
Journal of Computer Science 6 (5): 585-590, 2010 
ISSN 1549-3636 
© 2010 Science Publications 

Corresponding Author: Ossama K. Muslih, Department of Software Engineering, Faculty of Science and Information Technology, 
  Alzaytoonah University of Jordan, Jordan  

585 

 
Increasing Database Performance through Optimizing  

Structure Query Language Join Statement 
 

1Ossama K. Muslih and 2Imad Hasan Saleh 
1Department of Software Engineering, Faculty of Science and Information Technology,  

Alzaytoonah University of Jordan, Jordan 
2Department of Computer Science, Faculty of Information Technology 

Amman Arab University of Jordan, Jordan 
 

Abstract: Problem statement: A join statement is a select statement with more than table in the 
FROM clause. A join predicate is a predicate in the WHERE clause that combines the columns of two 
of the tables in the join. Any database gives you the ability to join various tables together through 
different types of joins, resulting large number of rows to process. Query language can be used to 
join these tables and as it is well known query language should be declarative, so we can write 
alternative formulas to perform join statements. Different formulas provide variation in 
performance. Approach: This research presented a transparent middle layer between application 
interface front end and database back end. Results: The responsibilities of this layer were catching the 
SQL commands sent by application before reaching the database then examining these commands to 
see if they join more than one table, after that rewriting the SQL command taking into consideration 
the order of executing join predicates and none join predicates. This research focused on rewriting the 
SQL commands without application modification. Conclusion: Rewriting stage is the most complex 
stage because the system will restructure the SQL command with new syntax taking two things in its 
consideration, the first one was rewriting the command with better performance syntax after getting the 
help from recommendation dictionary, the second one was resulting the same data (output) as previous 
old command. 
 
Key words: Join predicate, driving table, inner table, nested loop join, sort-merge join and 

materialized views 
 

INTRODUCTION 
 
 Most of relational database management systems 
RDBMSs provide facilities to see the execution plan for 
any SQL statement. And from these execution plans we 
can see the problem of the command and why it takes 
more time that it should take. A poor command can be 
discovered by monitoring some facts such as, the 
command which makes a lot of disk access or makes 
full table scan to read a small number of data. Another 
fact is the execution plan shows that the SQL command 
do not use indexes related to selected table (Bryan and 
Hinze, 2003). 
 The output of a query optimizer for a declarative 
query statement is called a Query Execution Plan 
(QEP). The structure of a QEP determines the order of 
operations for query execution. The QEP is typically 
represented using a tree structure where each node 
represents a physical database operator (e.g., nested 

loop join and table scan). Multiple plans may exist for 
the same query and it is a query optimizer’s top priority 
to choose an optimal plan. To supplement the QEP, 
most query optimizers produce performance related 
information such as cost information, predicates, 
selectivity estimates for each predicate and statistics 
for all objects referenced in the query statement. 
Figure 1 shows an example of nested loop join 
statement (Chris et al., 2003). 
 In nested loop joins one of the tables defined as 
outer table (driving table), the other PDF created with 
table called inner table and for each row in the outer 
table all matching rows in the inner table are retrieved. 
Another way to join two tables is a sort-merge joins. 
Figure 2 shows an example of sort-merge joins (Ramez 
and Navathe, 2004). 
 In sort-merge joins, the two row sources are sorted 
on the values of the columns used in the join predicate. 
If a row source has already been sorted in a previous 



J. Computer Sci., 6 (5): 585-590, 2010 
 

586 

operation, the sort-merge operation skips the sort on 
that row source. Sorting could make this join technique 
expensive, especially if sorting cannot be performed in 
memory. The merge operation combines the two sorted 
row sources to retrieve every pair of rows that contain 
matching values for the columns used in the join 
predicate (Kephart and Chess, 2003). 
 Nested loop joins used when we have small 
number of rows that have a good driving condition 
between the two tables. But a sort-merge joins used for 
large amounts of data or the join condition between 
two tables is not an equijoin. From these two 
examples we find that, we can rewrite the SQL 
statement (change the original statement from old 
syntax to new syntax) and use optimizer hints before 
sending these statements to optimizer. If we rewrite 
the statement in proper way, we can make the 
database optimizer take a good decision and the best 
execution plan for executing the statement. 
 

 
 
Fig. 1: Nested loops join 
 

 
 
Fig. 2: Sort-merge joins 

The problem description: A join statement is a select 
statement with more than one table in the FROM 
clause. A join predicate is a predicate in the WHERE 
clause that combines the columns of two of the tables in 
the join. A non join predicate is a predicate in the 
WHERE clause that references only one table. As in the 
following example if we want to join three tables 
(CLIENTS) table which contains information about our 
clients and (CONFERENCES) table which contains 
information about conferences done by clients and 
(CONFERNCE_DETAILS) table which contains the 
details of the conference. The WHERE clause 
(WHERE CLN.CLN_ID = 
CNF.CNF_CLN_ID_CALLER) and (AND 
CNF_CNF_ID = CNFD.CNFD_CNF_ID) are join 
predicate but (AND CLN_CLN_ID = 2323) is non join 
predicate. 

 
SELECT * FROM 
 CLIENTS CLN, CONFERENCES CNF, 
 CONFERNCE_DETAILS CNFD 
WHERE CLN.CLN_ID = 
  CNF.CNF_CLN_ID_CALLER 
AND CNF.CNF_ID = 
  CNFD.CNFD_CNF_ID 
AND CLN.CLN_ID = 2323 

 
 Determining the sequence of joining more than one 
table is very important decision, joining two tables like 
making a nested loop, so each record in the first table 
(outer or driving table) will be matched with each 
record in the second table (inner or drive table). The 
important thing in joining is placing the non join 
predicate in the first of order of join predicate. By 
making a non join predicate table the driving table of a 
join operation, the RDBMS effectively reduces join 
operation. For example, for a nested loop join, the main 
loop is reduced. The non join predicate results in less 
rows (or no rows at all), so the inner loop is executed 
less (or not at all) (Priya, 2003). 
 Let us take an example with numbers to see how 
much important to select the driving table first. For 
previous SELECT statement let us consider these facts 
for three tables as summarized in Table 1. 

 
Table 1: Tables summary 
 (CLN) (CNF) (CNFD) 
Number of Rows 100,000 1,000,000 10,000,000 
Rows for 1 10,000 100,000 
client ID (2323) 



J. Computer Sci., 6 (5): 585-590, 2010 
 

587 

 If the database starts by joining CNF table with 
CNFD table the join results by (1,000,000*10,000,000) 
1E+13 loops, in spite of that not all data in CNF and 
CNFD tables belongs to CLIENT number 2323 as in 
the SELECT statement, so the database joining the two 
tables for all clients then the database will join the 
resulting data (1E+13) row with CLN table after 
applying the non join predicate (AND CLN_CLN_ID = 
2323) which will result for one record, the total loops 
will be (1E+13*1) for joining the three tables. 
 But if the database starts by joining CLN table with 
CNF table after applying the non join predicate (AND 
CLN_CLN_ID = 2323), the join results by (1*10,000) 
loops, then joining the third table CNFD, the number of 
loops will be (10,000*100,000) 1E+9 loops which is of 
course less than the previous method. 
 
The proposed solution: The proposed solution will 
follow these steps, as in the Fig. 3 taking into 
consideration that the repository is already built and 
will be configured: 
 
1. First we have to connect to target database and 

consolidate the repository with target database to 
get any changes or modifications, then the system 
waits for any SQL command from application layer 

2. The system analyzes SQL command to see if the 
command is using sequential search. Also the 
system may find that the SQL command does not 
need tuning in this step 

3. The system fetches the recommendation dictionary; 
Basically this dictionary contains rules for writing 
the SQL command in tuned syntax. If there is any 
rule satisfies the SQL command the system will 
send the command to rewrite stage else the system 
will leave the command as it is 

 

 
 
Fig. 3: Proposed system design 

4. The system will leave the SQL command as it is if 
there is no rule or recommendation satisfies this 
command 

5. Rewriting stage is the most complex stage because 
the system is going to restructure the SQL 
command with new syntax taking two things in its 
consideration, the first one is rewriting the 
command with better performance syntax after 
getting the help from recommendation dictionary, 
the second one is resulting the same data (output) 
as previous old command (Chang et al., 2000) 

6. The system will test the new SQL command and 
compare it with old one to see difference in time, 
IO, network roundtrips, execution time and many 

  
MATERIALS AND METHODS 

 
 The optimizer of the database will not start by none 
predicate join unless the programmer writes the none 
join predicate first in the WHERE clause or writing 
hints in the SQL statement (John, 2002). 
 To make database optimizer takes the decision of 
starting by non join predicate table, the programmer 
must write hints for optimizer. Hints can be written 
with any SQL command after the first word of the 
statement, optimizer hints must by start with (/*+) and 
end by (*/). As an example of using hints to make the 
database optimizer starts by joining CLN table and 
CNF table using nested loop operation as following: 
 
SELECT /*+USE_NL (CLN CNF)*/ * 
FROM 
 CLIENTS CLN, CONFERENCES CNF, 
 CONFERNCE_DETAILS CNFD 
WHERE CLN.CLN_ID = 
  CNF.CNF_CLN_ID_CALLER 
AND CNF.CNF_ID = 
  CNFD.CNFD_CNF_ID 
AND CLN.CLN_ID = 2323 
 

 
 
Fig. 4: Join rewriting 



J. Computer Sci., 6 (5): 585-590, 2010 
 

588 

 The proposed system will try to find any SQL 
statement with join predicate and examine if the 
statement has non join predicate, the system will 
rewrite the statement and send a hint to database 
optimizer to start with non join predicate table as shown 
in Fig. 4. 
 The system will try to do this process, so the 
system will tokenize the statement and searches for 
WHERE clause, then searches if there are joins 

predicates and non join predicates. If exists the system 
will add a hint to SQL statement to start with non join 
predicate. To see the achievement done by the system 
when converting the command, we have to execute the 
SQL command before rewriting process then collect all 
metrics and statistics related to this command, after that 
we have to execute the SQL command after the 
rewriting process and collect the same metrics and 
statistics, then compare all of these outputs. The two 

experimental scenarios were considered to evaluate and 
compare performance by running join statements 
without any attention if the none join predicate will be 
used at the first or not. Then watch the system how it 
will convert the join statement to use none join 
predicate as a driving table (Jiao and Hurson, 2002). 
 
First scenario: Before rewrite: In this scenario we 
sent join SQL statements to the system without any 
attention of none join predicate, the following SQL 
statements are just an example of this type of 
statements: 
 
SELECT * FROM 
  COUNTRIES CON, CLIENTS CLN, 
  CONFERENCES CNF 
WHERE CON.CON_ID = 
 CLN.CLN_CON_ID 
AND CLN.CLN_ID = 
 CNF.CNF_CLN_ID_CALLER 
AND CON.CON_NAME = ‘JORDAN’; 
 
SELECT * FROM 
 CLIENTS CLN, CONFERENCES CNF, 
 CONFERENCE_DETAILS CNFD 
WHERE CLN.CLN_ID = 
 CNF.CNF_CLN_ID_CALLER 
AND CNF.CNF_ID = 
 CNFD.CNFD_CNF_ID 
AND CLN.CLN_ID = 2323; 
 
Second scenario: After rewrite: In this scenario we 
watched the transformed SQL commands generated by 
the system that makes none predicate join as a driving 
table: 
 
SELECT /*+USE_NL(CON CLN) */ * FROM 
 COUNTRIES CON, CLIENTS CLN, 
 CONFERENCES CNF 
WHERE CON.CON_ID = 
 
 CLN.CLN_CON_ID 
AND CLN.CLN_ID = 
 CNF.CNF_CLN_ID_CALLER 

AND CON.CON_NAME = 'JORDAN'; 
 
SELECT /*+USE_NL(CLN CNF) */ * FROM 
 CLIENTS CLN, CONFERENCES CNF, 
 CONFERENCE_DETAILS CNFD 
WHERE CLN.CLN_ID = 
 CNF.CNF_CLN_ID_CALLER 
AND CNF.CNF_ID = 
 CNFD.CNFD_CNF_ID 
AND CLN.CLN_ID = 2323; 
 

RESULTS AND DICUSSION 
 
 The above SQL statements are generated from the 
system as a result of the SQL statement sent in the first 
scenario in the order. The benchmark depends on two 
things: 
 
• The number of rows that the table holds 
• The number of rows that will be filtered by none 

join predicate 
 
 So the two scenarios were repeated with different 
number of rows for three tables and different number of 
rows filtered by none join predicate. Table 2 shows the 
total number of rows and filtered rows in the three tables 
when the run executed and the output metrics generated 
for each run. Table 3 shows the total number of rows and 
filtered rows in the three tables when the run executed 
and the output statistics generated for each run. 
 

 
 
Fig. 5: Logarithmic chart for real time results 

comparison



J. Computer Sci., 6 (5): 585-590, 2010 
 

589 

Table 2: Metrics for join 
 Number of rows for three joined tables 
 ----------------------------------------------------------------------------------------------------------------------------------- 
Total rows 1E+12  1E+15  1E+18 
Filtered row 1*100*1000  1*1000*10000  1*10000*100000 
 -------------------------------------- -------------------------------- ----------------------------------- 
Metrics Old New Old New Old New 
Real time (sec) 2.33 1.00 76.17 1.10 18465.56 22.59 
Position (estimated cost) 5984 385 41835 3736 460035 1030382 
Cost (units of work) 5984 385 41835 3736 460035 1030382 
Cardinality (number of rows) 93966 93966 794461 794461 24E+9 24E+9 
Bytes 18E+7 18E+7 15E+8 15E+8 47E+12 47E+12 
CPU cost (machine cycles) 69E+7 56E+6 44E+8 48E+7 24E+11 24E+11 
IO cost (blocks read) 5866 375 41068 3653 37106 37106 
Elapsed time (sec) 72 5 503 45 5521 12365 
 
Table 3: Statistics for join 
 Number of rows for three joined tables 
 -------------------------------------------------------------------------------------------------------------------------------- 
Total rows 1E+12  1E+15  1E+18 
Filtered rows 1*100*1000  1*1000*10000  1*10000*100000 
 -------------------------------- ------------------------------------ ------------------------------------- 
Statistics Old New Old New Old New 
Recursive calls (number of SQL) 0 0 7 7 576 576 
DB block gets (number of IO) 0 0 0 0 0 0 
Consistent gets (number of buffer) 154116 1656 15E+6 83277 20E+8 826345 
Physical reads (number of blocks) 0 0 0 0 1665661 1665661 
Redo size (number of blocks) 0 0 0 0 0 0 
Bytes sent 1975 1975 10E+7 10E+7 93E+7 93E+7 
Bytes received 374 274 733711 733711 7333711 7333711 
Net. roundtrips (count) 1 1 66668 66668 666668 666668 
Sorts (memory) 0 0 2 2 4 4 
(Count) 
Sorts (disk) (count) 0 0 0 0 0 0 

 
 SQL command real time execution is the most 
important measurement used to evaluate the 
performance between old command and new command. 
Figure 5 illustrates a logarithmic chart comparison. 
 

CONCLUSION 
 
 Most of the researches focus in deep in the area of 
SQL command performance enhancements. Some of 
them focused on enhancing database optimizer 
capabilities, others focused on rewriting SQL command 
by using materialized views. But all of them focused in 
the area after the database captures the SQL command. 
This study did the opposite side; it focused in the area 
before the SQL command reaches the database. This 
study tried to enhance the performance of the database 
by sending a well done, error free and a professional 
SQL commands. 
 The real time results are plotted as logarithmic 
chart has been analyzed the comparisons detailed as 
follows: 
 
• The real time coefficient for old SQL commands 

increased dramatically according to number of 
rows in the table, because the old SQL will process 

the multiplication of all rows in the three joined 
tables 

• The real time coefficient for new SQL commands 
increased slightly with increasing number of rows, 
because the new SQL will process just the filtered 
rows from three joined tables 

 
 There is no semantic reasoning engine built in to 
SQL optimizers, next steps in research will include the 
completion and expand the logical design of our 
method, followed by its implementation.  
 

REFERENCES 
 
Bryan, G. and A. Hinze, 2003. Open Issues in Semantic 

Query Optimization in Relational DBMS. 
Department of Computer Science, University of 
Aikato, New Zealand. 
http://www.cs.waikato.ac.nz/~hinze/isdb/publicatio
ns/genet_hinze_TR102004.pdf 

Chang, S.P., M.H. Kim and Y. Lee, 2000. Rewriting 
LAP queries using materialized views and 
dimension hierarchies in data warehouses. 
Supervised by IITA. 



J. Computer Sci., 6 (5): 585-590, 2010 
 

590 

Chris, M.G., M.M. Dalkilic, D.P. Groth and E.L. Robertson, 
2002. Improving query evaluation with 
approximate functional dependency based 
decomposition.  Lecture  Notes Comput. Sci., 
2405: 26-41. DOI: 10.1007/3-540-45495-0_3 

Jiao, Y. and A.R. Hurson, 2002. Mobile agents in 
mobile data access systems. Lecture Notes 
Comput. Sci., 2915: 144-162. DOI: 10.1007/3-540-
36124-3_9 

John, P.M., 2002. Aggregate navigation using 
materialized views and query rewrite. Counterpoint 
Technologies, Inc.  

 http://www.nyoug.org/Presentations/SIG/DataWar
ehousing/aggrtnav.pdf 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Kephart, J.O. and D.M. Chess, 2003. The vision of 
autonomic computing. IEEE Comput., 36: 41-52. 

Priya, V., 2003. Oracle Database SQL Tuning 
Workshop. Oracle Corporation. 

Ramez, E. and S.B. Navathe, 2004. Fundamentals of 
Database Systems. 4th Edn., Pearson Addison 
Wesley, ISBN: 9780321122261. 


