
Journal of Computer Science 8 (8): 1225-1234, 2012
ISSN 1549-3636
© 2012 Science Publications

Corresponding Author: Idawaty Ahmad, Department of Communication Technology and Network,
 Faculty of Computer Science and Information Technology, University Putra Malaysia,
 43400 UPM, Serdang, Selangor DE, Malaysia

1225

Performances of Partition Utility Accrual Real Time Scheduling Algorithm

Idawaty Ahmad, Shamala Subramaniam,
Mohamed Othman and Zuriati Zulkarnain

Department of Communication Technology and Network,
 Faculty of Computer Science and Information Technology,

University Putra Malaysia, 43400 UPM, Serdang, Selangor DE, Malaysia

Abstract: Problem statement: This study proposed a TUF/UA real time scheduling algorithm known
as Partition Preemptive Utility Accrual Scheduling (PUAS) also known as PPUAS algorithm. This
algorithm addressed the overloaded problem that was identified in a uniprocessor scheduling
environment and the necessity to design the scheduling algorithm in a multiprocessor environment.
Approach: The PUAS algorithm was enhanced into the partitioned multiprocessor environment. The
comparison of PUAS and PPUAS were made by using a discrete event simulation. Results: The
proposed PUAS algorithm achieved a higher accrued utility for the entire load range as compared in
the uniprocessor environment. Conclusion: Simulation results revealed that the proposed
algorithms PPUAS are more efficient than the existing PUAS algorithm, producing a higher
utility ratio and less abortion ratio making it suitable and efficient for real time application
executed in multiprocessor environment.

Key words: TUF/UA scheduling, real time system, partitioned, multiprocessor

INTRODUCTION

 Real-time scheduling is fundamentally concerned
with satisfying application time constraints. In an
adaptive real time system an acceptable deadline misses
and delays are tolerable and do not have great
consequences for the system. One of the scheduling
paradigms in adaptive real time system environment is
known as Time Utility Function/Utility Accrual
(TUF/UA) scheduling paradigm (Li et al., 2006).
 With reference to Fig. 1, in the event of the task
being computed at time A, which denotes the range
between the start of execution and the stipulated
deadline, the system gains a positive utility. However,
if the task is completed at time B, which causes failure
of deadline compliance requirement, the system
acquires zero utility. The value of utility for each
executed task is accumulated and the total attained
utilities are measured.
 The latest trend of TUF/UA scheduling algorithm
is moving towards the multiprocessor and distributed
environment (Dellinger et al., 2011; Ji et al., 2010).
One of the existing uniprocessor TUF/UA scheduling
algorithms is known as PUAS (Preemptive Utility
Accrual Scheduling) algorithm (Idawaty et al., 2011).
PUAS is a uniprocessor scheduling algorithm that

manages the independence tasks in preemptive
environment. In PUAS, a task that is currently executed
in a lower PUD is temporarily suspended and a new
task with a higher PUD is given the highest priority to
hold a resource.

Problem statement: In the presence of extremely
overloaded tasks traffic, it is observed that PUAS
implemented in uniprocessor environment is inefficient
due to the limited resources available in the system. A
real time system requires a multiprocessor environment
with larger number of resource capability to
accommodate the surplus load. For ensuring that the
system provides a higher utility under the highly loaded
conditions, the TUF/UA scheduling algorithms
operated in multiprocessor platform are proposed which
are essential for providing an efficient real time system.
The proposed algorithm known as PPUAS (Partitioned
PUAS) has enhanced the existing PUAS algorithm.

Objective: The scheduling objective of PPUAS in this
research is to maximize the total accrued utility from all
executed tasks in the system by implementing the
scheduling algorithm into the partitioned
multiprocessor environment.

J. Computer Sci., 8 (8): 1225-1234, 2012

1226

Fig. 1: The step TUF (Idawaty et al., 2011)

Approach: In order to evaluate and validate the
performance PPUAS, a simulation model for the
TUF/UA scheduling environment for the partitioned
multiprocessor environment is deployed. In partitioned
scheduling, once a task is generated it is assigned to a
single processor and permanently located and scheduled
at the respective processor.

MATERIALS AND METHODS

 A Discrete Event Simulation (DES) is used as
methodology to verify the performance of PPUAS
algorithm. The rationale of using DES lies in the fact
that the PUAS algorithm was based on the DES written
in C language, thus the best method to achieve this
objective. Fig. 2 shows the deployed simulation
model. The multiprocessor infrastructure consists of
a source and tasks entities, an array of utlist queues
to represent the various numberS of processors and
resources in the system.

Source model: A source injects a stream of tasks into
the system. The maximum numbers of tasks are 1000
and denoted as MAX_TASKS. Upon generation, a task
is executed for random execution time with mean of
0.50 seconds. For the purpose of implementing the
multiprocessor environment into the simulation
model, two steps are taken after a task has been
generated as follows:

Step 1: Assign a task to its specific processor by using
a task assignment algorithm. All tasks are assigned to

processors by task assignment algorithm as shown in
Fig. 2 and 3. The cpuid parameter is used to identify the
assigned processor ID of a task.

Step 2: Execute the PPUAS scheduling algorithm.

Task model: Each task is associated with an integer
number, denoted as tid. Each task is also associated
with a start of execution time (i.e., Initial time) and a
deadline (i.e., Termination time) as shown in Fig. 1.
The arrival time of the task into the system is denoted
as the Initial time. The Termination time represents the
absolute deadline of a task. This research considered the
step and arbitrary TUF task model as shown in Fig. 4.
 The step TUF model used in the simulator is shown
in Fig. 4a. The maximum utility that could possibly be
gained by a task is denoted as MaxAU. The random
value of MaxAU abides normal distribution (10, 10) i.e.,
the mean value and variance is set 10. The InitialTime
is the starting time for which the function is defined.
The TerminationTime is the last time for which the
function is defined.
 The arbitrary shape TUF is represented as a
continuous and derivable polynomial equation derived
from the literature (Li et al., 2006). The maximum
utility that could possibly be gained by a task is denoted
as MaxAU. The random value of MaxAU abides normal
distribution (10, 10) i.e., the mean value and variance is
set 10. For arbitrary TUF, the completion of a task
within the InitialTime and TerminationTime interval
will yield a random positive utility denoted as Utility as
shown in Fig. 4b.

J. Computer Sci., 8 (8): 1225-1234, 2012

1227

Fig. 2: Simulation Model

Fig. 3: Task Assignment Algorithm

J. Computer Sci., 8 (8): 1225-1234, 2012

1228

 (a) (b)

Fig. 4: Step and arbitrary TUF task set (Li et al., 2006) (a) step (b) arbitary

Queuing model: The constant amount of resources and
surplusing demands results in resource unavailability.
The simulator provides a mechanism to retain the task’s
requests for resources which are temporarily
unavailable in an unordered task list named as utlist.
The number of utlist queues represents the number of
processors in the system. The number of available
processors is depicted in the MAX_CPU parameter as
shown in Fig. 2.

Resources component: The resource model represents
the physical and logical resources. The number of
available resources in each processor is depicted in the
MAX_RES parameter as shown in Fig. 2. The number
of resources in the uniprocessor environment is limited
to 5 according to the literature (Idawaty et al., 2011; Li
et al., 2006). The total number of available resources in
all processors is shown in the MAX_RESOURCES
parameter which is calculated as the MAX_RES *
MAX_CPU.
 When a task request a resource, the resource
request event is depicted in Fig. 5. Every time this event
is executed, the system increments the counter
representing the number of request in a task i.e.,
Treq.nrr by one.
 Referring to Fig. 5, when a new request for a
resource from a task Treq arrived in the system, the
availability of the requested resource is checked. If the
resource is in IDLE state which means it is available,
task Treq is scheduled to immediately use the resource
and the resource release event is scheduled in the event

list. The status of the resource is changed to BUSY
state and the owner of this resource is assigned to the
task Treq.
 In the case the requested resource is currently
being used by the owner task Towner, the PUD for both
tasks is compared. If the requesting task Treq produced
a higher PUD, Towner is preempted and inserted into
the utlist. Task Treq is granted to use the resource. The
status of the resource is changed to BUSY state and the
owner of this resource is assigned to the task Treq. The
HoldTime i.e., the time taken to hold resource R is
randomly assigned to task Treq in the Treq.
HeldRes[R]. HoldTime parameter. The expected
release time of resource R i.e., Treq. HeldRes[R].
ReleaseTime is calculated as sclock + Treq.
HeldRes[R]. HoldTime.
 When a task releases a resource, the resource
release event is executed as shown in Fig. 6 and 7. The
number of resources that have been released by task
Towner is captured and represented by the Towner.nrp
parameter which is incremented by one for every
resource released made for a request in task Towner.
This parameter is used to capture the number of
requests that have been released when the termination
time event for task Towner arrived into the system. The
steps taken when a resource R is released by the owner
task i.e., Towner is done in two consecutive phases as
stated below:

Phase 1: After resource R is released by the owner
task, the status of R is reset from BUSY to IDLE state.

J. Computer Sci., 8 (8): 1225-1234, 2012

1229

Fig. 5: A resource request event

J. Computer Sci., 8 (8): 1225-1234, 2012

1230

Fig. 6: A resource release event -Phase 1

J. Computer Sci., 8 (8): 1225-1234, 2012

1231

Fig. 7: A resource release event -Phase 2

The owner of resource R i.e., res[R].Owner is set to
zero to indicate that R is currently not being held by
any task. Next, the utlist is checked whether there is any
task that currently requesting for resource R. The work
pointer is used for the searching procedure. The work
pointer checks the resource rid of the first element in
the utlist. If it does not discover the resource R, it will
proceed searching to the next element. If the work
pointer discovers that a task i.e., Treq is currently
requesting for resource R, the PUD of the requesting
task i.e., Treq. PUD is calculated. The PUD is then
compared with the LargestPUD parameter that contains
the value that is currently producing highest PUD
among the tasks in utlist.Initially, the value of largest
PUD is set to 0.0000. If task Treq produces. A larger
PUD than the value currently in LargestPUD, the
Treq.PUD is considered as the highest PUD so far.
Thus, the value of LargestPUD is updated to be equal
to the Treq.PUD.

Phase 2: The scheduling for the execution of the task
possessing the largest PUD in the utlist (if any). Figure
6 shows the flowchart of the second phase. The
completion of Phase 1, will be followed by the
determination of possible value for the LargestTask

parameter .1. In the event that there is a request, the
status of resource R is changed to the BUSY state and
the LargestTask become the owner of resource R. The
LargestTask consumed resource R instantaneously and
the resource release event is scheduled in the event list.
Since the LargestTask will be holding resource R, it is
deleted from the utlist. If none of the tasks in the system
currently requesting for resource R, it remain in the
IDLE state without any owner task.

Experimental setting: The developed simulator has
been tailored to map the characteristics of a
uniprocessor scheduling. A source generates a stream of
1000 tasks. Given the task average execution time
C_AVG and a load factor load, the average task inter
arrival time i.e., iat is calculated as the division of
C_AVG over load and further utilized an exponential
distribution to be further derived to reflect the intended
system model. In all the simulation experiments, the
value of C_AVG is set at 0.50 sec and the range value
of load is from 1-10. The different values of load are to
provide the derivation of differing mean arrival rates of
tasks. The arrival of tasks is assumed to follow the
exponential distribution. The M/M/1 queuing model is
used to estimate the overloaded situations in the
uniprocessor environment. In this research, the range
values of load are observed 1.0-10.0 in the
multiprocessor environment following the estimation
load in the M/M/C queuing model.
 The M/M/C queuing model is used to indicate a
multiserver system with C servers that have unlimited
queue capacity and an infinite population of potential
task arrivals. The number of processors in the system is
considered in the 2, 4 and 8 core platforms (Dellinger et
al., 2011). Generally, the inter arrival times denoted by
λ and the service times per server denoted by µ are
exponentially distributed. To reflect the M/M/C with
the multiprocessor scheduling model, C is the number
of processors in the system which is also known from
the MAX_CPU parameter. The inter arrival time,
denoted as λ is defined in the unit of tasks/secsmeasures
the number of tasks that arrived into the system in one
sec. The service rate per processor denoted as µ
measures the number of tasks that is being processed by
each processor within one sec.
 For multiprocessor, the maximum service rate for
all processors is equal to Cµ. Note that inters service
time for all processors Cµ is calculated according to the
number of processors C. From the general estimation of
the system behavior for M/M/C queuing model, the
system is considered to be stable when the arrival rate λ
is less than the maximum service rate Cµ i.e., λ < Cµ.

J. Computer Sci., 8 (8): 1225-1234, 2012

1232

Table 1: Parameter Estimation in the M/M/C queuing model

Number of Parameter ρ
processor C Parameter (Cµ) (ρ = λ /µ < C)

1 2 ρ < 1
2 4 ρ < 2
4 8 ρ < 3
8 16 ρ < 4

Since the same value of C_AVG is used in the
multiprocessor environment, each service rate µ is
calculated 1/ C_AVG that is equal to 2 tasks/secs.
Hence, the maximum service rate for two, four and
eight processors is 4, 8 and 16 tasks/secsrespectively.
This is shown in the second column of Table 1.
 From the literature, the system is considered to be
stable when the arrival rate λ is less than the maximum
service rate cµ i.e., λ < Cµ. Equivalently, the offered load
ρ = λ/µ < C. Thus, the offered load ρ must be less than the
number of processors C. Hence, the general estimation of
the simulation model, the system is considered to be under
load of when the offered load ρ < C. In the simulation
model, the value of ρ is stored in the load parameter and
the value of C is depicted in the MAX_CPU. Therefore,
the rough estimation for the stable behavior of the
multiprocessor system is for the value of
load<MAX_CPU. Hence, in all the experiment the
range value of load is selected as 1 ≤ load≤10. For
every number of MAX_CPU, the system is started to be
overloaded starting when load = MAX_CPU. Referring
to Table 1, for dual core processors, the system is
estimated to be overloaded when load = 2. In the quad
core processor environment, the system is expected to
be overloaded when load = 4. For eight core
platform, the system is considered as overloaded
when load = 8. Note that these loads are the
approximation value that may be considered as a
rough guide to the behavior of the system.
Practically, the results observed from the simulation
are used to measure the performances of the system.
 The value of the HoldTime and AbortTime
parameters are derived by the normal distribution with
mean and variance is 0.25. The maximum utility of a
task i.e., MaxAU is computed using normal distribution
with mean value of 10 and variance of 10. The Accrued
Utility Ratio (AUR) metric defined in (Li et al., 2006)
has been extensively utilized in the existing TUF/UA
scheduling algorithms as performance metric. AUR is
defined as the ratio of accrued aggregate utility to the
maximum possibly attained utility.

RESULTS AND DISCUSSION

 Figure 8 depicts the AUR result under an
increasing load for step TUF. From the results, as the
number of load is increased; a lower accrued utility is

recorded. From the overall results, as the load and the
number of processors increase, the higher utility
accrued to the system by the PPUAS algorithm as
compared to PUAS algorithm that is executed in the
uniprocessor environment. The enhancement of the
uniprocessor scheduling to the multiprocessor
scheduling environment has tremendously improved the
utility accrued to the system. The multiprocessors
acquired a larger number of resources that can be used
by the executed tasks.
 Referring to Fig. 8, in dual core platform, the
average load of 2 is estimated as the starting point of
the overloaded situations in the system. At this load,
PPUAS2 has achieved 75.99% and PUAS with 63.25%
of the accumulated utilities. At this load, PPUAS2
algorithm has improved PUAS for 12.74% of the
accumulated utilities. The superiority of PPUAS2 is
also shown for the entire load range.
 In four core platform, approximately the system is
considered to be overloaded when the average load is
equal to 4. At this load, PPUAS4 has successfully
gained 75.43% of utility and PPUAS2 moderately
accrued 58.00% while PUAS accrued 36.35% of the
utilities. Thus, the PPUAS4 algorithm outperforms
PPUAS2 for 17.43% and PUAS for 39.08% at this load.
As the load increases, more incoming tasks arrived into
the system and requesting for the resources in the
system. PPUAS4 acquired a larger number of
processors and resources to be used by the executed
tasks as compared to the PPUAS2. Due to the limited
resources, more tasks in PPUAS2 are overdue and
therefore ending up being aborted. More aborted tasks
are produced as the load increases and consequently
produced more zero utility tasks to the system. This is
why a sharper degradation is observed as the load
increases for PPUAS2 in the dual core platform.
 The PPUAS8 that runs in the eight core platform
has produced the highest utility to the system as
compared to the dual and quad core platforms. In eight
core platform, approximately the system is considered
to be overloaded when the average load is equal to 8. At
this load, PPUAS8 has successfully gained 79.35% of
utility, PPUAS4 achieved 61.62%, PPUAS2 moderately
accrued 36.46% while PUAS accrued 24.71% of the
utilities. Thus, the PPUAS8 algorithm outperforms
PPUAS4 for 17.73% and PUAS2 for 42.89% at this
load. The PPUAS8 algorithm outperforms the PUAS
algorithm for 54.64% at this load.
 Figure 9 plots the task success ratio experienced as
a function of the increasing loads. Figure 9
complements the AUR results deliberated in Fig. 8.
This is because it measures the exact number of tasks
that has successfully contributed to AUR.

J. Computer Sci., 8 (8): 1225-1234, 2012

1233

Fig. 8: AUR Results for step TUF

Fig. 9: SR Results for step TUF

Further, the result in Fig. 9 verifies that the reason of
PPUAS acquired a higher utility compared to PPUAS is
specifically because of the increases on the number of
tasks that has successfully contributed to utility of the
system. As the number of processor increases, a higher
utility accrued to the system by the PPUAS algorithm
in partitioned scheduling environment.

Fig. 10: AUR Results for arbitrary TUF

Fig. 11: SR Results for arbitrary TUF

This is because larger resources can be used by the
executed tasks as the number of processor increases in
the system.

J. Computer Sci., 8 (8): 1225-1234, 2012

1234

 Figure10 depicts the AUR results for execution of
the arbitrary TUF tasks in the system. The nature of the
curves indicates clearly that PPUAS has produced the
highest utility accrued to the system as compared to the
PUAS algorithm for the entire load range in all the
number of processors involved.
 Overall, the patterns of the curves from the results
in the arbitrary TUF tasks set is similar to the step TUF
tasks set. In the case of arbitrary TUF, a task may not
be able to accrue its maximal possible utility even
though the execution is completed before its
termination time. Although these algorithms guarantee
that the highest PUD task to be selected, it does not
necessarily represent that the maximum possible utility
gained by the executed tasks.
 Referring to Fig. 10, the average load of 2 is
estimated as the starting point of the overloaded
situation in the system in the dual core platform. At this
load, PPUAS2 has achieved 80.09% and PUAS with
61.81% of the accumulated utilities. At this load,
PPUAS2 algorithm has improved PUAS for 18.28% of
the accumulated utilities. The superiority of PPUAS2 is
also shown for the entire load range.
 Referring to Fig. 10, in four core platform,
approximately the system is considered to be
overloaded when the average load is equal to 4. At this
load, PPUAS4 has successfully gained 79.55% of
utility and PPUAS2 moderately accrued 61.17% while
PUAS accrued 35.82% of the utilities. Thus, the
PPUAS4 algorithm outperforms PPUAS2 for 18.38%
and PUAS for 43.73% at this load. As the load
increases, more incoming tasks arrived into the system
and requesting for the resources in the system. PPUAS4
acquired a larger number of processors and resources to
be used by the executed tasks as compared to the
PPUAS2. Due to the limited resources, more tasks in
PPUAS2 are overdue and therefore ending up being
aborted. More aborted tasks are produced as the load
increases and consequently produced more zero utility
tasks to the system. This is why a sharper degradation is
observed as the load increases for PPUAS2 in the dual
core platform.
 Referring to Fig. 10, the PPUAS8 that runs in the
eight core platform has produced the highest utility to
the system as compared to the dual and quad core
platforms. In eight core platform, approximately the
system is considered to be overloaded when the average
load is equal to 8. At this load, PPUAS8 has
successfully gained 77.63% of utility, PPUAS4
achieved 64.51%, PPUAS2 moderately accrued 37.92%
while PUAS accrued 22.04% of the utilities. Thus, the
PPUAS8 algorithm outperforms PPUAS4 for 13.12%
and PUAS2 for 40.43% at this load. The PPUAS8
algorithm outperforms the PUAS algorithm for 55.59%
at this load.
 Figure 11 plots the task success ratio experienced
as a function of the increasing loads for arbitrary TUF

task set. Figure 11 complements the AUR results
deliberated in Fig. 10.

CONCLUSION

 With the obtained results, this study has proven
that the proposed PPUAS partitioned multiprocessor
scheduling algorithm have tremendously outperformed
the uniprocessor scheduling algorithm i.e., PUAS in the
highly overloaded situations. Overall, the PPUAS
accrued the highest utility to the system due to the
highest resource consumption by employing
multiprocessor environment in dual, quad and eight
core platforms. The contribution of PPUAS algorithm
that achieved the highest accrued utility and success
ratio making it suitable and efficient scheduling
algorithm for real time application.
 A number of extensions to this research can be
carried out and are given as follows:

• The PUAS algorithm can be deployed in the global

multiprocessor scheduling environment considering
the migration attribute of the executed tasks

• The implementation of the fault tolerance in the
TUF/UA partitioned multiprocessor scheduling
environment

ACKNOWLEGMENT

 This research is supported by Research University
Grant (RUGS) 05-05-10-1115RU (Ministry of Higher
Education, Malaysia) The authors are also grateful to
Universiti Putra Malaysia for providing the excellent
research facilities.

REFERENCES

Dellinger, H., P. Garyali and B. Ravindran, 2011.

ChronOS Linux: A best-effort real-time
multiprocessor Linux kernel. Proceedings of the
48th Design Automation Conference, Jun. 5-10,
ACM Press, USA, pp: 474-479. DOI:
10.1145/2024724.2024836

Idawaty, A., S. Shamala, O. Mohamed and Z. Zuriati,
2011. A discrete event simulation framework for
utility accrual scheduling algorithm in uniprocessor
environment. J. Comput. Sci., 7: 1133-1140.

10.3844/jcssp.2011.1133.1140
Ji, L., G. Ruifeng and S. Zhixiang, 2010. The research

of scheduling algorithms in real-time system.
Proceedings of the International Conference on
Computer and Communication Technologies in
Agriculture Engineeeing, Jun. 12-13, IEEE Xplore
Press, USA., pp: 333-336.

Li, P., H. Wu, B. Ravindran and E.D. Jensen, 2006. A
utility accrual scheduling algorithm for real-time
activities with mutual exclusion resource
constraints. IEEE Trans. Computer., 55: 454-469.
DOI: 10.1109/TC.2006.47

