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ABSTRACT 

This article describes a way to build a consolidated log that can be used to facilitate the state of Windows 
services at runtime. It makes a side by side introduction of code instrumentation techniques and autonomic 
techniques that can be used to collected data from running systems in order to construct a consolidated log. 
The techniques try to deal with the non-standardized syntaxes and contents that come with heterogeneous 
logs. The collected data might be a foundation for a replacement to such logs hence the behavior can be 
determined by such collected data. These behaviors can be mapped to common, standardized and easy-
understandable high level events that can be used as a log themselves. 
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1. INTRODUCTION 

 This Document outlines an approach that can be 
used to clarify the behavior of Windows services based 
on potential problems when localizing log information in 
an IT infrastructure. 
 Today’s systems management is characterized by 
many systems that are monitored and managed 
individually, which is based on our own observations 
and experiences from previous jobs inside systems 
management, where surveillance and maintenance of 
mission-critical systems are the most recent tasks.  
 Each of the systems owns their own logs which 
typically have their own syntaxes and even semantics. 
This requires the IT staff to achieve special knowledge 
within each system and it makes it difficult to compare 
the correct logs and analyze them. The primary 
motivation is therefore to make it easier for the systems 
management staff through a standardized and easy-
understandable consolidated log, where possible. An 
example of such log can be found in Fig. 1. 
 Consolidation (or data consolidation) is the 
procedure through which you install a central data 

storage unit to keep all databases easily accessible. 
Consolidation is not unlike data center migrations but the 
focus is on having the files or data in a specified location 
rather than actually moving them around.  
 The introduction of a consolidated log has the goal 
to save valuable time. The reason for this is that it 
prevents the search of logs in various locations and 
analysis of wrong logs by conceptually placing all log 
information at one place. The knowledge of different 
systems and particularly their proprietary error codes is 
no longer needed when all information is expressed in a 
standardized and easy-understandable way.  

1.1. An Autonomic Approach 

 Consolidated logs address autonomic systems 
through the second level, which is also called the 
managed level, on the autonomic axis (IBM, 2005) with 
responsibility for data consolidation. This is an obvious 
reason to introduce autonomic systems. Along with 
consolidation, adding autonomic-like features becomes 
possible. Automatically triggering the action “restart 
system” on certain high level events is an example of this. 
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Fig. 1.  A consolidated log 
 
Table 1. The layers in the three-layered reference model 

Sense Act Plan 

Component control layer Change management layer Goal management layer 
The bottom/operational layer The sequencing layer The uppermost/deliberation layer 
Surveillance of the Execution of plans due to Planning in relation to high level goals 
target systems changes in the states and business policies 
Reports states to the change Requests plans from the goal Provides plans to the change 
management layer management layer management layer 
 
In general systems in the “autonomic world” are 
categorized into a five-level taxonomy that has been 
spearheaded by IBM. Each level represents a more 
advanced and refined system. The lowest level is a 
manual system with no explicit requirements for self-
managed properties while the fourth and fifth level must 
have all of the self-* properties such as self-
configuration, self-healing, self-optimization and self-
protection (Kramer and Magee, 2007) to achieve their 
respective goals as being both decision making and 
business policy driven.  
 In general, software architecture defines the 
structure of the system as depicted in (Bass et al., 2003) 
and this is the basis for both manual and self-managed 

systems, but the self-managed systems state some 
explicit requirements to achieve the autonomic features. 
 A self-managed system or an autonomic system acts 
in the same way as a robot. A robot’s Sense-Plan-Act 
(SPA) behavior corresponds exactly to a self-managed 
system (Kramer and Magee, 2007). This is why an 
autonomic system must achieve the same properties as for 
SPA architectures that can be expressed by a three-layered 
reference model approach described in (Kramer and Magee, 
2007). This model does in general also refer to the research 
of artificial intelligence and mobile robots. 
 The reference model (Table 1) leads to the next 
section which introduces an autonomic-like system.  
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Fig. 2. The infrastructure placed in the three-layered architecture 
 

 
 

Fig. 3. Package structure 
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Fig. 4. Components and connectors 
 
Table 2. Architectural assumptions (Bass et al., 2003) 

Term Definition 

Requires assumptions Detail services and resources that a component must have in order to correctly function 
Provides assumptions Describes the services a component provides to its users or clients 

 
The components within the system will be identified 
respectively in correspondence to the respective layers in 
the reference model. 

1.2. Monitoring Distributed Systems 

 Kaiser et al. (2003) an external infrastructure to 
monitor distributed legacy systems, named Kinesthetics 
Extreme, is made with the Java language. Although this 
work is centered on C++ language tools, its architectural 
overview and implementation is still relevant to this subject. 
 The approach is generally centered on two terms 
that are related to data collection and categorization, but 
only the architecture is interesting in relation to this 
work. The individual components (probes that collect, 
gauges that categorize and controllers that act) are 
loosely coupled by making them event-based. This is 
done by a standardized event middleware that uses the 
publisher/subscriber mechanism. All of these 
components can be placed respectively in the three-
layered reference model as depicted in Fig. 2. 
 Furthermore, during the development of this 
infrastructure, learning techniques to build rules in a 
more autonomic fashion have also been investigated to 
address the upper-most layer. 

1.3. Architectural Construction 

 The autonomic architectures that just have been 
introduced are used to form the architecture of this 
prototype with a functionality primarily centered on two 
use cases: The first use case includes the installation or 
log-enabling of a Windows Service. The second use case 
deals with the daily usage of the consolidated log.  
 The architecture in Fig. 3 is generally like the 
Kinesthetics Extreme approach (Kaiser et al., 2003) with 
respect to the three-layered architecture. The reason is to 
achieve the same set of properties that makes it possible 
to detach components if not all of them are required or 
up scaling by attaching several components of the same 
type to increase performance. 
 The figure above (Fig. 4) illustrates how the 
components interact with each other through the message 
queue that holds messages in transit. It is generally 
implemented as a façade by a high level interface 
(Gamma et al., 1994), which is acting as a 
publisher/subscriber mechanism (Buschmann et al., 
2007) through which the data is send to the components. 
 Commonly for third-party software is that it often 
have to match specific architectural assumptions 
(Table 2). The third-party software has to run under 
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certain requires assumptions and the provided 
assumptions do not always fit into the particular needs.  
 Architectural assumptions that do not properly fit 
into the architecture might often lead to architectural 
mismatches i.e., by introducing a component with non-
scalable features as one of its provided assumptions into 
a scalable architecture. 
 Message queue software from third-party vendors 
exists, but these have been avoided. The reason for this is 
to avoid such architectural mismatches.  

1.4. Collecting Low Level Data 

 Constructing an (abstract) architecture to make it fit 
into reference models and other architectural 
requirements is one thing; another thing is how to collect 
the data that need to be used with the architecture. The 
research of this subject includes in general techniques 
such as: collection of data, control theory, queuing 
models, heuristic search techniques and machine learning 
(Menasce and Kephart, 2007). However the following is 
centered on techniques used for collection of data: 
 
• Data mining, but in order to do so the knowledge of 

all logs and their locations must be present along 
with parsers for each format 

• Exception handling logs data a proprietary format to 
the applications own logs instead of a common log 
used for all applications which requires a parser for 
each format 

• Dynamic probes are able to collect data in one 
format and broadcast the data to one common log, 

but it requires that the probes can be injected into 
the application 

 
In general, data for error handling can be collected in 
many ways as outlined above, but the most appropriate 
one that is independent of various log files is the use of 
dynamic probes and data consolidation even the patterns 
for high level mapping must be defined either manually 
or automatically in some way. 
 Dynamic probes are primarily centered on 
collection of method calls that can be used to identify 
the states of the target system through pattern 
matching. The technique introduces data extraction by 
probes through code injection, which can be grouped 
into the following categories. 
 
• Compile-time or static weaving 
• Runtime or dynamic weaving 
 
 In general weaving is equivalent to code injection. 
The difference on compile-time weaving and runtime 
weaving relies on whether it is being processed on the 
source code of a non-running system or whether it is being 
injected into the binaries of a running system. A summary 
outlining the differences can be found below in Table 3. 
 Runtime weaving might be the only alternative 
hence it is not (always) possible to recompile and restart 
a mission critical system. However the target system can 
be statically prepared for the runtime techniques by 
making it aware of the aspects, which is why it is called 
prepared dynamic weaving. 

 

 
 

Fig. 5. The weaving aspect
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Table 3. Summary of static- and dynamic weaving 

Static weaving Dynamic weaving 

Requires declarations of elements to be visible to the Requires an expensive dynamic weaving structure 
source of the target system 
Source code needs to be available Recompilation and restart of systems are not needed 
Recompilation is required 

 

Table 4. Vocabulary defined by Aspect C++ 

Term Definition 
Join point A join point refers to a point in the source code from which an aspect is accessed. 
Point cut A point cut is a set of join points described by a point cut expression 
Advice An advice declaration can be used to specify code that should run when the join points specified by a point  
 cut expression are reached 

 
Table 5. Vocabulary defined by DAC++  

Term Definition Similar to 
Minimal hook A minimal hook represents a piece of code that allows our system to A join point 
 weave in an aspect at the hook location if needed 

 

1.5. Aspect Weaving 

 Aspect weaving is a mix of two techniques; weaving 
and Aspect Oriented Programming (AOP). As its name 
implies, the use of aspect weaving introduces AOP as a 
single dimension of functional decomposition is 
insufficient to emphasis all aspects of a program in a 
modular way. AOP tries to solve this by encapsulating 
such crosscutting concerns in modular units. 
 In Fig. 5, it depicts the weaving aspect. The 
generated code is based on the original component code 
that has been merged with join points. These join points 
call the aspect code. As mentioned, this introduces a join 
point that leads to the definitions in Table 4, which is 
defined a compile-time weaving tool called Aspect C++ 
(Sincyk et al., 2002). A few languages or language 
extensions support runtime weaving for the C++ 
language. Some languages support only dynamic 
weaving if the source has been prepared for it while 
others are able to make dynamic weaving without 
preparation, but they might instead have specific 
requirements to the compiled binaries.  

1.6. Prepared Dynamic Aspect Weaving 

 The Dynamic Aspect C++ (DAC++) language 
(Almajali and Elrad, 2004), which is an extension to the 
C++ language, has been developed as part of a PhD 
program and the approach introduces the definitions 
outlined in Table 5.  
 The architecture of DAC++ uses two components: a 
preprocessor and an AOP engine. The preprocessor 
generates the Meta object data needed at runtime.  

 The prepared and compiled binary can be run with 
metadata containing information about program classes 
and methods. This information is used by the dynamic 
aspects called through minimal hooks and a designated 
AOP engine when weaving at runtime.  
An evaluation with 100,000,000 iterations made on 

Linux G++ and DAC++ gave the same performance in 
benchmark tests. The difference in performance (Table 6) 
started appearing when we tested the performance of 
method calls as depicted in the taxonomy above. 

1.7. Constructing Dynamic Aspects 

 The aspects are formed as modular units hence their 
primary responsibility is to collect data from all parts of 
the target system, which makes the responsibility a 
crosscutting concern. The aspect in Table 7 traces all on-
entry function calls. The amount of traces that are 
published can be reduced by either a filter or another and 
more strict point cut expression. However, such filtering 
mechanisms have been omitted. The validity of the 
aspect is described by a point cut expression and the 
weaving type which must be defined in the target system.  
The advice method (Table 8) is acting as a triggering 
event on the aspect. 
 The aspects are setup in a small piece of code 
(Table 9) compiled into the target system. It describes 
under which conditions the aspect should be working. 
 After the minimal hooks have been injected into the 
target system, it results in a code snippet such as the one 
in Table 10. 
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Table 6. Method Call Performance Evaluation  

Benchmark Hard coded aspect DAC++ 

Method Call 1 (small)  32 sec  42 sec 31% 
Method Call 2 (average) 36 sec 44 sec 22% 

 
Table 7. Aspect, header information  

Aspect class TraceAllAspect : public Aspect { 
 public: 
   void advice() ; 
 }; 

Point cut expression Collects entries of all class method calls 
 * 

 

Table 8. Aspect, implementation details 

Advice void advice() { 
 std::stringstream ss; 
  // 1. use inherited methods to retrieve class-  
 // and method names 
   ss << /* xml construct omitted */ << “\n"; 
  ofstream File("c:\\message.xml"); 
   File.write (ss.str().c_str(),strlen(ss.str().c_str())); 
   File.close(); 
  // 2. call AspectExe to publish on the message queue 
 const char* szAspectExec =  
       "C:\\...\\AspectsExecutable.exe c:\\message.xml"; 
 try {  system(szAspectExec);  } catch (...) { 
   } 
 } 

 

Table 9. Enabling the aspect in the target system 

Setup DAC_INIT(); 
 // 1. defining point cut expression 
 MethodPC   meth; 
 ClassPC   classpc; 
 meth.setvalue("*"); 
 classpc.setvalue("*"); 
 PCD  pc; 
 pc.setmethodPC(meth); 
 pc.setclassPC(classpc); 
 // 2. trace on entrance or exit of method calls 
 WeaveSpecs ws; 
 ws.setweavetype(Before_T); 
 // 3. apply it to the respective aspect  
 TraceAllAspect b; 
 b.setweavespecs(ws); 
 b.setpcd(pc); 

1.8. Generating High Level Events 

 The techniques described collect data such as 
method calls from a running application. The collected 
data is very low level. This makes it difficult for usage 
on high level decision making in the daily work of the 
systems management staff. 

Table 10. After the injection of join points for the run() method 
run() public : virtual void run (  ) {  _dac_arrayvoidptr 
  _dac_array_act_rec;  
  _dac_arrayvoidptrnodeptr _dac_ptr2 ,_dac_ptr3; 
  _dac_ptr3=NULL;  
 if  (MethodMOP[15].before)  
     {   Aspectnodeptr _dac_ptr1; 
 _dac_ptr1 = MethodMOP[15].beforeHead; while 
 (_dac_ptr1!=NULL)  
  { _dac_execute_before(15,_dac_ptr1,_dac_ptr3); 
 _dac_ptr1=_dac_ptr1->next; }  
  }  _org_run (); 
   if  (MethodMOP[15].after)  
     {   Aspectnodeptr _dac_ptr1; 
 _dac_ptr1 = MethodMOP[15].afterHead; while 
 (_dac_ptr1!=NULL)  
  { _dac_execute_after(15,_dac_ptr1,_dac_ptr3); 
 _dac_ptr1=_dac_ptr1->next; }  
  }   
 } 

 
Table 11. Bridging low level data to high level events 

Primitive category  Pattern Abstract category 

Executable Sequence no. Event name 
Process id Sequence size Description 
Thread id   
Class name   
Method name   

 
Table 12. The time (in seconds) it takes to process 226 traces, 

when the number of gauges is increased by a certain 
factor 

Factor Events Actions Total 

1 57 12 69 
2 31 6 37 
3 23 3 26 
4 19 3 22 

 
 To solve this it is necessary to map the low level 
data into a high level model. This is a time consuming 
process, it can either be done manually or in an 
autonomic-like way. However the patterns have been 
constructed manually in this prototype, but it is 
recommended that the respective providers of Windows 
services make this mapping in advance either in a 
proprietary format or in a standardized format that might 
include recovery procedures for the error states. 
 All method calls belong to sequences (or mapping 
traces) which define patterns. The patterns identify 
events that signal the states of the system such as “lost 
connectivity” among others. 
 The research outlined in (Walker et al., 2000) is 
primarily a target for construction of architectural views by 
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constructing a set of patterns matching events equal to the 
states of the target system. The part of the research that will 
be included is primarily the part about mapping traces.  
 The mapping trace that focus on events, such as 
class method entries and exits, are based on an encoding 
scheme  which defines certain encoding events. These 
events are based on the determination of the patterns, 
where the patterns are based on sets or sequences of 
method calls. The mapping to the high level states 
bridges a set of primitive categories (such as class 
identifiers) to an abstract category through a partial, 
ordered specification of matching criteria defined by 
patterns. In other words, primitive categories are grouped 
into sequences that define a pattern. The patterns are 
matching abstract categories in the form of high level 
events (Table 11). 

1.9. Performance and Adaptability 

 This section primarily focuses on two aspects: 
performance and adaptability due to large heterogeneous 
environments. Performance is evaluated by measuring 
the throughput based on two different Windows services, 
while the adaptability is evaluated by proving the 
prototype on a third-party Windows service with a 
different design. 
 The Windows Service has generated 226 traces 
within 59 seconds. The test of the other components is 
based on these 226 traces, where it is measured how long 
it takes to process these traces. The result of the test can 
be found in Table 12. 
 The adaptability issue has been proven by log-
enabling a small third-party telnet service. It can be 
downloaded from codeproject.com (More, 1999) and it is 
called NT Telnet server and client. It is a tiny Windows 
Service created in the C++ language.  

2. CONCLUSION 

 A prototype was made to clarify whether it was 
possible to generate a consolidated log of high level 
events based on low level traces from various Windows 
services. The prototype was based on a three-layered 
autonomic reference model to allow more automated 
features in the prototype.  
 In order to clarify such consolidated log, the 
correctness has been evaluated. It has been evaluated 
from two points of view: First, the consolidated log and 
the proprietary logs must signal the same states. Second, 
the same type of errors (expressed as high level events) 
must be homogeneous regardless of which Windows 
services that have been generating them. 

 However the biggest issue is the generation of patterns. 
It is time consuming and requires special knowledge of the 
systems. Second to this, the preparation of the Windows 
services requires knowledge about the source code, 
compilers and compiler environment.  
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