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Abstract: Problem statement: This study proposed a TUF/UA real time schedulilggathm known
as Partition Preemptive Utility Accrual ScheduliffUAS) also known as PPUAS algorithm. This
algorithm addressed the overloaded problem that idestified in a uniprocessor scheduling
environment and the necessity to design the scimedalgorithm in a multiprocessor environment.
Approach: The PUAS algorithm was enhanced into the partibmultiprocessor environment. The
comparison of PUAS and PPUAS were made by usingserale event simulatiorResults: The
proposed PUAS algorithm achieved a higher accruidity for the entire load range as compared in
the uniprocessor environmentConclusion: Simulation results revealed that the proposed
algorithms PPUAS are more efficient than the erigtPUAS algorithm, producing a higher
utility ratio and less abortion ratio making it gble and efficient for real time application
executed in multiprocessor environment.
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INTRODUCTION manages the independence tasks in preemptive
environment. In PUAS, a task that is currently exed
Real-time scheduling is fundamentally concernedn & lower PUD is temporarily suspended and a new
with satisfying application time constraints. In an task with a higher PUD is given the highest priotit
adaptive real time system an acceptable deadlissemi hold a resource.
and delays are tolerable and do not have great
consequences for the system. One of the schedulirfgfoblem statement: In the presence of extremely
paradigms in adaptive real time system environngnt overloaded tasks traffic, it is observed that PUAS
known as Time Utility Function/Utility Accrual implemented in uniprocessor environment is inefiti
(TUF/UA) scheduling paradigm (let al., 2006). due to the limited resources available in the sgsta
With reference to Fig. 1, in the event of the taskreal time system requires a multiprocessor envimtm
being computed at time A, which denotes the rangavith larger number of resource capability to
between the start of execution and the stipulatehccommodate the surplus load. For ensuring that the
deadline, the system gains a positive utility. Here  gystem provides a higher utility under the higidgded
if the task_ IS complet_ed at time B, which causdisifa conditions, the TUF/UA scheduling algorithms
of d_eadllne com_pllance requirement, the SySten'bperated in multiprocessor platform are proposeithvh
acquires zero utility. The value of utility for dac . o - .
e essential for providing an efficient real tigystem.

executed task is accumulated and the total attained : .
utilities are measured. The proposed algorithm known as PPUAS (Partitioned

The latest trend of TUF/UA scheduling algorithm PUAS) has enhanced the existing PUAS algorithm.

is moving towards the multiprocessor and distridute
environment (Dellingert al., 2011; Ji et al., 2010). Objective: The scheduling objective of PPUAS in this
One of the existing uniprocessor TUF/UA schedulingresearch is to maximize the total accrued utilignf all
algorithms is known as PUAS (Preemptive Utility executed tasks in the system by implementing the
Accrual Scheduling) algorithm (Idawagt al., 2011). scheduling  algorithm  into  the  partitioned
PUAS is a uniprocessor scheduling algorithm thatmultiprocessor environment.
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Fig. 1: The step TUF (Idawagt al., 2011)

Approach: In order to evaluate and validate the processors by task assignment algorithm as shown in
performance PPUAS, a simulation model for theFig._ 2 and 3. Thepuid parameter is used to identify the
TUF/UA scheduling environment for the partitioned assigned processor ID of a task.

multiprocessor environment is deployed. In panti¢io _ . ,
scheduling, once a task is generated it is assigmed SteP 2= Execute the PPUAS scheduling algorithm.

single processor and permanently located and stdwdu Ta5 model: Each task is associated with an integer
at the respective processor. number, denoted as tid. Each task is also assdciate
with a start of execution time (i.e., Initial timand a
MATERIALSAND METHODS deadline (i.e., Termination time) as shown in Fig.
: . . _ The arrival time of the task into the system isated
A Discrete Event Simulation (DES) is used aSyq the |njtial time. The Termination time represethie
methodology to verify the performance of PPUAS gpsojute deadline of a task. This research coresicize
algorithm. The rationale of using DES lies in tlaetf step and arbitrary TUF task model as shown in4ig.
that the PUAS algorithm was based on the DES writte The step TUF model used in the simulator is shown
in C language, thus the best method to achieve thig, Fig. 4a. The maximum utility that could possililg
objective. Fig. 2 shows the deployed simulationgained by a task is denoted BW&xAU. The random
model. The multiprocessor infrastructure considts 0y5jue ofMaxAU abides normal distribution (10, 10) i.e.,
a source and tasks entities, an arrayiifst qUeUeS  ha mean value and variance is set 10. [Higal Time
to represent the various numberS of processors and the starting time for which the function is ahefil.

resources in the system. The TerminationTime is the last time for which the

Source model: A source injects a stream of tasks into fUnction is defined. _
the system. The maximum numbers of tasks are 1000 1h€ arbitrary shape TUF is represented as a
and denoted as MAX_TASKS. Upon generation, a tasiontinuous and derivable polynomial equation defive
is executed for random execution time with mean offom the literature (Liet al., 2006). The maximum
0.50 seconds. For the purpose of implementing th&ltility that could possibly be gained by a taskiésioted
multiprocessor environment into the simulation @8MaxAU. The random value dflaxAU abides normal
model, two steps are taken after a task has beedistribution (10, 10) i.e., the mean value andasmce is
generated as follows: set 10. For arbitrary TUF, the completion of a task
within the InitialTime and TerminationTime interval

Step 1: Assign a task to its specific processor by usingwill yield a random positive utility denoted &Hility as
a task assignment algorithm. All tasks are assigned shown in Fig. 4b.
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Queuing model: The constant amount of resources andist. The status of the resource is changed to BUSY
surplusing demands results in resource unavaiigbili state and the owner of this resource is assigneteto
The simulator provides a mechanism to retain thle'sa  taskTreqg.

requests for resources which are temporarily In the case the requested resource is currently
unavailable in an unordered task list named astutli being used by the owner tas&wner, the PUD for both
The number of utlist queues represents the number dasks is compared. If the requesting taség produced
processors in the system. The number of availabla higher PUD,Towner is preempted and inserted into

processors is depicted in the MAX_CPU parameter athe utlist. TaskTreq is granted to use the resource. The
shown in Fig. 2. status of the resource is changed to BUSY statefand

owner of this resource is assigned to the T&ek. The
Resour ces component: The resource model representsHoldTime i.e., the time taken to hold resource R is
the physical and logical resources. The number ofandomly assigned to taskireq in the Treq.
available resources in each processor is depiat¢dei HeldRes[R]. HoldTime parameter. The expected
MAX_RES parameter as shown in Fig. 2. The numberelease time of resource R i.e., TredeldRegR].
of resources in the uniprocessor environment igdan  ReleaseTime is calculated as sclock +Treq.
to 5 according to the literature (Idawatyal., 2011; Li  HeldRes[R]. HoldTime.
et al., 2006). The total number of available resources i When a task releases a resource, the resource

all processors is shown in the MAX_RESOURCESrelease event is executed as shown in Fig. 6 aithe.
parameter which is calculated as the MAX_RES *number of resources that have been released by task

MAX CPU. Towner is captured and represented by Tiogvner.nrp
When a task request a resource, the resourdearameter which is incremented by one for every

request event is depicted in Fig. 5. Every time thient  resource released made for a request in Taskner.

is executed, the system increments the countefFhis parameter is used to capture the number of

representing the number of request in a task i.erequests that have been released when the teraninati

Treg.nrr by one. time event for tasRowner arrived into the system. The
Referring to Fig. 5, when a new request for asteps taken when a resource R is released by therow

resource from a tasKreq arrived in the system, the task i.e.,Towner is done in two consecutive phases as

availability of the requested resource is checkiethe  stated below:

resource is in IDLE state which means it is avddab

taskTreq is scheduled to immediately use the resourcé’hase 1: After resource R is released by the owner

and the resource release event is scheduled ieveér@  task, the status of R is reset from BUSY to IDL&est
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Fig. 5: A resource request event
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Fig. 6: A resource release event -Phase 1
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Fig. 7: A resource release event -Phase 2

The owner of resource R i.e., res[R].Owner is set t
zero to indicate that R is currently not being hbid
any task. Next, the utlist is checked whether thiesny
task that currently requesting for resource R. Woek
pointer is used for the searching procedure. Thek wo
pointer checks the resource rid of the first elefrian
the utlist. If it does not discover the resourcetRyill

parameter .1. In the event that there is a requbst,
status of resource R is changed to the BUSY stade a
the LargestTask become the owner of resource R. The
LargestTask consumed resource R instantaneously and
the resource release event is scheduled in tha &sen
Since thelLargestTask will be holding resource R, it is
deleted from thetlist. If none of the tasks in the system
currently requesting for resource R, it remain e t
IDLE state without any owner task.

Experimental setting: The developed simulator has
been tailored to map the characteristics of a
uniprocessor scheduling. A source generates anstoéa
1000 tasks. Given the task average execution time
C_AVG and a load factor load, the average taskr inte
arrival time i.e., iat is calculated as the divisiof
C_AVG over load and further utilized an exponential
distribution to be further derived to reflect tteinded
system model. In all the simulation experimentg th
value of C_AVG is set at 0.50 sec and the rangaeval
of load is from 1-10. The different values of loae to
provide the derivation of differing mean arrivatas of
tasks. The arrival of tasks is assumed to follow th
exponential distribution. The M/M/1 queuing mode! i
used to estimate the overloaded situations in the
uniprocessor environment. In this research, thgegan
values of load are observed 1.0-10.0 in the
multiprocessor environment following the estimation
load in the M/M/C queuing model.

The M/M/C queuing model is used to indicate a
multiserver system with C servers that have unérhit
gueue capacity and an infinite population of pasnt
task arrivals. The number of processors in theesyss
considered in the 2, 4 and 8 core platforms (Dgdliret

proceed searching to the next element. If the wori@l-» 2011). Generally, the inter arrival times dedoty

pointer discovers that a task i.€lteq is currently

A and the service times per server denoted by p are

requesting for resource R, the PUD of the requgstinexponentially distributed. To reflect the M/M/C it

task i.e.,Treg. PUD is calculated. The PUD is then
compared with théargestPUD parameter that contains

the multiprocessor scheduling model, C is the numbe
of processors in the system which is also knowmfro

the value that is currently producing highest pupthe MAX_CPU parameter. The inter arrival time,

among the tasks intlist.Initially, the value of largest
PUD is set to 0.0000. If taskreq produces. A larger
PUD than the value currently ihargestPUD, the

denoted a3 is defined in the unit of tasks/secsmeasures
the number of tasks that arrived into the systeroria
sec. The service rate per processor denoted as p

Treq.PUD is considered as the highest PUD so farmeasures the number of tasks that is being pradesse

Thus, the value ofargestPUD is updated to be equal
to theTreq.PUD.

each processor within one sec.
For multiprocessor, the maximum service rate for
all processors is equal touCNote that inters service

Phase 2: The scheduling for the execution of the tasktime for all processorsCis calculated according to the

possessing the largest PUD in tthst (if any). Figure

number of processors C. From the general estimafion

6 shows the flowchart of the second phase. Théhe system behavior for M/M/C queuing model, the

completion of Phase 1, will be followed by the
determination of possible value for theargestTask

system is considered to be stable when the amavah
is less than the maximum service rate Cui.e.Cu.
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Table 1: Parameter Estimation in the M/M/C queuimagel recorded. From the overall results, as the loadthad
Number of Parametgr number of processors increase, the higher utility
processor C Parameter (Cp) pEA/u < C) accrued to the system by the PPUAS algorithm as
1 2 p<1 compared to PUAS algorithm that is executed in the
2 4 p<2 uniprocessor environment. The enhancement of the
4 8 0<3 uniprocessor scheduling to the multiprocessor
8 16 p<4 scheduling environment has tremendously improved th

utility accrued to the system. The multiprocessors
Since the same value of C_AVG is used in theacquired a larger number of resources that cansbd u
multiprocessor environment, each service rate p i®Y the executed tasks.
calculated 1/ C_AVG that is equal to tAsks/secs. Referring to Fig. 8, in dual core platform, the
Hence, the maximum service rate for two, four andaverage load of 2 is estimated as the startingt pafin
eight processors is 4, 8 and f®kysecsrespectively.  the overloaded situations in the system. At thisd|o
This is shown in the second column of Table 1. PPUAS?2 has achieved 75.99% and PUAS with 63.25%
From the literature, the system is consideredeto bof the accumulated utilities. At this load, PPUAS2
stable when the arrival raleis less than the maximum algorithm has improved PUAS for 12.74% of the
service rate cj i.€), < Cp. Equivalently, the offered load accumulated utilities. The superiority of PPUAS2 is
p =M < C. Thus, the offered logdmust be less than the also shown for the entire load range.
number of processors C. Hence, the general estimati In four core platform, approximately the system is
the simulation model, the system is considerecttaritler considered to be overloaded when the average bad i
load of when the offered logel < C. In the simulation equal to 4. At this load, PPUAS4 has successfully
model, the value gf is stored in the load parameter andgained 75.43% of utility and PPUAS2 moderately
the value of C is depicted in the MAX_CPU. Therefor accrued 58.00% while PUAS accrued 36.35% of the
the rough estimation for the stable behavior of thejjties. Thus, the PPUAS4 algorithm outperforms
multiprocessor  system i for the value - of ppyas? for 17.43% and PUAS for 39.08% at this load.
load<MAX_CPU. Hence, in all the experiment the As the load increases, more incoming tasks arrintd

range value of load is selected assload10. For the system and requesting for the resources in the
every number of MAX_CPU, the system is startedeo b y q ng
system. PPUAS4 acquired a larger number of

overloaded starting when load = MAX_CPU. Referring
to Table 1, for dual core processors, the system iBrOCESSOrs and resources to be used by the executed

estimated to be overloaded when load = 2. In trequ tasks as compared to the PPUAS2. Due to the limited

core processor environment, the system is expeoted resources, more tasks in PPUAS2 are overdue and
be overloaded when load = 4. For eight coretherefore ending up being aborted. More abortekistas

platform, the system is considered as overloadedre produced as the load increases and consequently
when load = 8. Note that these loads are theroduced more zero utility tasks to the systemsT#i
approximation value that may be considered as &hy a sharper degradation is observed as the load
rough guide to the behavior of the system.increases for PPUAS?2 in the dual core platform.
Practically, the results observed from the simolati The PPUASS that runs in the eight core platform
are used to measure the performances of the systemy, ;o produced the highest utility to the system as

The value dOf. tzet'jo'ﬂﬂme anldd.Ath:tTiﬁ compared to the dual and quad core platforms.dhtei
parameters are derived by the normal distributigh w ., platform, approximately the system is congder

mean and variance is 0.25. The maximum utility of 30 be overloaded when the average load is equ@ilA

task i.e.,MaxAU is computed using normal distribution . . 0

with mean value of 10 and variance of 10. The Aedru th!s_ load, PPUAS8 _has successfully gained 79.35% of
utility, PPUAS4 achieved 61.62%, PPUAS2 moderately

Utility Ratio (AUR) metric defined in (Let al., 2006) .
has been extensively utilized in the existing TUK/U accrued 36.46% while PUAS accru_ed 24.71% of the
the PPUASS8 algorithm outperforms

scheduling algorithms as performance metric. AUR idtilities. Thus, . f :
defined as the ratio of accrued aggregate utibtyne ~PPUAS4 for 17.73% and PUAS2 for 42.89% at this

maximum possibly attained utility. load. The PPUAS8 algorithm outperforms the PUAS
algorithm for 54.64% at this load.
RESUL TS AND DISCUSSION Figure 9 plots the task success ratio experieased

a function of the increasing loads. Figure 9
Figure 8 depicts the AUR result under ancomplements the AUR results deliberated in Fig. 8.
increasing load for step TUF. From the resultsthes This is because it measures the exact number ké tas
number of load is increased; a lower accrued yitiit that has successfully contributed to AUR.
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Step TUF-Uniprocessor and partitioned Arbitrary TUE -Uniprocessor and partitioned
scheduling (PUAS vs. PPUAS) 100 scheduling (PUAS VS. PPUAS)

AUR (%)

AUR (%)

Average load

—%— PUAS --@ - PPUAS2 —@— PPUAS4 —&—PPUASS Average load

—#¥— PUAS --@ -PPUAS2
—&— PPUASH —&—PPUASS

Fig. 8: AUR Results for step TUF
Fig. 10: AUR Results for arbitrary TUF

Step TUF-Uniprocessor and partitioned

scheduling (PUAS vs. PPUAS) .

B Arbitrary TUF-Uniprocessor and partitioned
scheduling (PUAS vS. PPUAS)

100
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SR (%)

SR (%)

Average load
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—&— PPUAS4 —E—PPUASS

Average load

Fig. 9: SR Results for step TUF
—#— PUAS --@- PPUAS2 —8— PPUAS4 —&— PPUASS

Further, the result in Fig. 9 verifies that thes@a of
PPUAS acquired a higher utility compared to PPUAS i
specifically because of the increases on the numaber Fig. 11: SR Results for arbitrary TUF
tasks that has successfully contributed to utititythe
system. As the number of processor increases,tehig This is because larger resources can be used by the
utility accrued to the system by the PPUAS algonith executed tasks as the number of processor incréases
in partitioned scheduling environment. the system.
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Figurel0 depicts the AUR results for execution oftask set. Figure 11 complements the AUR results
the arbitrary TUF tasks in the system. The natfith®  deliberated in Fig. 10.
curves indicates clearly that PPUAS has produced th

highest utility accrued to the system as compavettie CONCLUSION
PUAS algorithm for the entire load range in all the ) ) )
number of processors involved. With the obtained results, this study has proven

Overall, the patterns of the curves from the tesul that the proposed PPUAS partitioned multiprocessor
in the arbitrary TUF tasks set is similar to thepsTUF ~ Scheduling algorithm have tremendously outperformed
tasks set. In the case of arbitrary TUF, a task maty ~the uniprocessor scheduling algorithm i.e., PUAS
be able to accrue its maximal possible utility evenhighly overloaded situations. Overall, the PPUAS
though the execution is completed before itsaccrued the highest utility to the system due t th
termination time. Although these algorithms guagant highest ~resource consumption by employing
that the highest PUD task to be selected, it dagts nMultiprocessor environment in dual, quad and eight
necessarily represent that the maximum possibligyuti core platforms. The contribution of PPUAS algorithm
gained by the executed tasks. that achieved the highest accrued utility and ssece

Referring to Fig. 10, the average load of 2 isfatio making it suitable and efficient scheduling
estimated as the starting point of the overloaded@!dorithm for real time application.
situation in the system in the dual core platfoAthis A number of extensions to this research can be
load, PPUAS2 has achieved 80.09% and PUAS witi¢arried out and are given as follows:

61.81% of the accumulated utilities. At this load . .
. . or. ~*  The PUAS algorithm can be deployed in the global
tF;lzlééfgn?&?;[reltg?tilri]&fsl.n']l%rg\g?a;i%ﬁs g}rplgégé’ of multiprocessor scheduling environment considering
the migration attribute of the executed tasks

also shown for the entire load range. The implementation of the fault tolerance in the

Referring to Fig. 10, in four core platform, TUF/UA partitioned multiprocessor scheduling
approximately the system is considered to be environment

overloaded when the average load is equal to 4hiét

load, PPUAS4 has successfully gained 79.55% of ACKNOWLEGMENT
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