
Journal of Computer Science 6 (10): 1208-1211, 2010 
ISSN 1549-3636 
© 2010 Science Publications 

Corresponding Author: J. Frank Vijay, Department of Information Technology, Pannimalar Engineering College, Chennai, India 
1208 

 
A Comparative Analysis of Software Engineering with Knowledge Engineering 

 
1J. Frank Vijay and 2C. Manoharan 

1Department of Information Technology, Pannimalar Engineering College, Chennai, India 
2VSA Group of Institutions, Salem, Tamil Nadu, India 

 
Abstract: Problem statement: Software engineering is not only a technical discipline of its own. It is 
also a problem domain where technologies coming from other disciplines are relevant and can play an 
important role. One important example is knowledge engineering, a term that we use in the broad sense 
to encompass artificial intelligence, computational intelligence, knowledge bases, data mining and 
machine learning. We see a number of typical software development issues that can benefit from these 
disciplines and, for the sake of clarifying the discussion, we have divided them into four categories: (1) 
planning, monitoring and quality control of projects, (2) The quality and process improvement of 
software organizations, (3) decision making support, (4) automation. Approach: First, the planning, 
monitoring and quality control of software development was typically based unless it is entirely ad-hoc 
on past project data and/or expert opinion. Results: Several techniques coming from machine learning, 
computational intelligence and knowledge-based systems had shown to be useful in this context. 
Second, software organizations are inherently learning organizations, that need to improve, based on 
experience and project feedback, the way they develop software in changing and volatile 
environments. Large amounts of data, numerous documents and other forms of information are 
typically gathered on projects. The question then became how to enable the intelligent storage and use 
of such information in future projects. Third, during the course of a project, software engineers and 
managers have to face important, complex decisions. They need decision models to support them, 
especially when project pressure is intense. Techniques originally developed for building risk models 
based on expert elicitation or optimization heuristics can play a key role in such a context. The last 
category of applications concerns automation. Many automation problems, such as test data 
generation, can be formulated as constraint solving problems. A number of metaheuristic algorithms 
can be adapted for that purpose and have shown to be practically usable and flexible to adjust to 
numerous situations. Conclusion: This study discussed all the points above, identify open issues and 
future research directions and provide some carefully selected, key pointers for further reading. 
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INTRODUCTION 

 
Planning, monitoring and quality control: Like any 
human-intensive production/engineering activity, 
software development needs reliable techniques to plan 
resource expenditures and monitor, assess and control 
product quality. More precisely, project expenditures 
need to be predicted and significant deviations need to 
be monitored. This requires the construction of accurate 
prediction models and heuristics to detect significant 
deviations and take remedial actions. With respect to 
prediction, a number of techniques coming from 
machine learning have shown to be useful. Examples 
are decision trees (Briand and Wuest, 2002) and rough 
sets (Harman and Jones, 2001).  
 The main advantages of these techniques can be 
described as follows: 

• They can easily handle qualitative, categorical 
data, which are common in software engineering 

• They produce models that are easier to interpret, 
which is important in our case as we would like to 
understand what factors affect software 
development productivity and quality 

• They enable the discovery of certain structures in 
data sets, e.g., variable interactions in 
decision/regression trees 

 
 Computational intelligence, with techniques such 
as neural networks (Keung et al., 2004), can also play a 
role. Neural networks are good at building complex, 
non-linear prediction models. They do not require any 
assumption regarding the functional form of the 
relationships between predictors and the variable to be 
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predicted. However, their usage may be tedious (i.e., 
the training phase) and the interpretation of the 
resulting models difficult. This stems from the fact that 
it is difficult to deduce the type and form of 
relationships between variables from a neural network. 
 Fuzzy set theory has also been used to help with 
software engineering prediction models. The main 
motivation is that, as mentioned above, the data that 
prediction models rely on can be of qualitative and 
subjective nature (e.g., Team Cohesion cost driver in 
COCOMO II (Chulani et al., 1999). Fuzzy sets have 
been designed to deal with linguistic uncertainty and 
can help model the uncertainty associated with some of 
the subjective model parameters and input data which 
are elicited from expert opinion. In other words, when 
the user of prediction models have to provide 
qualitative values (e.g., categories) in input, fuzzy set 
theory can allow them to grant different levels of 
memberships to various categories, thus reflecting their 
uncertainty about the model inputs. Such uncertainty 
has, however, to be accounted for in the prediction 
model outputs. 
 Another interesting strategy that has been used in 
the context of quality and cost prediction models is 
Case Based Reasoning (CBR) (Vijay and Manoharan, 
2009; Khoshgoftaar et al., 1995). The basic principle of 
CBR is to define a similarity function or measure and 
use it to retrieve similar projects to reuse their cost or 
quality data as a basis for prediction. However, it 
requires that a similarity function be defined 
beforehand. But in software engineering we are very 
often in a situation where we attempt to uncover trends 
from data and we are not a position to define such a 
similarity function. With respect to cost estimation, 
results have so far been rather disappointing (Briand 
and Wieczorek, 2001) and this result very likely stems 
from the difficulty to define an appropriate similarity 
function. 
 We have seen that many models (e.g., cost models) 
cannot, due to practical constraints, be built solely 
based on data (Briand et al., 1998). Therefore, eliciting 
expert opinion and modeling expert knowledge is 
sometimes key to developing prediction systems. 
Ideally, software engineering prediction models should 
combine expert opinion and project data. For example, 
the COCOMO II (Chulani et al., 1999) model is based 
in part of expert opinion. One important question is 
then how to integrate expert opinion and project data 
into common models. Techniques such as Bayesian 
analysis (Chulani et al., 1999) and expert opinion 
elicitation techniques combined with Monte Carlo 
simulation (Briand et al., 1998) have been used in the 
area of cost estimation. The latter technique has also 

been used for technology evaluation in the context of 
inspections (Briand et al., 2000a). We are in the process 
of developing a hybrid techniques which uses the 
concept of both software engineering and knowledge 
engineering (Vijay and Manoharan, 2009; Keung et al., 
2004). 
 
Software learning organizations: Within an 
organization, experience and knowledge acquired on 
past software projects can be used to improve practices 
on future projects. For example, it may be important to 
know whether a requirements engineering technique 
has worked well on past projects, what were the 
benefits and challenges, what the project participants 
felt should be done to improve the way it was used or 
automated. The main reason is that, in software 
engineering, it is difficult to know a priori whether a 
given technique or method will fit well with the 
problems at hand and existing practices. Corporate 
learning, based on experience, then becomes key to the 
effective adoption of new practices and 
productivity/quality improvement. 
 However, to achieve such an objective, best 
practices, lessons learned, models and data need to be 
made accessible and reusable across an organization. 
Different issues have to be addressed to make this 
possible: 
 
• Technical issues: Data and documents need to be 

stored and retrieved in an efficient manner. 
Knowledge bases need to be designed and 
maintained and connected to the company intranet 
for corporate-wide accessibility. Security issues 
then arise as a result as some of the information 
may be confidential 

• Organizational issues: Such knowledge bases need 
to be fed by projects. Data, information and 
documents need to be provided in a consistent 
form, based on agreed-upon structure and content. 
The information provided must be precise, accurate 
and complete. This requires a certain 
organizational discipline with procedures that are 
defined and enforced 

• Cognitive issues: Users accessing such knowledge 
bases may be faced with tremendous amounts of 
information, most of it being irrelevant to the 
problem at hand. It is therefore important to reduce 
the cognitive load of the user by allowing him to 
retrieve, in an efficient and precise manner, 
relevant information 

 
 In this context, the design and maintenance of 
corporate wide knowledge bases then become a key 
issue to address. 
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 Well-known and mature technologies exist to 
address the technical issues related to the design and 
maintenance of knowledge bases. The organizational 
issue has been addressed by the Quality Improvement 
Paradigm (Basili and Caldiera, 1995) and the 
Experience Factory Model. The Quality Improvement 
Paradigm (QIP) provides steps and guidelines about 
how an organization can go about improving itself 
based on project experience. The Experience Factory 
Model provides a model of corporate infrastructure that 
needs to be put in place to support the QIP. 
 Cognitive issues can be addressed by using 
techniques such as Case-Based Reasoning (CBR) 
(Vijay and Manoharan, 2009; Gresse et al., 2001) to 
retrieve relevant pieces of information in a knowledge 
base. For example, similar past projects can be retrieved 
based on a description of a new project and relevant 
lessons learned on various technologies and process 
issues can be retrieved, e.g., the usage of inspections. In 
this case a similarity measure between projects would 
need to be defined and, in practice, it would probably 
require the use of expert opinion. Furthermore, 
Incomplete data (e.g., project descriptions), the use of 
categorical variables and taxonomies (e.g., project 
types) and the use of various measurement scales are 
additional issues to address in defining similarity. 
 Numerous, complex decisions have to be made 
during software development and maintenance. For 
example, one may want to decide what should be the 
order of development and integration of components in 
a system (Briand et al., 2002), whether a given 
document needs further inspection before being 
approved (Briand et al., 2000b) and used for the next 
phases of development, or whether an inspection 
technique at a given stage of development is beneficial 
(Briand et al., 2000a). Such types of decisions are 
usually not trivial. They typically involve a certain level 
of risk and substantial resources are at stake. 
 Some of these decision problems can be 
reformulated as optimization problems. For example, the 
integration order problem above can be reformulated as a 
combinatorial optimization problem and techniques such 
as genetic algorithms or simulated annealing can help 
find near optimal solutions (Briand et al., 2002). The 
advantage of such metaheuristic techniques (Vijay and 
Manoharan, 2009), as they are referred to, is their 
flexibility. The objective function to be minimized is 
often to be tailored to specific situations. Such 
heuristics, as opposed to mathematical optimization 
techniques, enable such tailoring without changes to the 
optimization algorithms and automation. Furthermore, 
meta-heuristics allows us to solve complex, non-linear 
optimization problems that are not always addressable 

by conventional mathematical optimization techniques 
(Vijay and Manoharan, 2009). Their drawback tough is 
that there is no absolute guarantee such heuristics will 
provide near optimal solutions. Only case studies and 
experimentation can help us determine whether they are 
adequate for a problem and under which conditions. 
 Not all decisions can be formulated as an optimization 
problem. In some cases, the parameters that have a strong 
influence on a decision outcome are not known or can 
only be estimated with a certain level of uncertainty.  This 
is the case of the inspection cost-benefit evaluation 
example mentioned above (Briand et al., 2000a). In 
general, to decide about using a technology, one usually 
needs to formulate a cost benefit model and possibly 
perform some simulation to account for the multiple 
sources of uncertainty in the model inputs and 
parameters (Briand et al., 2000a). However, in practice, 
even when carefully considering simplifying 
assumptions, such models depend on parameters that 
are not only unknown but specific to a particular 
development environment and for which we cannot 
collect data. Fortunately, there exists a large body of 
literature on expert estimation, which has been used, for 
example, in the nuclear industry to build risk models. 
Reported techniques have shown, under certain 
conditions, to be very useful to help estimate unknown 
model parameters.  
 
Automation: Many activities in software engineering 
need to be automated so as to make methods and 
techniques economically viable. One good example is 
the generation of test data. In most cases, whether we 
refer to unit, integration, or functional testing, test 
strategies are defined based on coverage criteria, e.g., 
cover all control flow edges in a procedure. As a result, 
in many situations, generating appropriate test cases 
consists in finding test data that are compliant with a set 
of logical constraints, e.g., conditions determining the 
control of execution in a procedure. This exercise is 
very tedious and error-prone. 
 Fortunately, a number of research articles (Vijay 
and Manoharan, 2009; Pedrycz and Peters, 1998) have 
shown that metaheuristic techniques can also be used in 
this context. For example, based on constraints, an 
objective function can be defined in the context of 
genetic algorithms in order to ensure convergence of 
the algorithm towards acceptable input data. Initial 
results suggest this is feasible but more empirical 
investigations are however needed to determine the best 
ways to use those techniques and assess their 
limitations to address software engineering issues. 
Though many techniques are available and have been 
experimented with, software engineering problems 
provide new contexts in which to use them. 
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CONCLUSION 
 
 From the discussions above, we have seen that a 
wealth of knowledge engineering, artificial and 
computational intelligence techniques can be used to 
address a number of important software engineering 
issues. Though we have focused on techniques and 
problems on which we already have experience, it is 
clear that this study only scratches the surface. The 
potential for cost-effective applications in software 
engineering is enormous. 
 Expectedly, most of the techniques discussed here 
are based on heuristics. What this implies is that they 
can only be validated through experimentation and case 
studies. And they need to be investigated for each 
problem to be addressed and under realistic conditions. 
Only then we can determine whether they are 
applicable, economically viable and under which 
conditions this is the case. 
 It is therefore important not to fall into the trap of 
blindly using knowledge engineering techniques to 
arbitrary software engineering techniques. The well-
known “hammer nail” dilemma should be avoided as it 
could lead to substantial waste of effort and negatively 
affect the perception that there is an important role to 
play for knowledge engineering in software 
development. The knowledge engineering community 
needs to make a conscious effort to understand the 
reality of software engineering challenges and 
technologies. In a similar way, software engineers need 
to get educated on the latest developments in 
computational intelligence, knowledge engineering, 
machine learning and hybrid techniques of estimation. 
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