
Journal of Computer Science, 9 (1): 74-82, 2013

ISSN 1549-3636
© 2013 Nielsen and Almajali, This open access article is distributed under a Creative Commons Attribution
(CC-BY) 3.0 license
doi:10.3844/jcssp.2013.74.82 Published Online 9 (1) 2013 (http://www.thescipub.com/jcs.toc)

Corresponding Author: Jess Nielsen, Department of Research and Development, Trapeze Group Europe A/S,
 Søren Frichs Vej 38K, DK-8230 Åbyhøj, Denmark

74 Science Publications

JCS

Collecting Data from Running Systems

1
Jess Nielsen and

2
Sufyan Almajali

1Department of Research and Development, Trapeze Group Europe A/S,

Søren Frichs Vej 38K, DK-8230 Åbyhøj, Denmark
2Department of Computer Science, The King Hussein School for Information Technology,

Princess Sumaya University, Amman, Jordan

Received 2012-11-12, Revised 2013-01-18; Accepted 2013-02-12

ABSTRACT

This article describes a way to build a consolidated log that can be used to facilitate the state of Windows
services at runtime. It makes a side by side introduction of code instrumentation techniques and autonomic
techniques that can be used to collected data from running systems in order to construct a consolidated log.
The techniques try to deal with the non-standardized syntaxes and contents that come with heterogeneous
logs. The collected data might be a foundation for a replacement to such logs hence the behavior can be
determined by such collected data. These behaviors can be mapped to common, standardized and easy-
understandable high level events that can be used as a log themselves.

Keywords: About Autonomic Computing, Code Instrumentation, Runtime Behaviors, Windows Services

1. INTRODUCTION

 This Document outlines an approach that can be
used to clarify the behavior of Windows services based
on potential problems when localizing log information in
an IT infrastructure.
 Today’s systems management is characterized by
many systems that are monitored and managed
individually, which is based on our own observations
and experiences from previous jobs inside systems
management, where surveillance and maintenance of
mission-critical systems are the most recent tasks.
 Each of the systems owns their own logs which
typically have their own syntaxes and even semantics.
This requires the IT staff to achieve special knowledge
within each system and it makes it difficult to compare
the correct logs and analyze them. The primary
motivation is therefore to make it easier for the systems
management staff through a standardized and easy-
understandable consolidated log, where possible. An
example of such log can be found in Fig. 1.
 Consolidation (or data consolidation) is the
procedure through which you install a central data

storage unit to keep all databases easily accessible.
Consolidation is not unlike data center migrations but the
focus is on having the files or data in a specified location
rather than actually moving them around.
 The introduction of a consolidated log has the goal
to save valuable time. The reason for this is that it
prevents the search of logs in various locations and
analysis of wrong logs by conceptually placing all log
information at one place. The knowledge of different
systems and particularly their proprietary error codes is
no longer needed when all information is expressed in a
standardized and easy-understandable way.

1.1. An Autonomic Approach

 Consolidated logs address autonomic systems
through the second level, which is also called the
managed level, on the autonomic axis (IBM, 2005) with
responsibility for data consolidation. This is an obvious
reason to introduce autonomic systems. Along with
consolidation, adding autonomic-like features becomes
possible. Automatically triggering the action “restart
system” on certain high level events is an example of this.

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

75 Science Publications

JCS

Fig. 1. A consolidated log

Table 1. The layers in the three-layered reference model

Sense Act Plan

Component control layer Change management layer Goal management layer
The bottom/operational layer The sequencing layer The uppermost/deliberation layer
Surveillance of the Execution of plans due to Planning in relation to high level goals
target systems changes in the states and business policies
Reports states to the change Requests plans from the goal Provides plans to the change
management layer management layer management layer

In general systems in the “autonomic world” are
categorized into a five-level taxonomy that has been
spearheaded by IBM. Each level represents a more
advanced and refined system. The lowest level is a
manual system with no explicit requirements for self-
managed properties while the fourth and fifth level must
have all of the self-* properties such as self-
configuration, self-healing, self-optimization and self-
protection (Kramer and Magee, 2007) to achieve their
respective goals as being both decision making and
business policy driven.
 In general, software architecture defines the
structure of the system as depicted in (Bass et al., 2003)
and this is the basis for both manual and self-managed

systems, but the self-managed systems state some
explicit requirements to achieve the autonomic features.
 A self-managed system or an autonomic system acts
in the same way as a robot. A robot’s Sense-Plan-Act
(SPA) behavior corresponds exactly to a self-managed
system (Kramer and Magee, 2007). This is why an
autonomic system must achieve the same properties as for
SPA architectures that can be expressed by a three-layered
reference model approach described in (Kramer and Magee,
2007). This model does in general also refer to the research
of artificial intelligence and mobile robots.
 The reference model (Table 1) leads to the next
section which introduces an autonomic-like system.

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

76 Science Publications

JCS

Fig. 2. The infrastructure placed in the three-layered architecture

Fig. 3. Package structure

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

77 Science Publications

JCS

Fig. 4. Components and connectors

Table 2. Architectural assumptions (Bass et al., 2003)

Term Definition

Requires assumptions Detail services and resources that a component must have in order to correctly function
Provides assumptions Describes the services a component provides to its users or clients

The components within the system will be identified
respectively in correspondence to the respective layers in
the reference model.

1.2. Monitoring Distributed Systems

 Kaiser et al. (2003) an external infrastructure to
monitor distributed legacy systems, named Kinesthetics
Extreme, is made with the Java language. Although this
work is centered on C++ language tools, its architectural
overview and implementation is still relevant to this subject.
 The approach is generally centered on two terms
that are related to data collection and categorization, but
only the architecture is interesting in relation to this
work. The individual components (probes that collect,
gauges that categorize and controllers that act) are
loosely coupled by making them event-based. This is
done by a standardized event middleware that uses the
publisher/subscriber mechanism. All of these
components can be placed respectively in the three-
layered reference model as depicted in Fig. 2.
 Furthermore, during the development of this
infrastructure, learning techniques to build rules in a
more autonomic fashion have also been investigated to
address the upper-most layer.

1.3. Architectural Construction

 The autonomic architectures that just have been
introduced are used to form the architecture of this
prototype with a functionality primarily centered on two
use cases: The first use case includes the installation or
log-enabling of a Windows Service. The second use case
deals with the daily usage of the consolidated log.
 The architecture in Fig. 3 is generally like the
Kinesthetics Extreme approach (Kaiser et al., 2003) with
respect to the three-layered architecture. The reason is to
achieve the same set of properties that makes it possible
to detach components if not all of them are required or
up scaling by attaching several components of the same
type to increase performance.
 The figure above (Fig. 4) illustrates how the
components interact with each other through the message
queue that holds messages in transit. It is generally
implemented as a façade by a high level interface
(Gamma et al., 1994), which is acting as a
publisher/subscriber mechanism (Buschmann et al.,
2007) through which the data is send to the components.
 Commonly for third-party software is that it often
have to match specific architectural assumptions
(Table 2). The third-party software has to run under

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

78 Science Publications

JCS

certain requires assumptions and the provided
assumptions do not always fit into the particular needs.
 Architectural assumptions that do not properly fit
into the architecture might often lead to architectural
mismatches i.e., by introducing a component with non-
scalable features as one of its provided assumptions into
a scalable architecture.
 Message queue software from third-party vendors
exists, but these have been avoided. The reason for this is
to avoid such architectural mismatches.

1.4. Collecting Low Level Data

 Constructing an (abstract) architecture to make it fit
into reference models and other architectural
requirements is one thing; another thing is how to collect
the data that need to be used with the architecture. The
research of this subject includes in general techniques
such as: collection of data, control theory, queuing
models, heuristic search techniques and machine learning
(Menasce and Kephart, 2007). However the following is
centered on techniques used for collection of data:

• Data mining, but in order to do so the knowledge of

all logs and their locations must be present along
with parsers for each format

• Exception handling logs data a proprietary format to
the applications own logs instead of a common log
used for all applications which requires a parser for
each format

• Dynamic probes are able to collect data in one
format and broadcast the data to one common log,

but it requires that the probes can be injected into
the application

In general, data for error handling can be collected in
many ways as outlined above, but the most appropriate
one that is independent of various log files is the use of
dynamic probes and data consolidation even the patterns
for high level mapping must be defined either manually
or automatically in some way.
 Dynamic probes are primarily centered on
collection of method calls that can be used to identify
the states of the target system through pattern
matching. The technique introduces data extraction by
probes through code injection, which can be grouped
into the following categories.

• Compile-time or static weaving
• Runtime or dynamic weaving

 In general weaving is equivalent to code injection.
The difference on compile-time weaving and runtime
weaving relies on whether it is being processed on the
source code of a non-running system or whether it is being
injected into the binaries of a running system. A summary
outlining the differences can be found below in Table 3.
 Runtime weaving might be the only alternative
hence it is not (always) possible to recompile and restart
a mission critical system. However the target system can
be statically prepared for the runtime techniques by
making it aware of the aspects, which is why it is called
prepared dynamic weaving.

Fig. 5. The weaving aspect

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

79 Science Publications

JCS

Table 3. Summary of static- and dynamic weaving

Static weaving Dynamic weaving

Requires declarations of elements to be visible to the Requires an expensive dynamic weaving structure
source of the target system
Source code needs to be available Recompilation and restart of systems are not needed
Recompilation is required

Table 4. Vocabulary defined by Aspect C++

Term Definition
Join point A join point refers to a point in the source code from which an aspect is accessed.
Point cut A point cut is a set of join points described by a point cut expression
Advice An advice declaration can be used to specify code that should run when the join points specified by a point
 cut expression are reached

Table 5. Vocabulary defined by DAC++

Term Definition Similar to
Minimal hook A minimal hook represents a piece of code that allows our system to A join point
 weave in an aspect at the hook location if needed

1.5. Aspect Weaving

 Aspect weaving is a mix of two techniques; weaving
and Aspect Oriented Programming (AOP). As its name
implies, the use of aspect weaving introduces AOP as a
single dimension of functional decomposition is
insufficient to emphasis all aspects of a program in a
modular way. AOP tries to solve this by encapsulating
such crosscutting concerns in modular units.
 In Fig. 5, it depicts the weaving aspect. The
generated code is based on the original component code
that has been merged with join points. These join points
call the aspect code. As mentioned, this introduces a join
point that leads to the definitions in Table 4, which is
defined a compile-time weaving tool called Aspect C++
(Sincyk et al., 2002). A few languages or language
extensions support runtime weaving for the C++
language. Some languages support only dynamic
weaving if the source has been prepared for it while
others are able to make dynamic weaving without
preparation, but they might instead have specific
requirements to the compiled binaries.

1.6. Prepared Dynamic Aspect Weaving

 The Dynamic Aspect C++ (DAC++) language
(Almajali and Elrad, 2004), which is an extension to the
C++ language, has been developed as part of a PhD
program and the approach introduces the definitions
outlined in Table 5.
 The architecture of DAC++ uses two components: a
preprocessor and an AOP engine. The preprocessor
generates the Meta object data needed at runtime.

 The prepared and compiled binary can be run with
metadata containing information about program classes
and methods. This information is used by the dynamic
aspects called through minimal hooks and a designated
AOP engine when weaving at runtime.
An evaluation with 100,000,000 iterations made on

Linux G++ and DAC++ gave the same performance in
benchmark tests. The difference in performance (Table 6)
started appearing when we tested the performance of
method calls as depicted in the taxonomy above.

1.7. Constructing Dynamic Aspects

 The aspects are formed as modular units hence their
primary responsibility is to collect data from all parts of
the target system, which makes the responsibility a
crosscutting concern. The aspect in Table 7 traces all on-
entry function calls. The amount of traces that are
published can be reduced by either a filter or another and
more strict point cut expression. However, such filtering
mechanisms have been omitted. The validity of the
aspect is described by a point cut expression and the
weaving type which must be defined in the target system.
The advice method (Table 8) is acting as a triggering
event on the aspect.
 The aspects are setup in a small piece of code
(Table 9) compiled into the target system. It describes
under which conditions the aspect should be working.
 After the minimal hooks have been injected into the
target system, it results in a code snippet such as the one
in Table 10.

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

80 Science Publications

JCS

Table 6. Method Call Performance Evaluation

Benchmark Hard coded aspect DAC++

Method Call 1 (small) 32 sec 42 sec 31%
Method Call 2 (average) 36 sec 44 sec 22%

Table 7. Aspect, header information

Aspect class TraceAllAspect : public Aspect {
 public:
 void advice() ;
 };

Point cut expression Collects entries of all class method calls
 *

Table 8. Aspect, implementation details

Advice void advice() {
 std::stringstream ss;
 // 1. use inherited methods to retrieve class-
 // and method names
 ss << /* xml construct omitted */ << “\n";
 ofstream File("c:\\message.xml");
 File.write (ss.str().c_str(),strlen(ss.str().c_str()));
 File.close();
 // 2. call AspectExe to publish on the message queue
 const char* szAspectExec =
 "C:\\...\\AspectsExecutable.exe c:\\message.xml";
 try { system(szAspectExec); } catch (...) {
 }
 }

Table 9. Enabling the aspect in the target system

Setup DAC_INIT();
 // 1. defining point cut expression
 MethodPC meth;
 ClassPC classpc;
 meth.setvalue("*");
 classpc.setvalue("*");
 PCD pc;
 pc.setmethodPC(meth);
 pc.setclassPC(classpc);
 // 2. trace on entrance or exit of method calls
 WeaveSpecs ws;
 ws.setweavetype(Before_T);
 // 3. apply it to the respective aspect
 TraceAllAspect b;
 b.setweavespecs(ws);
 b.setpcd(pc);

1.8. Generating High Level Events

 The techniques described collect data such as
method calls from a running application. The collected
data is very low level. This makes it difficult for usage
on high level decision making in the daily work of the
systems management staff.

Table 10. After the injection of join points for the run() method
run() public : virtual void run () { _dac_arrayvoidptr
 _dac_array_act_rec;
 _dac_arrayvoidptrnodeptr _dac_ptr2 ,_dac_ptr3;
 _dac_ptr3=NULL;
 if (MethodMOP[15].before)
 { Aspectnodeptr _dac_ptr1;
 _dac_ptr1 = MethodMOP[15].beforeHead; while
 (_dac_ptr1!=NULL)
 { _dac_execute_before(15,_dac_ptr1,_dac_ptr3);
 _dac_ptr1=_dac_ptr1->next; }
 } _org_run ();
 if (MethodMOP[15].after)
 { Aspectnodeptr _dac_ptr1;
 _dac_ptr1 = MethodMOP[15].afterHead; while
 (_dac_ptr1!=NULL)
 { _dac_execute_after(15,_dac_ptr1,_dac_ptr3);
 _dac_ptr1=_dac_ptr1->next; }
 }
 }

Table 11. Bridging low level data to high level events

Primitive category Pattern Abstract category

Executable Sequence no. Event name
Process id Sequence size Description
Thread id
Class name
Method name

Table 12. The time (in seconds) it takes to process 226 traces,

when the number of gauges is increased by a certain
factor

Factor Events Actions Total

1 57 12 69
2 31 6 37
3 23 3 26
4 19 3 22

 To solve this it is necessary to map the low level
data into a high level model. This is a time consuming
process, it can either be done manually or in an
autonomic-like way. However the patterns have been
constructed manually in this prototype, but it is
recommended that the respective providers of Windows
services make this mapping in advance either in a
proprietary format or in a standardized format that might
include recovery procedures for the error states.
 All method calls belong to sequences (or mapping
traces) which define patterns. The patterns identify
events that signal the states of the system such as “lost
connectivity” among others.
 The research outlined in (Walker et al., 2000) is
primarily a target for construction of architectural views by

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

81 Science Publications

JCS

constructing a set of patterns matching events equal to the
states of the target system. The part of the research that will
be included is primarily the part about mapping traces.
 The mapping trace that focus on events, such as
class method entries and exits, are based on an encoding
scheme which defines certain encoding events. These
events are based on the determination of the patterns,
where the patterns are based on sets or sequences of
method calls. The mapping to the high level states
bridges a set of primitive categories (such as class
identifiers) to an abstract category through a partial,
ordered specification of matching criteria defined by
patterns. In other words, primitive categories are grouped
into sequences that define a pattern. The patterns are
matching abstract categories in the form of high level
events (Table 11).

1.9. Performance and Adaptability

 This section primarily focuses on two aspects:
performance and adaptability due to large heterogeneous
environments. Performance is evaluated by measuring
the throughput based on two different Windows services,
while the adaptability is evaluated by proving the
prototype on a third-party Windows service with a
different design.
 The Windows Service has generated 226 traces
within 59 seconds. The test of the other components is
based on these 226 traces, where it is measured how long
it takes to process these traces. The result of the test can
be found in Table 12.
 The adaptability issue has been proven by log-
enabling a small third-party telnet service. It can be
downloaded from codeproject.com (More, 1999) and it is
called NT Telnet server and client. It is a tiny Windows
Service created in the C++ language.

2. CONCLUSION

 A prototype was made to clarify whether it was
possible to generate a consolidated log of high level
events based on low level traces from various Windows
services. The prototype was based on a three-layered
autonomic reference model to allow more automated
features in the prototype.
 In order to clarify such consolidated log, the
correctness has been evaluated. It has been evaluated
from two points of view: First, the consolidated log and
the proprietary logs must signal the same states. Second,
the same type of errors (expressed as high level events)
must be homogeneous regardless of which Windows
services that have been generating them.

 However the biggest issue is the generation of patterns.
It is time consuming and requires special knowledge of the
systems. Second to this, the preparation of the Windows
services requires knowledge about the source code,
compilers and compiler environment.

3. ACKNOWLEDGEMENT

 Thanks to everyone who helped with this article.
Especially thanks to Localization Manager Vibeke
Batchford at Trapeze Group Europe A/S for proofreading
this article. She holds a MA degree in English. Finally,
thanks to both Trapeze Group Europe A/S and Princess
Sumaya University for the economical contributions.

4. REFERENCES

Almajali, S. and T. Elrad, 2004. A dynamic aspect
oriented C++ using mop with minimal hook
weaving approach. Proceedings of the Dynamic
Aspect Workshop, Lancaster, (DAWL’ 04),
England.

Bass, L., P. Clements and R. Kazman, 2003. Software
Architecture in Practice. 2nd Edn., Addison Wesley,
Boston, ISBN-10: 0321154959, pp: 560.

Buschmann, F., K. Henney and D.C. Schmidt, 2007.
Pattern Oriented Software Architecture. 1st Edn.,
Wiley, Chichester, England, ISBN-10: 0470512571,
pp: 490.

Gamma, E., R. Helm and R. Johnson, 1994. Design
Patterns: Elements of Reusable Object-Oriented
Software. 1st Edn., Addison-Wesley, Reading,
Mass, ISBN-10: 0201633612, pp: 395.

IBM, 2005. An Architectural Blueprint for Autonomic
Computing. 3rd Edn., Autonomic Computing, pp: 34.

Kaiser, G., J. Parekh, P. Gross and G. Valetto, 2003.
Kinesthetics extreme: An external infrastructure for
monitoring distributed legacy systems. Proceedings
of the Autonomic Computing Workshop, Jun. 25,
IEEE Xplore Press, pp: 22-30. DOI:
10.1109/ACW.2003.1210200

Kramer, J. and J. Magee, 2007. Self-managed systems:
An architectural challenge. Future Software Eng.
DOI: 10.1109/FOSE.2007.19

Menasce, D.A. and J.O. Kephart, 2007. Autonomic
computing. IBM Res. IEEE Comput. Soc.

More, R., 1999. NT telnet server and client.

Jess Nielsen and Sufyan Almajali / Journal of Computer Science 9 (1): 74-82, 2013

82 Science Publications

JCS

Sincyk, O., A. Gal and W. Schroder-Preikschat, 2002.
AspectC++: An aspect-oriented extension to the
C++ programming language. Proceedings of the
14th International Conference on Tools Pacific:
Objects for Internet, Mobile and Embedded
Applications, (CRPIT’ 02), ACM Press, Australia,
pp: 53-60.

Walker, R.J., G.C. Murphy, J. Steinbok and M.P.
Robillard, 2000. Efficient mapping of software
system traces to Architectural views. Proceedings of
the Conference of the Centre for Advanced Studies
on Collaborative Research, (CASCON’ 00), ACM
Press, pp: 12-12.

