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Abstract: Problem statement: This study proposed a TUF/UA real time scheduling algorithm known 
as Partition Preemptive Utility Accrual Scheduling (PUAS) also known as PPUAS algorithm. This 
algorithm addressed the overloaded problem that was identified in a uniprocessor scheduling 
environment and the necessity to design the scheduling algorithm in a multiprocessor environment. 
Approach: The PUAS algorithm was enhanced into the partitioned multiprocessor environment. The 
comparison of PUAS and PPUAS were made by using a discrete event simulation. Results: The 
proposed PUAS algorithm achieved a higher accrued utility for the entire load range as compared in 
the uniprocessor environment. Conclusion: Simulation results revealed that the proposed 
algorithms PPUAS are more efficient than the existing PUAS algorithm, producing a higher 
utility ratio and less abortion ratio making it suitable and efficient for real time application 
executed in multiprocessor environment.  
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INTRODUCTION 

 
 Real-time scheduling is fundamentally concerned 
with satisfying application time constraints. In an 
adaptive real time system an acceptable deadline misses 
and delays are tolerable and do not have great 
consequences for the system. One of the scheduling 
paradigms in adaptive real time system environment is 
known as Time Utility Function/Utility Accrual 
(TUF/UA) scheduling paradigm (Li et al., 2006). 
 With reference to Fig. 1, in the event of the task 
being computed at time A, which denotes the range 
between the start of execution and the stipulated 
deadline, the system gains a positive utility. However, 
if the task is completed at time B, which causes failure 
of deadline compliance requirement, the system 
acquires zero utility. The value of utility for each 
executed task is accumulated and the total attained 
utilities are measured. 
 The latest trend of TUF/UA scheduling algorithm 
is moving towards the multiprocessor and distributed 
environment (Dellinger et al., 2011; Ji et al., 2010). 
One of the existing uniprocessor TUF/UA scheduling 
algorithms is known as PUAS (Preemptive Utility 
Accrual Scheduling) algorithm (Idawaty et al., 2011). 
PUAS is a uniprocessor scheduling algorithm that 

manages the independence tasks in preemptive 
environment. In PUAS, a task that is currently executed 
in a lower PUD is temporarily suspended and a new 
task with a higher PUD is given the highest priority to 
hold a resource. 
 
Problem statement: In the presence of extremely 
overloaded tasks traffic, it is observed that PUAS 
implemented in uniprocessor environment is inefficient 
due to the limited resources available in the system. A 
real time system requires a multiprocessor environment 
with larger number of resource capability to 
accommodate the surplus load. For ensuring that the 
system provides a higher utility under the highly loaded 
conditions, the TUF/UA scheduling algorithms 
operated in multiprocessor platform are proposed which 
are essential for providing an efficient real time system. 
The proposed algorithm known as PPUAS (Partitioned 
PUAS) has enhanced the existing PUAS algorithm.  
 
Objective: The scheduling objective of PPUAS in this 
research is to maximize the total accrued utility from all 
executed tasks in the system by implementing the 
scheduling algorithm into the partitioned 
multiprocessor environment.  
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Fig. 1: The step TUF (Idawaty et al., 2011) 
 
Approach: In order to evaluate and validate the 
performance PPUAS, a simulation model for the 
TUF/UA scheduling environment for the partitioned 
multiprocessor environment is deployed. In partitioned 
scheduling, once a task is generated it is assigned to a 
single processor and permanently located and scheduled 
at the respective processor.  
 

MATERIALS AND METHODS 
 
 A Discrete Event Simulation (DES) is used as 
methodology to verify the performance of PPUAS 
algorithm. The rationale of using DES lies in the fact 
that the PUAS algorithm was based on the DES written 
in C language, thus the best method to achieve this 
objective. Fig. 2 shows the deployed simulation 
model. The multiprocessor infrastructure consists of 
a source and tasks entities, an array of utlist queues 
to represent the various numberS of processors and 
resources in the system. 
 
Source model: A source injects a stream of tasks into 
the system. The maximum numbers of tasks are 1000 
and denoted as MAX_TASKS. Upon generation, a task 
is executed for random execution time with mean of 
0.50 seconds. For the purpose of implementing the 
multiprocessor environment into the simulation 
model, two steps are taken after a task has been 
generated as follows: 
 
Step 1: Assign a task to its specific processor by using 
a task assignment algorithm. All tasks are assigned to 

processors by task assignment algorithm as shown in 
Fig. 2 and 3. The cpuid parameter is used to identify the 
assigned processor ID of a task. 
 
Step 2: Execute the PPUAS scheduling algorithm. 
 
Task model: Each task is associated with an integer 
number, denoted as tid. Each task is also associated 
with a start of execution time (i.e., Initial time) and a 
deadline (i.e., Termination time) as shown in Fig. 1. 
The arrival time of the task into the system is denoted 
as the Initial time. The Termination time represents the 
absolute deadline of a task. This research considered the 
step and arbitrary TUF task model as shown in Fig. 4. 
 The step TUF model used in the simulator is shown 
in Fig. 4a. The maximum utility that could possibly be 
gained by a task is denoted as MaxAU. The random 
value of MaxAU abides normal distribution (10, 10) i.e., 
the mean value and variance is set 10. The InitialTime 
is the starting time for which the function is defined. 
The TerminationTime is the last time for which the 
function is defined. 
 The arbitrary shape TUF is represented as a 
continuous and derivable polynomial equation derived 
from the literature (Li et al., 2006). The maximum 
utility that could possibly be gained by a task is denoted 
as MaxAU. The random value of MaxAU abides normal 
distribution (10, 10) i.e., the mean value and variance is 
set 10. For arbitrary TUF, the completion of a task 
within the InitialTime and TerminationTime interval 
will yield a random positive utility denoted as Utility as 
shown in Fig. 4b. 
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Fig. 2: Simulation Model 
 

 
 

Fig. 3: Task Assignment Algorithm 
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 (a) (b) 
 

Fig. 4: Step and arbitrary TUF task set (Li et al., 2006) (a) step (b) arbitary 
 
Queuing model: The constant amount of resources and 
surplusing demands results in resource unavailability. 
The simulator provides a mechanism to retain the task’s 
requests for resources which are temporarily 
unavailable in an unordered task list named as utlist. 
The number of utlist queues represents the number of 
processors in the system. The number of available 
processors is depicted in the MAX_CPU parameter as 
shown in Fig. 2.  
 
Resources component: The resource model represents 
the physical and logical resources. The number of 
available resources in each processor is depicted in the 
MAX_RES parameter as shown in Fig. 2. The number 
of resources in the uniprocessor environment is limited 
to 5 according to the literature (Idawaty et al., 2011; Li 
et al., 2006). The total number of available resources in 
all processors is shown in the MAX_RESOURCES 
parameter which is calculated as the MAX_RES * 
MAX_CPU. 
 When a task request a resource, the resource 
request event is depicted in Fig. 5. Every time this event 
is executed, the system increments the counter 
representing the number of request in a task i.e., 
Treq.nrr by one.  
 Referring to Fig. 5, when a new request for a 
resource from a task Treq arrived in the system, the 
availability of the requested resource is checked. If the 
resource is in IDLE state which means it is available, 
task Treq is scheduled to immediately use the resource 
and the resource release event is scheduled in the event 

list. The status of the resource is changed to BUSY 
state and the owner of this resource is assigned to the 
task Treq. 
 In the case the requested resource is currently 
being used by the owner task Towner, the PUD for both 
tasks is compared. If the requesting task Treq produced 
a higher PUD, Towner is preempted and inserted into 
the utlist. Task Treq is granted to use the resource. The 
status of the resource is changed to BUSY state and the 
owner of this resource is assigned to the task Treq. The 
HoldTime i.e., the time taken to hold resource R is 
randomly assigned to task Treq in the Treq. 
HeldRes[R]. HoldTime parameter. The expected 
release time of resource R i.e., Treq. HeldRes[R]. 
ReleaseTime is calculated as sclock + Treq. 
HeldRes[R]. HoldTime. 
 When a task releases a resource, the resource 
release event is executed as shown in Fig. 6 and 7. The 
number of resources that have been released by task 
Towner is captured and represented by the Towner.nrp 
parameter which is incremented by one for every 
resource released made for a request in task Towner. 
This parameter is used to capture the number of 
requests that have been released when the termination 
time event for task Towner arrived into the system. The 
steps taken when a resource R is released by the owner 
task i.e., Towner is done in two consecutive phases as 
stated below: 
 
Phase 1:  After resource R is released by the owner 
task, the status of R is reset from BUSY to IDLE state.  
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Fig. 5: A resource request event 
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Fig. 6: A resource release event -Phase 1 
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Fig. 7: A resource release event -Phase 2 
 
The owner of resource R i.e., res[R].Owner is set to 
zero to indicate that R is currently not being held by 
any task. Next, the utlist is checked whether there is any 
task that currently requesting for resource R. The work 
pointer is used for the searching procedure. The work 
pointer checks the resource rid of the first element in 
the utlist. If it does not discover the resource R, it will 
proceed searching to the next element. If the work 
pointer discovers that a task i.e., Treq is currently 
requesting for resource R, the PUD of the requesting 
task i.e., Treq. PUD is calculated. The PUD is then 
compared with the LargestPUD parameter that contains 
the value that is currently producing highest PUD 
among the tasks in utlist.Initially, the value of largest 
PUD is set to 0.0000. If task Treq produces. A larger 
PUD than the value currently in LargestPUD, the 
Treq.PUD is considered as the highest PUD so far. 
Thus, the value of LargestPUD is updated to be equal 
to the Treq.PUD.  
 
Phase 2: The scheduling for the execution of the task 
possessing the largest PUD in the utlist (if any). Figure 
6 shows the flowchart of the second phase. The 
completion of Phase 1, will be followed by the 
determination of possible value for the LargestTask 

parameter .1. In the event that there is a request, the 
status of resource R is changed to the BUSY state and 
the LargestTask become the owner of resource R. The 
LargestTask consumed resource R instantaneously and 
the resource release event is scheduled in the event list. 
Since the LargestTask will be holding resource R, it is 
deleted from the utlist. If none of the tasks in the system 
currently requesting for resource R, it remain in the 
IDLE state without any owner task.  
 
Experimental setting: The developed simulator has 
been tailored to map the characteristics of a 
uniprocessor scheduling. A source generates a stream of 
1000 tasks. Given the task average execution time 
C_AVG and a load factor load, the average task inter 
arrival time i.e., iat is calculated as the division of 
C_AVG over load and further utilized an exponential 
distribution to be further derived to reflect the intended 
system model. In all the simulation experiments, the 
value of C_AVG is set at 0.50 sec and the range value 
of load is from 1-10. The different values of load are to 
provide the derivation of differing mean arrival rates of 
tasks. The arrival of tasks is assumed to follow the 
exponential distribution. The M/M/1 queuing model is 
used to estimate the overloaded situations in the 
uniprocessor environment. In this research, the range 
values of load are observed 1.0-10.0 in the 
multiprocessor environment following the estimation 
load in the M/M/C queuing model.  
 The M/M/C queuing model is used to indicate a 
multiserver system with C servers that have unlimited 
queue capacity and an infinite population of potential 
task arrivals. The number of processors in the system is 
considered in the 2, 4 and 8 core platforms (Dellinger et 
al., 2011). Generally, the inter arrival times denoted by 
λ and the service times per server denoted by µ are 
exponentially distributed. To reflect the M/M/C with 
the multiprocessor scheduling model, C is the number 
of processors in the system which is also known from 
the MAX_CPU parameter. The inter arrival time, 
denoted as λ is defined in the unit of tasks/secsmeasures 
the number of tasks that arrived into the system in one 
sec. The service rate per processor denoted as µ 
measures the number of tasks that is being processed by 
each processor within one sec. 
 For multiprocessor, the maximum service rate for 
all processors is equal to Cµ. Note that inters service 
time for all processors Cµ is calculated according to the 
number of processors C. From the general estimation of 
the system behavior for M/M/C queuing model, the 
system is considered to be stable when the arrival rate λ 
is less than the maximum service rate Cµ i.e., λ < Cµ.  
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Table 1: Parameter Estimation in the M/M/C queuing model 

Number of         Parameter ρ 
processor C Parameter (Cµ) ( ρ = λ /µ  <  C) 

1 2 ρ < 1 
2 4 ρ < 2 
4 8 ρ < 3 
8 16 ρ < 4 
 
Since the same value of C_AVG is used in the 
multiprocessor environment, each service rate µ is 
calculated 1/ C_AVG that is equal to 2 tasks/secs. 
Hence, the maximum service rate for two, four and 
eight processors is 4, 8 and 16 tasks/secsrespectively. 
This is shown in the second column of Table 1.  
 From the literature, the system is considered to be 
stable when the arrival rate λ is less than the maximum 
service rate cµ i.e., λ < Cµ. Equivalently, the offered load 
ρ = λ/µ < C. Thus, the offered load ρ must be less than the 
number of processors C. Hence, the general estimation of 
the simulation model, the system is considered to be under 
load of when the offered load ρ < C. In the simulation 
model, the value of ρ is stored in the load parameter and 
the value of C is depicted in the MAX_CPU. Therefore, 
the rough estimation for the stable behavior of the 
multiprocessor system is for the value of 
load<MAX_CPU. Hence, in all the experiment the 
range value of load is selected as 1 ≤ load≤10. For 
every number of MAX_CPU, the system is started to be 
overloaded starting when load = MAX_CPU. Referring 
to Table 1, for dual core processors, the system is 
estimated to be overloaded when load = 2. In the quad 
core processor environment, the system is expected to 
be overloaded when load = 4. For eight core 
platform, the system is considered as overloaded 
when load = 8. Note that these loads are the 
approximation value that may be considered as a 
rough guide to the behavior of the system. 
Practically, the results observed from the simulation 
are used to measure the performances of the system. 
 The value of the HoldTime and AbortTime 
parameters are derived by the normal distribution with 
mean and variance is 0.25. The maximum utility of a 
task i.e., MaxAU is computed using normal distribution 
with mean value of 10 and variance of 10. The Accrued 
Utility Ratio (AUR) metric defined in (Li et al., 2006) 
has been extensively utilized in the existing TUF/UA 
scheduling algorithms as performance metric. AUR is 
defined as the ratio of accrued aggregate utility to the 
maximum possibly attained utility.  
 

RESULTS AND DISCUSSION 
 
  Figure 8 depicts the AUR result under an 
increasing load for step TUF. From the results, as the 
number of load is increased; a lower accrued utility is 

recorded. From the overall results, as the load and the 
number of processors increase, the higher utility 
accrued to the system by the PPUAS algorithm as 
compared to PUAS algorithm that is executed in the 
uniprocessor environment. The enhancement of the 
uniprocessor scheduling to the multiprocessor 
scheduling environment has tremendously improved the 
utility accrued to the system. The multiprocessors 
acquired a larger number of resources that can be used 
by the executed tasks.  
 Referring to Fig. 8, in dual core platform, the 
average load of 2 is estimated as the starting point of 
the overloaded situations in the system. At this load, 
PPUAS2 has achieved 75.99% and PUAS with 63.25% 
of the accumulated utilities. At this load, PPUAS2 
algorithm has improved PUAS for 12.74% of the 
accumulated utilities. The superiority of PPUAS2 is 
also shown for the entire load range. 
 In four core platform, approximately the system is 
considered to be overloaded when the average load is 
equal to 4. At this load, PPUAS4 has successfully 
gained 75.43% of utility and PPUAS2 moderately 
accrued 58.00% while PUAS accrued 36.35% of the 
utilities. Thus, the PPUAS4 algorithm outperforms 
PPUAS2 for 17.43% and PUAS for 39.08% at this load. 
As the load increases, more incoming tasks arrived into 
the system and requesting for the resources in the 
system. PPUAS4 acquired a larger number of 
processors and resources to be used by the executed 
tasks as compared to the PPUAS2. Due to the limited 
resources, more tasks in PPUAS2 are overdue and 
therefore ending up being aborted. More aborted tasks 
are produced as the load increases and consequently 
produced more zero utility tasks to the system. This is 
why a sharper degradation is observed as the load 
increases for PPUAS2 in the dual core platform. 
 The PPUAS8 that runs in the eight core platform 
has produced the highest utility to the system as 
compared to the dual and quad core platforms. In eight 
core platform, approximately the system is considered 
to be overloaded when the average load is equal to 8. At 
this load, PPUAS8 has successfully gained 79.35% of 
utility, PPUAS4 achieved 61.62%, PPUAS2 moderately 
accrued 36.46% while PUAS accrued 24.71% of the 
utilities. Thus, the PPUAS8 algorithm outperforms 
PPUAS4 for 17.73% and PUAS2 for 42.89% at this 
load. The PPUAS8 algorithm outperforms the PUAS 
algorithm for 54.64% at this load. 
 Figure 9 plots the task success ratio experienced as 
a function of the increasing loads. Figure 9 
complements the AUR results deliberated in Fig. 8. 
This is because it measures the exact number of tasks 
that has successfully contributed to AUR. 
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Fig. 8: AUR Results for step TUF 
 

 
 
Fig. 9: SR Results for step TUF 
 
Further, the result in Fig. 9 verifies that the reason of 
PPUAS acquired a higher utility compared to PPUAS is 
specifically because of the increases on the number of 
tasks that has successfully contributed to utility of the 
system. As the number of processor increases, a higher 
utility accrued to the system by the PPUAS algorithm 
in partitioned scheduling environment.  

 
 
Fig. 10: AUR Results for arbitrary TUF 
 

 
 
Fig. 11: SR Results for arbitrary TUF 
 
This is because larger resources can be used by the 
executed tasks as the number of processor increases in 
the system. 
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 Figure10 depicts the AUR results for execution of 
the arbitrary TUF tasks in the system. The nature of the 
curves indicates clearly that PPUAS has produced the 
highest utility accrued to the system as compared to the 
PUAS algorithm for the entire load range in all the 
number of processors involved. 
 Overall, the patterns of the curves from the results 
in the arbitrary TUF tasks set is similar to the step TUF 
tasks set. In the case of arbitrary TUF, a task may not 
be able to accrue its maximal possible utility even 
though the execution is completed before its 
termination time. Although these algorithms guarantee 
that the highest PUD task to be selected, it does not 
necessarily represent that the maximum possible utility 
gained by the executed tasks. 
 Referring to Fig. 10, the average load of 2 is 
estimated as the starting point of the overloaded 
situation in the system in the dual core platform. At this 
load, PPUAS2 has achieved 80.09% and PUAS with 
61.81% of the accumulated utilities. At this load, 
PPUAS2 algorithm has improved PUAS for 18.28% of 
the accumulated utilities. The superiority of PPUAS2 is 
also shown for the entire load range. 
 Referring to Fig. 10, in four core platform, 
approximately the system is considered to be 
overloaded when the average load is equal to 4. At this 
load, PPUAS4 has successfully gained 79.55% of 
utility and PPUAS2 moderately accrued 61.17% while 
PUAS accrued 35.82% of the utilities. Thus, the 
PPUAS4 algorithm outperforms PPUAS2 for 18.38% 
and PUAS for 43.73% at this load. As the load 
increases, more incoming tasks arrived into the system 
and requesting for the resources in the system. PPUAS4 
acquired a larger number of processors and resources to 
be used by the executed tasks as compared to the 
PPUAS2. Due to the limited resources, more tasks in 
PPUAS2 are overdue and therefore ending up being 
aborted. More aborted tasks are produced as the load 
increases and consequently produced more zero utility 
tasks to the system. This is why a sharper degradation is 
observed as the load increases for PPUAS2 in the dual 
core platform. 
 Referring to Fig. 10, the PPUAS8 that runs in the 
eight core platform has produced the highest utility to 
the system as compared to the dual and quad core 
platforms. In eight core platform, approximately the 
system is considered to be overloaded when the average 
load is equal to 8. At this load, PPUAS8 has 
successfully gained 77.63% of utility, PPUAS4 
achieved 64.51%, PPUAS2 moderately accrued 37.92% 
while PUAS accrued 22.04% of the utilities. Thus, the 
PPUAS8 algorithm outperforms PPUAS4 for 13.12% 
and PUAS2 for 40.43% at this load. The PPUAS8 
algorithm outperforms the PUAS algorithm for 55.59% 
at this load. 
 Figure 11 plots the task success ratio experienced 
as a function of the increasing loads for arbitrary TUF 

task set. Figure 11 complements the AUR results 
deliberated in Fig. 10. 
 

CONCLUSION 
 
 With the obtained results, this study has proven 
that the proposed PPUAS partitioned multiprocessor 
scheduling algorithm have tremendously outperformed 
the uniprocessor scheduling algorithm i.e., PUAS in the 
highly overloaded situations. Overall, the PPUAS 
accrued the highest utility to the system due to the 
highest resource consumption by employing 
multiprocessor environment in dual, quad and eight 
core platforms. The contribution of PPUAS algorithm 
that achieved the highest accrued utility and success 
ratio making it suitable and efficient scheduling 
algorithm for real time application. 
 A number of extensions to this research can be 
carried out and are given as follows: 
 
• The PUAS algorithm can be deployed in the global 

multiprocessor scheduling environment considering 
the migration attribute of the executed tasks 

• The implementation of the fault tolerance in the 
TUF/UA partitioned multiprocessor scheduling 
environment 
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