

© 2015 R. Vijayalakshmi and V. Vasudevan. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Static Batch Mode Heuristic Algorithm for Mapping

Independent Tasks in Computational Grid

1
R. Vijayalakshmi and

2
V. Vasudevan

1Department of Computer Applications, Kalasalingam University, Krishnankoil, India
2Department of Information Technology, Kalasalingam University, Krishnankoil, India

Article history

Received: 08-02-2014

Revised: 06-06-2014

Accepted: 09-08-2014

Corresponding Author:

R. Vijayalakshmi

Department of Computer

Applications, Kalasalingam

University, Krishnankoil, India

Email: grjviji@gmail.com

Abstract: Grid computing plays an important role in solving large-

scale computational problems in a high performance computing

environment. Scheduling of tasks to efficient and best suitable resource

is one of the most challenging phase in grid computing systems. Grid

environment reveals several challenges in efficient scheduling of

complex applications because of its heterogeneity, dynamic behavior

and shared resources. Scheduling of independent tasks in grid

computing is dealt by a number of heuristic algorithms. This study

proposes a new heuristic algorithm for mapping independent tasks in a

grid environment to be assigned optimally among the available

machines in a grid computing system. Due to the multi-objective

nature of the grid scheduling problem, several performance measures

and optimization criteria can be assumed to determine the quality of a

given schedule. The metrics used here include makespan and resource

utilization. This algorithm provides effective resource utilization by

reducing machine idle time and minimizes makespan. This algorithm

also balances load among the grid resources and produce high resource

utilization with low computational complexity. The proposed algorithm

is compared with other popular heuristics for performance measures.

Keywords: Grid Scheduling, Heuristics, Resource Utilization, Makespan,

Load Balancing

Introduction

Grid computing allows to use remote resources in a

high performance computing environment for solving

large scale computational problems. Resources in a grid

environment may be homogeneous or heterogeneous.

Grid environment reveals several challenges in efficient

scheduling of complex applications because of its

heterogeneity, dynamic behavior and shared resources.

Grid scheduling can be classified as static

scheduling and dynamic scheduling. In the case of

static scheduling, information related to all resources

and tasks in the Grid as application is assumed to be

known earlier by the time the application is scheduled.

By contrast, in the case of dynamic scheduling, the

basic idea is to perform task allocation as the

application executes. Both static and dynamic

scheduling is widely adopted in Grid computing. One of

the major benefits of the static model is that it is easier to

program from a scheduler’s point of view. Dynamic

scheduling is more flexible than static scheduling. But

it’s hard to include load balance as metric to obtain

stable and efficient scheduling algorithm.

Task scheduling is difficult in a heterogeneous

environment and the problem of scheduling tasks to

the resources is NP-Complete. NP-Complete problems

can be solved by heuristic approach. Heuristic

scheduling algorithms can be divided into two types:

Immediate mode and Batch mode heuristics. A task is

scheduled to the resource as soon as it comes to the

scheduler in immediate mode. In batch mode

scheduling, tasks are not mapped to the resources as

they enter, but they are collected as a set of tasks that

is examined for mapping at prescheduled times called

R. Vijayalakshmi and V. Vasudevan / Journal of Computer Science 2015, 11 (1): 224.229

DOI: 10.3844/jcssp.2015.224.229

225

mapping events. Batch mode heuristics are called

offline heuristics and immediate mode heuristics is

called online heuristics. This research considers static

batch mode scheduling.

Due to the multi-objective nature of the grid

scheduling problem, several performance measures

and optimization criteria can be assumed to determine

the quality of a given schedule. The metrics used here

include makespan, flowtime, load balance and

resource utilization.

The idea of this research work is to device a new

batch mode heuristic algorithm for mapping

independent tasks with the intention of minimizing

makespan, increasing throughput and maximizing

average resource utilization rate with balanced load.

Related Study

Many scheduling algorithms are developed for

mapping tasks to resources. Braun et al. (2001) stated

a set of static heuristics for mapping a class of

independent tasks onto heterogeneous systems which

include Min-Min, Max-Min, MET, MCT and OLB.

Min-Min heuristic selects the task which has

minimum execution time and maps the task to the

machine that produces minimum completion time.

Ready time of the resource is updated and the process

continues until all the tasks are mapped. The heuristic

complexity of the algorithm is O(mn
2
) where m is the

number of machines and n is the number of

independent tasks. Min-Min heuristics uses batch

mode scheduling. It minimizes makespan but provides

load unbalance and poor resource utilization as stated

by (Alharbi, 2012).

Max-Min heuristic is similar to Min-Min but Max-

Min maps larger tasks to the machines first. The ready

time of the machine is updated and the process repeats

until all the tasks are assigned. It takes O(mn
2
) to

assign tasks to the machines. As reported by

(Kamalam and Bhaskaran, 2010) it works better if the

number of short tasks is more than long tasks.

Gaurav and Puneet (2013) have reported that

Minimum Execution Time (MET) heuristic does not

consider resource availability and assigns task using

minimum execution time as metric. Resource which

can execute the task in minimum time is scheduled.

Thus MET causes load imbalance in grid resources.

MET takes O(mn) time to assign the tasks where n

denote the number of independent tasks and m

denotes the number of machines. MET heuristic is

categorized under immediate mode scheduling.

Minimum Completion Time (MCT) heuristic is

also an immediate mode scheduling heuristic. It

considers the task only one at a time. This heuristic

searches the machine which has minimum completion

time for a particular task as shown by (Hemamalini,

2012). It assigns the task to the machine based on

completion time. The ready time of the resource and

execution time of the task is summed to compute the

completion time. It also takes O (mn) time for

scheduling the tasks.

Alharbi (2012) has stated that OLB heuristic maps

task in random order to the next available machine

without considering the task’s expected execution

time on the resource. This heuristics balances load

among resources but provides poor makespan. Its

heuristic complexity is same as MET algorithm.

Elzeki et al. (2012) have stated that Sufferage

heuristics first calculates the difference between first

and second minimum completion time called

sufferage. It then maps the task whose sufferage value

is more to the machine which will execute it in

minimum completion time. The mapped task is

removed from unmapped list and the cycle continues

till all the tasks are allocated. Its heuristic complexity

is same as Max-Min.

Kokilavani and Amalarethinam (2011) proposed a

new LBMM algorithm that runs Min-Min heuristics in

the first round and then identifies the machine with

heavy load by selecting the machine with makespan

used by Min-Min. It produces better results than Min-

Min heuristic by reducing makespan and balancing

load when the tasks are smaller.

Materials and Methods

Problem Definition

Grid scheduling involves assigning of task to any

one of the available resource for its complete

processing. Tasks are processed without preemption

on a resource one by one. Once started processing of a

task cannot be stopped or postponed until completion

as stated by (Chaturvedi and Sahu, 2011) This

heuristic assumes static scheduling in which the

capacity of each resource and load of each task in the

grid environment is known earlier.

Let M = {M1, M2, Mn} be the set of M

resources that schedules a set of N tasks T = {T1,

T2,….Tn} in the computational grid. Assume that all

the tasks T and resource M are available at the start

when time t is 0. The processing time of a task

depends on the length and speed of the task and the

suitability of the resource for the particular task. This

problem assumes that each machine uses FCFS

scheduling for performing the received tasks.

R. Vijayalakshmi and V. Vasudevan / Journal of Computer Science 2015, 11 (1): 224.229

DOI: 10.3844/jcssp.2015.224.229

226

As reported by Braun et al. (2001) an Expected Time

to Compute ETC matrix of size nXm represent the

expected processing time of n independent tasks on m

machines. ETC matrix denotes the estimated execution

time of a given task on each machine along the row and

estimated execution time of a machine for each task

along the column as reported by (Izakian et al., 2009).

The estimated execution time of Ti on Mj is defined

by ETC (Ti, Mj). ETC model assumes that the computing

capacity of each resource, computational needs of each

task is known prior.

The expected execution time Eij of task Ti on resource

Mj is the amount of time to execute Ti on Mj when Rj has

no load when Ti is mapped.

The expected completion time CTij of task Ti on

resource Mj is the wall-clock time at which Ti is

completed by Mj after finishing the previously

assigned jobs. It is calculated by Equation 1. As stated

by (Sunita and Chittaranjan, 2011):

() () (), ,i j j i jCT T M MAT M ETC T M= + (1)

Where:

MAT (Mj) = Machine availability time at which

machine Mj completes any previously

assigned tasks

ETC (Ti, Mj) = Time taken by a machine Mj to execute

Ti when Ti is assigned and Mj is idle.

CT (Ti, Mj) = Overall expected completion time of Ti

on Mj

Proposed Heuristic Algorithm

Our proposed algorithm TACT calculates the

completion time of each task on the machines first.

Then, the average completion time of each task is

calculated. Step 6-Step 14, assigns tasks using Min-

Min heuristic approach, since Min-Min heuristic

attains low makespan and is known as benchmark

heuristic. This heuristic calculates the minimum

completion time of all unmapped tasks and selects the

task which has minimum completion time and assigns

that task to the machine. The assigned task is deleted

from the unmapped set and the process continues until

all tasks are mapped. Step 15 finds the makespan,

which is the measure of throughput for heterogeneous

systems such as computational grids. Step 18-28

reduces the makespan of machine and reschedules the

task to balance the load for better resource utilization.

This step reschedules the entire task by comparing the

task average completion time with the makespan

produced in the Min-Min schedule. If the task average

completion time is greater than the makespan

produced in Step 15, the tasks with the minimum

completion time is assigned to the resource with

minimum CT for the job. The process continues until

all the tasks are mapped after deleting the assigned

task from the task set.

Psuedocode for TACT Algorithm is given below:

Step1. for all tasks Ti in MT

Step2. for all machines Mj

Step3. Calculate completion time of task i on machine j,

CT (Ti, Mj) = MAT (Mj) + ETC (Ti, Mj)

Step4. for all tasks N

Step5.Compute average completion time ACTi=∑CTij/N

Step6. do until all tasks in MT are mapped

Step7. for each task Ti in MT

Step8. for all machines Mj

Step9. Choose the task Ti with minimum CTij and re

source that obtains it

Step10. Assign Ti to resource Mj that has minimum

completion time

Step11. Delete assigned task Ti from MT

Step12. Update machine Mj availability time

Step13. Update completion time CTij of all unmapped

tasks

Step14. end do

Step15. for all machines Mj

Step16. Calculate makespan = max (CTij)

Step17. end for

Step18. do until all tasks Ti in MT are mapped

Step19. Search the task Ti with maximum ACTi

Step20. if maximum ACTi>makespan

Step21. Search the machine Mj with minimum CTij for

the task Ti

Step22. end if

Step23. Assign Ti to resource Mj with minimum CTij for

the task Ti

Step24. Delete assigned task Ti from MT

Step25. Update machine Mj availability time

Step26. Update completion time CTij of all unmapped

tasks

Step27. Update ACTi

Step28. end do

Illustrative Example

Consider a grid environment with three resources and

three tasks. The ETC matrix for the grid system is

defined in the Table 1.

Table 1. ETC matrix (3 tasks and 3 machines)

Tasks/machines M1 M2 M3

T1 50 20 15

T2 20 60 15

T3 20 50 15

R. Vijayalakshmi and V. Vasudevan / Journal of Computer Science 2015, 11 (1): 224.229

DOI: 10.3844/jcssp.2015.224.229

227

Min-Min heuristics assigns tasks T1 and T3 to

resource R3 and task T2 to R1 achieving a makespan

of 30 time units. Similarly Max-Min heuristics also

assigns tasks T1 and T3 to resource R3 and task T2 to

R1 with a makespan of 30. MET algorithm produces a

makespan of 45 by assigning all the tasks T1, T2 and T3

to R3. MCT assigns T2 to R1 and T1 and T3 to R3 with

a makespan of 30 time units.

The Sufferage heuristic, produces similar result as

that of Max-Min, Min-Min and MCT and achieves a 30

time units makespan. The makespan of LBMM

algorithm is also 30 with T2 assigned to R1 and T1 and

T3 mapped to R3. All the discussed heuristic assigns

tasks to resources R1 and R3 and left R2 unassigned

with any task. However the proposed heuristic is able to

achieve a makespan of 20 time units by mapping T1 to

R2, T2 to R3 and T3 to R1. Figure 1 illustrates the

mapping of tasks to resources using TACT heuristic.

Experimental Results

Programs for existing and proposed heuristics are

implemented in C++ language. Programs define

schedule for assigning tasks to available machines and

calculates makespan, resource utilization, average

resource utilization, flow time and fitness value based

on the ETC matrix supplied to it. This section shows

the actual results after executing the code for the given

example. Results obtained are discussed as follows.

Better results are produced in terms of makespan,

resource utilization and fitness value compared to other

algorithms. Minimization of makespan and greater

average resource utilization rate is achieved by the

proposed TACT scheduling algorithm.

Makespan

Different heuristics algorithms performance based

on makespan is shown in the Fig. 2. Makespan is the

time a heuristic takes to finish a batch of jobs. It is a

measure of efficiency and throughput of a grid

computing system as stated by (Saeed and Entezari-

Maleki, 2009). The following graph illustrates that

TACT reduces makespan compared to other heuristics.

Makespan is evaluated by Equation 2 as follows:

() (,i jMakespan max CT T M= (2)

Resource Utilization

The main objective of grid computing systems is to

maximize resource utilization. This metric improves the

utilization of resources by minimizing the idle time of

resources. It is defined as the percentage of time that

resource Rj is busy during the scheduling process as

stated by (Rafsanjani and Bardsiri, 2012). It is calculated

using the formula in Equation 3.

() 1,2,3,...j jRU MAT R for j N= = (3)

Equation 4 computes average resource utilization

as follows:

1=

=∑
N

j

j

RU
ARU

N
 (4)

The following Fig. 3 illustrates the utilization of

resources by different heuristics. All the heuristics

except OLB left any one of the resources idle;

whereas OLB produces an unbalanced resource

utilization by allocating low load to R3. TACT

produces an optimum utilization compared to all other

algorithms by using all the machines without

keeping the resources idle.

Average resource utilization produced by Min-Min,

Max-Min, Sufferage, LBMM and MCT is 55.5%. OLB

utilizes 69.4% and MCT produces a low utilization rate

of 33.3%. TACT overcomes all algorithms by having an

average resource utilization of 91.6 by using R1, R2 to

cent percentage and R3 with load 75%.

Figure 4 shows the average resource utilization for all

the heuristics. TACT has the best utilization rate among

all the other algorithms.

Flow Time

Flow time is used to measure the QoS of the grid

systems. It is defined as the sum of finishing time of all

the tasks as reported by (Chaturvedi and Sahu, 2011).

Flow time calculated for all the heuristics is shown in

Fig. 5. Flow time is minimum when tasks are processed

in increasing order of processing time on a machine.

Equation 5 is used to calculate flowtime:

1

M

ij

i

Flowting E
=

=∑ (5)

Fitness

Fitness metric is used to calculate the performance of

the scheduling algorithm to optimize makespan and

flowtime. It is computed using the following relation as

stated by (Alharbi, 2012).

() * 1 *
Flowtime

Fitness p makespan p
N

= + −

where, p ranges from 0 to 1 based on the importance of

the metric and N denotes the number of machines. This

study assumes 0.5 for experimental evaluation. Figure 6

shows the comparision results of fitness value for

different heuristics.

R. Vijayalakshmi and V. Vasudevan / Journal of Computer Science 2015, 11 (1): 224.229

DOI: 10.3844/jcssp.2015.224.229

228

Fig. 1. Gantt chart for ACT heuristic

Fig. 2. Comparison of makespan among heuristics

Fig. 3. Comparison of resource utilization among heuristics

Fig. 4. Comparison of average resource utilization

Fig. 5. Comparison of flowtime among heuristics

Fig. 6. Comparison of fitness value among heuristics

Conclusion

Since scheduling in grid computing environment is an

NP-Complete problem, heuristic algorithms is a suitable

method to cope with its solution. This study presents a

new heuristic with the aim of reducing makespan,

increasing throughput and resource utilization.

Experimental results show that the proposed heuristic

scheduling algorithm performs better than the existing

heuristics and provides improved makespan and resource

utilization. Considering QoS factors, communication

delay and CPU workload are a part of future research.

Funding Information

The authors have no support or funding to report.

Author’s Contributions

All authors equally contributed in this work.

Ethics

This article is original and contains unpublished
material. The corresponding author confirms that all of
the other authors have read and approved the manuscript
and no ethical issues involved.

References

Alharbi, F., 2012. Multi objectives heuristic Algorithm for

Grid Computing. Int. J. Comput. Applic., 46: 39-45.

R. Vijayalakshmi and V. Vasudevan / Journal of Computer Science 2015, 11 (1): 224.229

DOI: 10.3844/jcssp.2015.224.229

229

Braun, T.D., H.J. Siegel, N. Beck, L.L. Boloni and M.

Maheswaran et al., 2001. A comparison of eleven

static heuristics for mapping a class of independent

tasks onto heterogeneous distributed computing

systems. J. Parallel Distributed Comput., 61: 810-

837. DOI: 10.1006/jpdc.2000.1714

Chaturvedi, A.K. and R. Sahu, 2011. New heuristic for

scheduling of independent tasks in computational

grid. Int. J. Grid Distributed Comput., 4: 25-36.

Elzeki, O. M., M.Z. Rashad and M.A. Elsoud, 2012.

Overview of scheduling tasks in distributed computing

systems. Int. J. Soft Comput. Eng., 2: 470-475.

Gaurav, S. and B. Puneet, 2013. Task aware switcher

scheduling for batch mode mapping in

computational grid environment. Int. J. Adv. Res.

Comput. Sci. Softw. Eng., 3: 1292-1299.

Hemamalini, M., 2012. Review on grid task scheduling

in distributed heterogeneous environment. Int. J.

Comput. Applic., 40: 24-30.

Izakian, H., R.A. Abraham and V. Snasel, 2009.

Comparison of heuristics for scheduling independent

tasks on heterogeneous distributed environments.

Proceedings of the International Joint Conference on

Computational Sciences and Optimization, Apr. 24-

26, IEEE Xplore Press, Sanya, Hainan, pp: 8-12.

DOI: 10.1109/CSO.2009.487

Kamalam, G.K. and V.M. Bhaskaran, 2010. An

improved min-mean heuristic scheduling algorithm

for mapping independent tasks on heterogeneous

computing environment. Int. J. Computational

Cognition, 8: 85-90.

Kokilavani, T. and D.I.G. Amalarethinam, 2011.

Load Balanced Min-Min Algorithm for Static

Meta-Task Scheduling in Grid Computing. Int. J.

Comput., 20: 43-49.

Rafsanjani, M.K. and A.K. Bardsiri, 2012. A new

heuristic approach for scheduling independent

tasks on heterogeneous computing systems. Int. J.

Machine Learn. Comput., 2: 371-376.

DOI: 10.7763/IJMLC.2012.V2.147

Saeed, P. and R. Entezari-Maleki, 2009. RASA: A new

task scheduling algorithm in grid environment.

World Applied Sci. J. 7 152-160.

Sunita, B. and H. Chittaranjan, 2011. Efficient

refinery scheduling heuristic in heterogeneous

computing systems. J. Adv. Inform. Technol., 2:

159-164. DOI: 10.4304/jait.2.3.159-164

