool per se. Instead, it was intended to capture and
generalize important features that must be catered by
verification tools, based on the feedback received from
the respondents.

MATERIALS AND METHODS

 The objective of the survey was to capture some
experience of using verification tools that support a
formal notation in conceptual modeling. It was not the
intention of the survey to investigate every possible
instance of verification tools and delineate their
strengths and weaknesses. While the tools undergo
improvements over time, new tools are also introduced.

J. Computer Sci., 6 (10): 1189-1198, 2010

1191

Any extensive investigation on the tools is seen as not
worthwhile as they could become obsolete and
overwritten by others. Rather, the survey aimed to
identify basic features that should present in
verification tools for them to become useful and usable.
The survey started the investigation with two instances
of verification tools, namely ProB and BToolkit. As a
study on two instances could not reveal all features, the
findings from the survey are left open for further
investigation and discussion in future where they can be
validated and expanded.
 The survey was qualitative in nature where its
analysis was mainly interpretive. Based on the captured
user experience, the analysis aimed to identify a set of
features that are believed to be important for ensuring
the usability of verification tools. The survey concerned
the usability assessment from the perspective of new
users. New users in this context refer to developers who
are new to not only verification tools but also model
verification tasks. To achieve this objective, the survey
employed the following research question:

What are the important features/functionality
that should be available in verifications tools
for them to be usable (i.e., understandable,
learnable, operable and attractive) to new
users?

 The survey instrument was based on the Cognitive
Dimensions of Notations (CD) usability framework
(Green, 1989; Green and Petre, 1996). The framework
comprises fourteen dimensions as illustrated in Table 1
below, which acted as the variables in the survey. In
addition, several usability criteria of ISO were also
included. The CD framework was adopted because it is
a tool that aids the usability evaluation of information-
based artifacts (Green and Blackwell, 1998), which
formal specifications are one of such artifacts. As a
usability tool, it concentrates on the processes by

considering the perspective of people who deal with the
artifact and its environment.
 There are many different approaches to dealing
with qualitative data employed in the social sciences
(Cassell and Symon, 1994; Denzin and Lincoln, 1994;
Strauss and Corbin, 1998). The survey adopted one
approach, namely the grounded theory (Strauss and
Corbin, 1998) because it is systematic and directive. It
contains structured procedures to generate theories
based on the stated research question. The questions for
the survey were constructed by following the proposed
CD questionnaire (Blackwell and Green, 2000). The
proposed CD questionnaire was tailored and modified
slightly to reflect the characteristics of verification
tools. The survey used the CD framework, albeit
concerns tool environment more than notation. This is
because verification tools such as ProB and B-Toolkit
are designed to support activities concerning models
that describe system functionality. The tools interact
actively with the notations used in the models to ensure
they specify the system functionality accurately and
consistently. Therefore, it would be awkward to
investigate the tools solely without considering the
notations that they interact with.
 There were nineteen questions in the survey.
Fourteen questions reflected the fourteen dimensions
of the CD framework, four questions represented the
ISO usability criteria and one question gathered
suggestions for improvement. The questions used an
ordinal scale that provided the respondents with seven
potential levels of agreement, from -3 (very difficult)
to 3 (very easy). In addition to the selection on the
scale, justification for the answer given was also
required through open-ended questions, such as Why?
or Which part? This acted as the qualitative data,
which were used together with the quantitative data on
the scale for the analysis. There were also questions
that required an answer of Yes, No or Not sure.

Table 1: Cognitive dimensions (Green, 1989)
Dimension Description
Abstraction gradient Level of grouping mechanism enforced by the notation
Closeness of mapping Mapping between the notation and the problem domain
Consistency Similar semantics presented in a similar syntactic manner
Diffuseness Complexity or verbosity of the are notation to express a meaning
Error-proneness Tendency of the notation to induce mistakes
Hard mental operations Degree of mental processes required for users to understand the notation and to keep track of what is happening
Hidden dependencies Relationship between two entities such that one of them is dependent on the other but the dependency is not
 fully visible
Premature commitment Enforcement of decisions prior to information needed and task ordering constraints
Progressive evaluation Ability to evaluate own work in progress at any time
Provisionality Flexibility of the notation for users to play with ideas
Role-expressiveness Purpose of an entity and how it relates to the whole component is obvious and can be directly implied
Secondary notation Ability to use notations other than the official semantics to express extra information or meaning
Viscosity Degree of effort required to perform a change
Visibility/juxtaposibility Ability to view every component s simultaneously or view two related components side by side at a time

J. Computer Sci., 6 (10): 1189-1198, 2010

1192

To illustrate briefly the questions, below are some
examples. The first question concerns the visibility
dimension, which also relates to the
operability/attractiveness criteria of the ISO. The
second question involves the hard mental operations
dimension that also implies the ISO’s
understandability/learns ability criteria.

How easy is it to view and search the various
features in ProB/BToolkit when you are working
with your B model?

 Very Very
 difficult easy
 -3 -2 -1 0 1 2 3

 Why?

 Does ProB/BToolkit let you do what you want to

your B model reasonably straightforward?

 No Not Sure Yes

 If No, what sorts of things take more time and

effort to accomplish?

 If you verify your B model in ProB/BToolkit, how

difficult is it to comprehend what is happening?

 Very Very
 Difficult easy
 -3 -2 -1 0 1 2 3

Why?

 Prior to survey questionnaire distribution, the
validity and accuracy of the questions were reviewed by
a focus group. There were four people involved in the
process, who would use the results of the survey. The
purpose of the review was to identify any missing and
unnecessary questions as well as ambiguous questions
and instructions.

Participation: Sixty-three out of one hundred potential
participants responded to the survey. The response rate
was therefore sixty-three percents. They were
Undergraduate and Master students of Computer
Science and Software Engineering courses from two
universities in the south of England. Master students
constituted one-third of the participation. Non-British
students constituted half of the participation. The
proportion of women to men was 1:4.
 The survey questionnaires were distributed to those
potential participants because they were independent
users of ProB and B-Toolkit, who used the tools for the
first time for model verification tasks. The participants

had some practical experience of using the tools when
participating in the survey. Specifically, they used the
tools to animate and verify the models that they
developed during the course. The participants had gone
through courses on formal methods at some points of
their studies. The participants were in the final semester
of their respective courses and thus had reasonable
amount of experience and knowledge of software
development. Some of the Master students had some
industrial experience for at least one year.
 The participation was voluntary where the
questionnaires were completed anonymously and
submitted at the end of the semester. The participants
were aware that the survey was intended for research
purposes. The survey adhered to the ethical policies and
guidance for conducting research involving human
participants. In particular, the materials and procedure
used in the survey had been reviewed and approved by
the institution’s Ethics Committee.

RESULTS

 Due to the extensiveness and confidentiality of the
data, they are not presented in this study (Readers may
obtain the raw data by contacting the corresponding
author at rozila@ftsm.ukm.my). This study however
discusses the findings of the analysis. The survey aimed
to identify the important features or functionality that
should be available in verification tools for them to be
usable to new users. To achieve this objective, the
survey employed the grounded theory approach for the
data analysis. The approach enables the categorisation
of features based on specific properties and dimensions.
The use of CD and ISO’s usability criteria was not
intended to be the properties that determine the
categorisation. Rather, they were used as a means for
the analysis to identify common features that emerged
from the data. In other words, they acted as a medium
for a broad-brush analysis. The captured features may
not be necessarily sufficient. However, they are
believed to be the essential conditions for verification
tools to be usable. The assumption behind the analysis
is that the frequently emerged features are indeed the
ones that are highly valued and expected by users from
such tools.
 A set of feature properties have been identified
from the data. The properties enable a formation of
several discrete categories. The properties are indeed
interrelated, thus the categories are connected through
them. Each property has dimensions that describe its
specific usability characteristics. There are three main
categories discovered during the analysis, namely
Interface, Utility and Resources Management.

J. Computer Sci., 6 (10): 1189-1198, 2010

1193

Table 2: Properties and dimensions of “Interface”
Property Dimension
Menu Utilities are defined and grouped using clear and self-explanatory headings
 Available utilities can be easily searched and inferred from the headings
 No superfluous and redundant utilities
 Utilities are arranged and controlled by task ordering (i.e., enabled/disabled based on task at hand)
 Commonly used utilities are available as icons on toolbar, shortcut keys and right click options
 Utilities match closely the principles of underlying method
 Supporting utilities are available and can be set (i.e., add notes/comments, preferences for editing/viewing models)
Panes Width of panes can be resized
 Panes can be closed/collapsed/minimized and reopened/expanded/maximized
 Allow “Split View” to view different parts of the same model
 Allow “Cascade/Tile” or tabs to view different models
 Allow scrolling
Dialogue Appear appropriately as in standard practice (i.e., to inform status, to confirm decision)
 Use conventional buttons with standard meanings (i.e., <OK> to confirm and <CANCEL> to defer)
 Not all dialogues should be closed to proceed (e.g., online help windows can be displayed and remain while model editing)

Utility is the main functionality of verification tools. To
perform as intended, Utility requires Interface and
Resources Management. The properties of Utility are
therefore interrelated with the properties of the other
two categories. The following paragraphs list the
categories and properties. The corresponding
interrelated properties are stated in the parentheses in
the table of Category 2 (C2): Utility.

Category 1 (C1): Interface: This category refers to the
structure and organization of screen layout and utilities.
Table 2 lists the necessary properties and dimensions.
 Menu concerns the presentation and arrangement
of utilities so that they can be easily searched and
interpreted. Utilities should be defined and grouped in a
logical way with simple and self-explanatory headings.
The tasks involved in verification tools are normally
complex, thus only the necessary utilities should be
presented. As formal modeling imposes specific rules
and sequence of events, it may be better if the utilities
are arranged and controlled in certain orders. This is to
ensure that users are clear of what to be done without
being overwhelmed with superfluous utilities. To
expedite tasks, commonly used utilities should be made
available in mediums other than the menu bar such as
the use of toolbar and short-cut keys. Moreover, the
utilities must represent closely the principles of the
underlying formal methods so that users can smoothly
apply the methods. The utilities should be controlled by
the way they should be used. As formal modeling is
mainly rigid, users should be offered with supporting
utilities that can be set as needed. This is to ease the
understanding of the models.
 Panes should be made flexible enough for users to
view different parts of a model and switch between
different models. This is particularly essential when
performing model editing and modification. Formal
models such as B are lengthy, thus the tools should
facilitate the viewing of distant parts of a model. In fact,

B involves several stages of development that represent
different perspectives. Users are more likely to compare
the model of one stage to the other. While it is
necessary to be able to view several parts or models at
the same time, the tools should also allow users to
resize, open and close the panes as needed. This is to
avoid cluttering the screen with many views.
 It is a norm for tools to communicate with users
when certain operations are executed. Dialogues are
intended to inform users about the current and future
actions and to display information for reference. To be
useful, the dialogues should be available only when
they are expected. Dialogue windows normally require
users to select one of the options or buttons before
proceeding with the next action. However, some
dialogue windows contain information that guides users
through the process. These windows should be allowed
to remain while users executing the action. This is
particularly necessary for formal modeling due to the
complexity of the tasks.

Category 2 (C2): Utility: This category refers to the
utilities required for formal modeling. Table 3 lists the
necessary properties and dimensions.
 The notation used in formal models is normally
textual. Thus, it is essential for users to be able to do
editing and formatting to the text. The tools are
generally expected to perform similar operations such
as in other text editors or word processing applications.
At the very least, the appearance of the text can be
changed, its location can be moved and searched and
users can revert to previous actions. Users also should
be able to treat models as document files where they
can be changed to different forms and locations. To
facilitate the editing and formatting task, the most
common utilities should be handy. Moreover, the tools
should provide enough working space for performing
the task and facilities for users to communicate
informally the model to themselves. Reference should
be available whenever needed.

J. Computer Sci., 6 (10): 1189-1198, 2010

1194

Table 3: Properties and dimensions of “Utility”
Property Dimension
Editing and formatting Text can be formatted (i.e., size, color), edited (i.e., cut, paste, undo, redo) and searched (i.e., find and
 replace, go to) (C1: Menu)
 Model/file can be organized and manipulated (i.e., save as different file, print) (C1: Menu; C3: File Management)
 Commonly used utilities for formatting and editing are available on the toolbar as well as shortcut keys and
 right-click options (C1: Menu)
 Pane for editing is wide for viewing most parts of a model (C1: Panes)
 Informal information can be added to model and editing preference can be set (C1: Menu)
 Reference is available whenever needed (C3: Online Documentation)
Syntax checking/analysis Syntax are checked automatically and instantly (e.g., missing brackets and punctuation, typing errors on
 keywords, incorrect types) with explanation of what have been found (C1: Dialogue; C3: Error Management)
 Unresolved syntax and type errors are communicated clearly and specifically (C1: Dialogue; C3: Error Management)
 Performed before animation and verification (C1: Menu)
 Reference is available whenever needed (C3: Online Documentation)
Animation Automatic and semi-automatic with information of what happening; Semi-automatic animation is guided
 (C1: Dialogue; C3: Error Management)
 Different approaches to animation are available to view animation from several perspectives (C1: Menu)
 Use graphical representation with appropriate color coding to demonstrate animated elements (C1: Menu; C3:
 Interoperability)
 Animated elements can be viewed easily (i.e., zooming, side-by-side) and manipulated (i.e., print, save)
 (C1: Panes; Menu; C3: File Management)
 Encountered errors are communicated clearly and specifically (C1: Dialogue; C3: Error Management)
 Current status and possible effects are communicated (C1: Dialogue)
 Backtracking is possible but guided with explanation (C1: Dialogue)
 Reference is available whenever needed (C3: Online Documentation)
Verification Automatic and semi-automatic with information of what happening; Semi-automatic verification is guided
 (C1: Dialogue; C3: Error Management)
 Different approaches to verification are available to verify model from several perspectives (C1: Menu)
 Use appropriate color coding or objects to indicate and highlight elements/process (C1: Menu)
 Verified elements can be viewed easily (C1: Panes)
 Perform within reasonable time (C3: Interoperability)
 Encountered errors are communicated clearly and specifically (C1: Dialogue; C3: Error Management)
 Current status and possible effects are communicated (C1: Dialogue)
 Reference is available whenever needed (C3: Online Documentation)
Code generation Model may be transformed to code automatically (C3: Interoperability)
 Different types of code generation are available (C1: Menu)
 Encountered errors are communicated clearly and specifically (C1: Dialogue; C3: Error Management)
 Current status and possible effects are communicated (C1: Dialogue)
 Reference is available whenever needed (C3: Online Documentation)

 Being able to check the accuracy and consistency
of a model is the main advantage of formal modeling.
Formal notations are very rigid and specific. There is
always a tendency for users to use symbols incorrectly,
specify inappropriate data types and overlook
keywords. Thus, it is essential for the tools to perform
syntax checking/analysis automatically with the
necessary explanation of what have been found. Users
must be informed appropriately about any misuse and
missing elements. The checking acts as the first error
filter before more complex tasks are performed.
Reference should be available whenever needed.
 Verification tools should have an Animation
facility, which allows users to visualise model behavior
under the stated conditions and rules. The facility may
be available in several different mediums and can be
done automatically and semiautomatic ally. Automatic
animation is only feasible for accurate and consistent
models. Therefore, semiautomatic animation is useful
for users to identify specific points where rules

violation and unintended behaviors occur. Backtracking
should also be available for the purpose. As
troubleshooting can be complex, the tools should have a
mechanism to guide users through the process. To ease
understanding, the animation should use graphical
representation with appropriate color coding. Models
can be large, thus the facility should facilitate the
viewing. Users should be informed about any errors
encountered, current status and possible effects.
Reference should be available whenever needed.
 Verification is regarded as the most difficult task
to perform on a formal model. It is where the
accuracy and consistency of the model are
confirmed. Therefore, the tools should be able to
prove the model automatically as much as possible.
Otherwise, users should be guided so that they can
better understand their own model and the
verification process. Understanding is crucial, as
some aspects of the task cannot be performed automatically.

J. Computer Sci., 6 (10): 1189-1198, 2010

1195

Table 4: Properties and dimensions of “Resources Management”
Property Dimension
Platform Tool can be set up in various platforms
 Installation and configuration can be easily executed and supported by comprehensive documentation
File management Files are managed and monitored systematically
 Consistency among interrelated files are ensured
 Changes are controlled, checked and reported
Interoperability External applications are integrated seamlessly and operate as intended
 Different elements (internal and external) interact with each other in an efficient manner
 Installation and configuration can be easily executed and supported by comprehensive documentation
Error management Error messages are descriptive: What errors, which parts, why they occur and possible solutions
 Error messages are simple but precise
 Error messages are displayed at the right time and place
 Error messages are displayed clearly so that they are legible
 Almost complete and reliable proof library is available for performing tasks and generating reliable/correct error messages
Online documentation Simple and comprehensive documentation on the available utilities
 Summary of syntax used in model and its mapping with keyboard entries (e.g., B syntax and ASCII and special symbols)
 Some external links about information on method (e.g., hypertext links to B method and tools), discussion forum or
 “Frequently Asked Questions”
 Some examples and demonstrations about the tool and method
 “Tool text tip” or brief description are available for utilities on the toolbar and elements on any other bars
 A shortcut key to online help is available
 Reference on correcting common errors

For instance, an incomplete model cannot be verified,
thus users must be aware of the missing elements. Users
should also know how to glue the new elements to the
ones that are already specified in the model so that their
conditions and actions do not conflict with each other.
Animation can also ease the understanding through
model visualization. Several different approaches may
be available for users to verify the model. Visual
indicators such as colors or objects can be used to
indicate important elements. Elements involved in the
verification task should be visible and the task is
performed as efficient as possible. Similar to
Animation, users should be informed about any errors
encountered, current status and possible effects.
Reference should be available whenever needed.
 Some formal methods are invented to support
several stages of development cycle. For instance, B
encourages its abstract models to be refined. A refined
model at a sufficiently low level can be translated
automatically into code. Verification tools that support
such methods should thus facilitate code generation.
Ideally, users should be provided with several options
of implementation. At the very least, the tools should
include the implementation language that supports the
method best. Similar to other tasks, users should be
informed about any errors encountered, current status
and possible effects. Reference should be available
whenever needed.

Category 3 (C3): Resources management: This
category refers to the management of entities that are
related to the execution of utilities. Table 4 lists the
necessary properties and dimensions.

 Users should be given several options of running
the tools. The tools should cater several different
Platforms so that users can select the one that suits their
environment. The installation and configuration should
be made as simple as possible and should be supported
by comprehensive documentation.
 Formal models normally evolve from one stage of
development to the other where the latter stage depends
on the former. This is called refinement. Therefore, it is
necessary for the tools to have a File Management
mechanism to manage and monitor the gradual
development. Furthermore, any changes made in one
stage should be reflected in other related stages to
ensure model consistency. Users should be informed of
the process and have the opportunity to decide.
 Some utilities may need the services provided by
other independent applications. For instance, the
animation facility may need visualization software.
Interoperability should be ensured by seamlessly
integrating separate applications as one unit. Moreover,
internal and external utilities should be made
compatible with each other to ensure process efficiency.
If the independent applications have to be obtained by
users themselves, the information about the location of
the resources should be made available. The
documentation of how to install and integrate the
applications with the tools should also be provided.
 Error management is of critical importance to
verification tools. Formal methods in general are
difficult to grasp instantly where users’ rate of learning
can be slow. The tools should generate error messages
that do not only explain explicitly what goes wrong but
also facilitate learning. To avoid unnecessary mental
burden, the error messages should be made simple,

J. Computer Sci., 6 (10): 1189-1198, 2010

1196

precise and timely. Some errors have to be solved by
users themselves due to incomplete specification of
requirements. Even so, users should be provided with
guided error messages to help identifying missing
information. Other than those errors, the tools should be
able to solve. To be effective, the tools must include a
proof library that contains as many rules as possible so
that it can detect most inconsistencies and inaccuracies.
 The complexity of the tasks requires online
documentation to be easily accessible to users. The
documentation should not only cover the functionality
of the tools but also the underlying methods and how
the tools support the methods.

DISCUSSION

 The categories, interrelated properties and
dimensions described above are intended to act as a
guideline for designing verification tools. As the survey
was the first attempt to understand the usability of such
tools, the guideline is not expected to be comprehensive
and complete. In fact, it considers only the most
important features, which are believed to particularly
influence the usability of the tools. To improve the
accuracy of the guideline, further investigation and
discussion are needed so that it can be confirmed and
refined.
 The guideline is presented in an abstract way in
order to embrace all possible verification tools. It is
assumed that any design plan of a particular verification
tool should elaborate the dimensions more specifically
to fit the tool’s context of use. Some trade-offs are
expected where certain dimensions may need to be
compromised in order to gain the benefits of others. For
instance, online documentation and error messages may
need to be lengthy in order to be comprehensive. They
may thus become difficult to view on screen. Similarly,
in order to view several elements at the same time, the
screen space has to be divided into several panes. Tool
designers therefore have to decide the best compromise.
 Threats to validity are influences that may limit the
ability to draw conclusions from the data. The
following paragraphs discuss some threats of the
survey.

Instrument: The survey aimed to discover as many
features as possible that can ensure the usability of
verification tools. It employed the CD framework and
several usability criteria of ISO as its instruments. The
instruments used may have not been sufficient to
explore all features. On the other hand, it is better to
start with some criteria that could guide the
investigation and act as a discussion tool. At the very

least, they allow some aspects to be discovered which
can be further explored in future.

Selection of respondents: Some of the respondents
were students from the university where the research
was conducted. Therefore, their answers might have
been bias either in positive or negative ways. They
however were independent users, who had no personal
interest with the technologies involved or direct contact
with the research. To reduce the threat, the subjects
were advised to give opinions and comments as
sincerely as possible.

Students as respondents: The respondents of this
survey were students. They may have not represented
software developers as they were less experience and
perhaps were likely less motivated. However, the
respondents were in the final semester of their courses
and had reasonable amount of experience and
knowledge of software development. Moreover, the
respondents were considered as the most appropriate
candidates for the survey because they were new users
of ProB and B-Toolkit and verification tasks. Hence,
they fitted the objective of the survey.

Toy problem: The coursework that required the
respondents to use the tools was not large. However,
the coursework was believed to be sufficient for the
respondents to experience the tools and verification
tasks.

Dependent variables: The dependent variables of
survey were the fourteen dimensions of CD and four
usability criteria of ISO. They survey might have used
other variables. But, these variables were seen as
appropriate for measuring the usability because they
covered both notational and operational aspects. Their
validity and appropriateness as a measure of usability
has been assessed to some degree by their authors.

Nature of study: Surveys and qualitative measures by
their nature are retrospective. Therefore, there was a
risk that the respondents responded based on what they
thought they did rather than what they actually did.
Advising the respondents to complete the survey
questionnaire as soon as they did the modeling task
could have reduced this threat, as the respondents still
remembered of what he or she found during the task.

Heterogeneity of respondents: The respondents might
have different ability and experience. Thus, there was a
risk that the results might have been affected by
individual differences. This could not be avoided. As a

J. Computer Sci., 6 (10): 1189-1198, 2010

1197

qualitative study, the variation however could provide
richer data for the analysis.

Selection of instances: The survey considered only two
instances of verification tools. In fact, they are tools of
one particular formal method, namely B. The results
therefore may be bias and may not represent all
possible verification tools. The findings of this survey
should be thus confirmed and refined in future studies.

CONCLUSION

 This study has presented a survey conducted on
ProB and B-Toolkit. They represented two instances of
verification tools. The survey attempted to understand
the nature of experience of using verification tools. It
aimed to explore basic features that are expected to be
present in verification tools for them to be usable to
new users. The survey used the Cognitive Dimensions
of Notations (CD) framework and the International
Organization for Standardization’s (ISO) usability
criteria as the medium of exploration. The use of the
grounded theory approach for the data analysis enabled
the identification of abstract concepts and properties of
usable verification tools. The concepts and properties
formed a guideline, which can be used by tool designers
when designing verification tools.
 There are three main elements that could
potentially affect the usability of verification tools.
They are the interface that organizes the tools’ utilities,
the tools’ main utilities and the management of
resources that support the main utilities. Each of the
elements has specific properties and dimensions for it to
be usable. The elements however are interrelated
through their properties. Moreover, one dimension may
need to be compromised in order to achieve other
dimensions. The three elements therefore should be
considered together when designing verification tools.
Tool designers should aim for dimensions that best suit
their tools’ context of use.
 The survey proposes a design guideline for
verification tools to be useful. As the guideline was
generated based on two instances of verification tools,
it may not cover all the necessary usability features.
Therefore, future studies are encouraged to investigate
other verification tools so that the guideline could be
refined and extended. This includes verification tools of
other formal methods such as Z. Meanwhile, studies
could also extend the guideline by considering the
design aspects more technically. For example, the input
and output devices and dialogue techniques that best
present the utilities could be investigated. Such studies
require theories and principles from Human Computer
Interaction (HCI) discipline.

ACKNOWLEDGEMENT

 This study was funded by the Malaysian
Government and University Kebangsaan Malaysia. The
author thanks all the participants who responded to the
survey.

REFERENCES

Abrial, J.R., A. Hoare and P. Chapron, 1996. The B-

Book: Assigning Programs to Meanings. 1st Edn.,
Cambridge University Press, Cambridge, ISBN:
10: 0521496195, pp: 813.

B-Core(UK) Ltd., 1999. B-Toolkit. B-Core(UK)
Limited. http://www.b-core.com/btoolkit.html

Blackwell, A.F. and T.R.G. Green, 2000. A cognitive
dimensions questionnaire optimized for users.
Proceedings of the 12th Annual Meeting of the
Psychology of Programming Interest Group, Apr.
2000, PPIG Press, Cozenza Italy, pp: 137-152.
http://www.ppig.org/papers/12th-blackwell.pdf

Carew, D., C. Exton and J. Buckley, 2005. An
empirical investigation of the comprehensibility of
requirements specifications. Proceedings of the
International Symposium on Empirical Software
Engineering, Nov. 18-18, IEEE Computer Society,
Noosa Heads, Qld., pp: 256-265. DOI:
10.1109/ISESE.2005.1541834

Cassell, C. and G. Symon, 1994. Qualitative Methods
in Organizational Research. 1st Edn., Sage
Publication, Thousand Oaks, CA., ISBN: 10:
0803987706, pp: 266.

Chen, P.P., 1976. The entity-relationship model:
Toward a unified view of data. ACM Trans.
Database Syst., 1: 9-37. DOI:
10.1145/320434.320440

Clarke, E.M., O. Grumberg and D.A. Peled, 1999.
Model Checking. 1st Edn., MIT Press, USA.,
ISBN: 10: 0262032708, pp: 314.

ClearSy, 2003. Atelier B user manual V3.6. ClearSy
System Engineering. http://www.clearsy.com

Denzin, N. and Y. Lincoln, 1994. Handbook of
Qualitative Research. 2nd Edn., Thousand Oaks,
Sage Publication Ltd., CA., ISBN: 10:
0761915125, pp: 1143.

Green, T.R.G. and A.F. Blackwell, 1998. Design for
usability using cognitive dimensions. Proceeding
of the Tutorial Session at the British Computer
Society Conference on Human Computer
Interaction, (HCI’98), Sheffield, UK., pp: 1-75.
http://www.cl.cam.ac.uk/~afb21/CognitiveDimensi
ons/CDtutorial.pdf

J. Computer Sci., 6 (10): 1189-1198, 2010

1198

Green, T.R.G. and M. Petre, 1996. Usability analysis of
visual programming environments: A cognitive
dimensions framework. J. Vis. Lang. Comput.,
7: 131-174. DOI: 10.1006/jvlc.1996.0009

Green, T.R.G., 1989. Cognitive Dimensions of
Notations. In: People and Computers V, Sutcliffe,
A. and L. Macaulay (Eds.). Cambridge University
Press, Cambridge, pp: 443-460.

ISO/IEC 9126-1, 2001. Software engineering, product
quality-part I: Quality model (Standard No. 9126-
1). International Organization for Standardization.
http://www.iso.org/iso/catalogue_detail.htm?csnum
ber=22749

Leuschel, M. and M. Butler, 2003. ProB: A model
checker for B. Lecture Notes Comput. Sci.,
2805: 855-874. DOI: 10.1007/978-3-540-45236-
2_46

Martin, S., 2003. The best of both worlds integrating
UML with Z for software specifications. J.
Comput. Control Eng., 14: 8-11. DOI:
10.1049/cce:20030201

Object Management Group, 2010. Introduction to
OMG’s Unified Modeling Language (UML).
Object Management Group.
http://www.omg.org/gettingstarted/what_is_uml.htm

Snook, C. and M. Butler, 2006. UML-B: Formal
modeling and design aided by UML. ACM Trans.
Software Eng. Methodol., 15: 92-122. DOI:
10.1145/1125808.1125811

Spivey, J.M., 1992. The Z Notation: A Reference
Manual. 2nd Edn., Prentice-Hall, Englewood
Cliffs, ISBN: 13: 9780139785290, pp: 150.

Strauss, A.L. and J. Corbin, 1998. Basics of Qualitative
Research: Techniques and Procedures for
Developing Grounded Theory. 2nd Edn., Sage
Publication, Thousand Oaks, California, ISBN:
0803959397, pp: 366.

ProB, 2010. The ProB animator and model checker.
ProB. http://www.stups.uniduesseldorf.de/ProB/

