Journal of Computer Science

Original Research Paper

seMeja API Design Based on CRUD+N Concept

Marini Abu Bakar, Surya Ismail, Sufian Idris and Zarina Shukur
Faculty of Information Science and Technology, Universiti of Kebangsaan Malaysia, Selangor, Malaysia

Article history

Received: 24-10-2014
Revised: 12-03-2015
Accepted: 27-06-2015

Abstract: seMeja is an ongoing research to develop a desktop system for
university environment. To support the development of this system, an
Application Programming Interface (API) is needed to provide access to
online university services such as course notes, course schedules and course
registration interface. This paper proposes a research to create and design
the API for seMeja named seMejaAPI. The primary goal for this API is to
allow programmers to quickly develop applications that can interact with
university online system that support the API. The API needs to be versatile
enough to encapsulate the variations of online university services and yet
easy enough to be used by an application programmer. The design of the
API is based on the four operations of Create, Read, Update and Delete
(CRUD). In addition to these four basic concepts, the concept of Notify'
has been added to support the registration for push-style notifications.
These principles are then combined with an existing university-based
ontology. This ontology defines the various objects used in a university
environment. Two prototypes were then developed and tested to
demonstrate an implementation of a portion of the API, along with a
small working application.

Corresponding Author:
Marini Abu Bakar

Universiti Kebangsaan
Malaysia, Selangor, Malaysia
Email: marini@ukm.edu.my

Keywords: API, seMeja Desktop Environment, University Operating
System, Ontology, CRUD

grades record can all be accessed online. An effective
seMeja application should take advantage of this wealth
of information to create an individualized experience for
the student. (ii) The innovative use of university
educational resources. Modern universities provide
online access to large amounts of educational resources.
Materials such as course notes, lab manuals and

Introduction

The seMeja Desktop Environment is an operating
system for university students running on a Linux
operating system. It was designed and developed at
Universiti Kebangsaan Malaysia (UKM) as a
collaborative effort between several research groups. The

desktop environment is meant to mimic the local
Malaysian education environment.

To increase the effectiveness of the seMeja system,
specialized applications can be developed to help
students gain expertise and learn the required material.
Application for seMeja should support some key features
to make them more useful for university students. These
features includes: (i) the use of student information to
create an individualized, student-oriented user
experience. The seMeja Desktop Environment requires a
login, which means that the operating system knows the
identity of the student user. This identification can be
used to retrieve information on the student. When a
student enters a university, the student’s basic
information is stored on various server-sides of the
university systems. As the student progresses, more
information is generated. For example, information like
the student’s faculty affiliation, registered courses and

2, Science
/// Publications

publications are all available online. Applications for the
seMeja system can take full advantage of these resources
by centralizing, organising and presenting them in new
and innovative ways. (iii) The use of research
technologies. The various seMeja research groups have
identified a few technologies that will potentially benefit
university students. These technologies include natural
language processing and notifications. seMeja
applications should make use of these technologies.

The proposed seMeja architecture has been discussed
by (Idris et al., 2010). The seMeja system runs on a
Linux-based netbook. The base operating system
provides access to system utilities such as memory,
processing and devices. The system utilities are accessed
through the system libraries and applications while the
user interface is managed by the GUI manager. The three
tiers of the seMeja Environment make use of the system
libraries and applications.

© 2015 Marini Abu Bakar, Surya Ismail, Sufian Idris and Zarina Shukur. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661
DOI: 10.3844/jcssp.2015.645.661

[.séMéja'appli’é:a‘l-i‘&ns J Tier 1
[se‘Meja-API] Tier 2
| Amliciossenices | 22
= Tier 3
[Core services] =

Fig. 1. Three tier architecture of the seMeja system

The three tiers are the seMeja Services layer, the seMeja
API and the seMeja Applications. The seMeja system
communicates with external university servers. The
university servers control data related to student
information and university resources.

Figure 1 presents a simplified view of the three tiers
of the seMeja system. The seMeja services layer contains
modules that provide wuseful functions for the
applications. The initial design requirement divides the
modules into Core Services and Application Services.
The Core Services provide basic services for the desktop
which are used by all applications. The Application
Services provide access to domain specific services.

The seMeja API is the second tier of the seMeja
Environment. Its purpose is to the wrap services in a
standard API that is used by developers to create
applications for the seMeja Desktop Environment. The top
tier of the seMeja Desktop Environment contains the
seMeja applications. As mentioned in the previous section,
these applications are customized for university students.

Related Works

Robillard (2009) defined an API as an interface to
implemented functionality that developers can access to
perform various tasks. APIs support code reuse, provide
high-level abstractions that facilitate programming tasks
and help unify the programming experience.

Henning (2007) proposed that APIs should be
minimal. A small API, with fewer types, methods and
parameters, is easier to learn, remember and use.
Henning also concludes that when little is known about
the context in which an API will be used, the best choice
is to keep all options open and allow the API to be as
widely applicable as possible. Bloch (2006) added
another principle which is to not make the developer do
anything the library could do. Violating this rule leads to
developers having to write wrapper code that must be
used every time the library is used. This type of code,
known as boilerplate, is redundant and error-prone.

This section reviews existing APIs related to the
seMeja API. Two existing educational systems that use
APIs are discussed. In each case, the structure of the API
is reviewed and the API is analysed to find key factors
that make the API useful for developers.

646

The Sugar Toolkit

Sugar (SL, 2012) is an educational desktop
environment for younger children. It was originally
designed for the One Laptop per Child project. OLPC is
a non-profit organization established to provide low-cost
laptops to children in developing countries (OLPCF,
2012). Currently, Sugar runs on over two million laptops
in 25 languages in more than 40 countries.

Sugar has an unusual user interface. The interface is
designed to be comprehensible by young children,
including those who are unable to read. Applications run
on full screen and menus are iconic. Figure 2 shows the
Sugar home view. The view changes according to the
activity. The icons represent the child (the user) and his
or her favourite activities. The home view changes
depending on the current activity.

Developers do not develop programs using a compiled
language. Instead, they develop ‘Activities’ using the
Python programming language. Python is an interpreted
language, which means by using a simple text editor, any
Sugar laptop can be used to develop new Sugar ‘Activities’.

Architecturally, Sugar runs on a modified GNOME
Linux desktop (Fig. 3). Python is the preferred development
language. Python activities access services through the
Sugar toolkit. These services include a data store, clipboard
capabilities and a network presence service.

Sugar is an extreme example of a customized
educational Linux desktop. The seMeja Desktop
Environment does not need to be as customized.
However, Sugar shows the validity of the approach.
Sugar runs on a Linux core and adds variety of services
which can be accessed through the Sugar toolkit to create
activities. This is similar to the seMeja APl and
applications approach used in the seMeja system.

Sugar, the API is known as the Sugar toolkit. The API
has a minimal look, which reflects the ideas of simplicity
and intelligibility that are part of the Sugar design
philosophy. The Activity and Presence packages are good
example. The Activity module provides the user interface
for a Sugar activity. This allows developers to create
programs with iconic menu and full screen behaviours that
are essential for Sugar. The Presence package allows
collaboration by providing services for native networking
and information sharing.

The Moodle Activities API

Moodle is an abbreviation for Modular Object-
Oriented Dynamic Learning Environment. It is an Open
Source Course Management System (MC, 2012).
Moodle is basically a web application. It needs to be
installed on a server and it’s accessed through a client
browser (Fig. 4). Moodle is used in over 200 countries
and has over 69,000 registered users. It is used by all
sorts of organizations including primary and secondary
schools, government bodies and the military.

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

Fig. 2. The sugar home view

Regular X applications

Sugar shell

Non-Python Sugar Activities | (desktop window, panel, Journal)

Python Sugar Activities

(Etoys, Simcity, Mono, etc.) |

Sugar toolkit (Python-only)

Datastore senice

Presence senvice

Matchbox window manager
(We are in the process of switching to Metacity)

GNOME-ish Linux desktop
X11, HAL, D-Bus, NetworkManager, GConf, Telepathy, etc

Fig. 3. Sugar architectural diagram

User

Using a web browser

_________________ T R
'lE oot : & Y
i I
|
| [
| | PHP function calls
! \'d
[)
: Libraries
i
: @ PHP function calls ¢
: DB libs File libs
bemmse [

—

o wSRE g -
DB F]'.IE:S
moodledata

—_——— __-a--""f I\\"“-----.___,_..----""J

Fig. 4. Moodle as a web application

647

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661
DOI: 10.3844/jcssp.2015.645.661

Table 1. Moodle core APIs

API Description
Access Determines what the current user is allowed to do.
Data manipulation Enables read/write to databases in a consistent and safe way.
File Controls the storage of files.
Form Defines and handles user data via web forms.
Logging Allows developer to add new entries to the Moodle log and define how they get displayed in reports.
Navigation Manipulate the navigation tree to add and remove items.
Page Used to set up the current page, add JavaScript, and configure how things will be displayed to the user.
Output Renders the HTML for all parts of the page.
String Get language text strings to use in the user interface, handles any language
translations that might be available.
Upgrade Controls how a module installs and upgrades itself, by keeping track of its own version.

Moodle is modular and is designed for customization.
The interface is customized using themes. Themes can
be applied on various levels and granularities and can be
designed to suit different types of displays such as
tablets and net books displays. Functionality can be
customized by adding different plugins. Plugins are
developed in PHP and there are hundreds already
available. Plug in developers have access to basic
functionality through the Core API. Table 1 shows the
most frequently used Core API modules.

Moodle is different from the seMeja Desktop
Environment in that it is a web-based solution, not an
operating system. However, the Moodle Activity API
bears many similarities to the seMejaAPI. The Activity
API abstracts the functionality of class-based activities
and makes them easily accessible to developers.

seMeja API Design Principles

There are some issues that may make it difficult to
use traditional API design techniques for the seMeja
API. The seMeja API has many incompletely defined
variables including shifting requirements and unknown
server-side systems. Developers have documented
some common-sense principles that can be useful when
designing APIs in these circumstances.

These common-sense approaches can be summarized
into three design principles:

e The seMeja API should be small. The fewer
methods and parameters, the easier it is to be learnt

e The seMeja API should keep options open.
Developers may use the API in unforeseen ways,
therefore the API needs to be flexible

e The seMeja API should not appear complex. The
API should not require the developer to write code
that can be handled internally by the libraries

The Design of seMeja API

The seMeja Environment is a three-tier system, as
shown in Fig. 5. It sits on top of the Core Operating
System and utilizes the system libraries and applications.
The tiers are, from bottom to top, the seMeja Services,
seMeja API and seMeja Applications.

648

The seMeja Services layer consists of Core Services
and Application Services. As discussed previously, the
Core Services provide services used by all applications.
The Application Services are domain specific, used by
specific applications. In addition to the service
components, there are other components that support the
services. These include the profile manager, data cache
and other possible components.

On top of the seMeja Services is the seMeja API. The
API serves as a wrapper, providing standardised access
to the various components and agents. The final tier of
the seMeja architecture is the applications, which access
the seMeja Services through the API layer.

Requirements for seMeja API

In order to design the seMeja API, a study on the
requirement of the layer precedes the seMeja API needs
to be done, placing a special emphasis on the Core
Services. The Core Services can be grouped into two
categories: Services that access external functions and
services that do not. The services that access external
function are called agent services and it includes things
like accessing student data, registration information and
course material. The services that do not access external
functions, or the non-agent services, are based on key
technologies that have been identified by the other
seMeja research groups.

In term of agent services, there are several common
services with respect to the institutions of higher
learning. Works that has been done by the following
peoples show the importance of the services:

e Course Registration: By (Sherman, 2000; Xue-hua
et al.,2012; Dee and Bryan, 2011)

e Course Resources: By (Grabe and Sigler, 2002;
Soong et al., 2001; McNaught et al., 1999; Meinel
et al., 2002; BI, 2012)

e Assessment: By (Rovai, 2000; Joy et al., 2005;
Amelung et al., 2008)

e Research Project Management: By (Li ef al., 2007)

e Self administration: By (Pollock, 2003)

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661
DOI: 10.3844/jcssp.2015.645.661

Core Applications [Profile] []

Avglieation User Applications

-~
=
Core Notification Natural C‘uu -rs? Course
— Sariia language registration resources
services service service | service

5 i Data
Application Desktop Backup Profile cache
services manager service manager

Services

Core Operating System

Fig. 5. Architecture of the seMeja environment

University
services

I I University

server

+—
c
Q
=
=
o
A=
>
[=
w
o
(=]
-
i
vy
(¥
(]
4
@
=
@
v

Fig. 6. Agent services in the seMeja deskop environment

Table 2. seMejaAPI agent modules

Function Description

Course registration Stores information about the courses that a student is registered for.

Course resources Handles course materials including lecture notes, manuals, videos and tutorials.

Assessment Can as simple as a repository of assignment or can support automated assessment.

Research project management Module used to manage research projects containing interfaces to choose projects
and track progress.

Self-administration Used to view and modify student data.

649

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661
DOI: 10.3844/jcssp.2015.645.661

Figure 6 shows the illustration of the services
relationship with the university server, whilst Table 2
describes the agent modules.

In addition to the core agent services, the seMeja
Services layer also contains several modules that are not
related to university services-either students-centred and/or
low barrier for adoption. Hence two other core modules are
included: Natural language module and notification
modules. Natural language processing would make it easier
for students to learn how to use the operating system,
consequently, lowering the barrier for adoption. The details
of the natural language module are outside the scope of this
research and are left open for future research.

Design Concept
CRUD + N Concept

In a traditional API, there would need to be a fixed set
of functions and definition for every university services.
This would not be practical for the seMeja system, where
there is a great deal of variations between the different
online systems. The proposed solution is to use the
CRUD concepts. CRUD stands for Create, Read,
Update and Delete. These principles are familiar to
programmers because they are the commonly used for
database operations and web services. The CRUD
concepts were first used in database management in the
1980s to describe the functions for persistent storage
(Martin, 1983). Since the1980s, these concepts have been
applied to many other areas. One of the most widespread
applications of CRUD principles is in the Hypertext
Transfer Protocol (HTTP) verbs. The HTTP verbs POST,
GET, PUT, DELETE map directly to the CRUD
principles (NWG, 1999).

The CRUD principles cover most of the functionality
required for university services. In addition to the basic
four, the seMeja project proposes to add the principle of
‘Notify’. The principle of ‘Notify’ allows applications to
register to receive push-style notifications and updates.

The proposed seMeja API uses ideas from REST to
provide a simple interface to access university services.
The CRUD and notification principles (CRUD+N) are
used as method names for Java calls. This means that

Table 3. Examples of Bowlonga ontology

there are only 5 methods. The first parameter to each
method will be the object that is the target of the method.
University objects are similar to REST resources and
include things like courses, students, lecturers and
documents used as course material. The other parameters
contain the rest of the information required to complete
the request. Parameter overloading is used to allow
different types of data to be used, depending on the object.

Object Description based on Bowlonga Ontology

Based on the CRUD+N principle, the seMeja API has
5 simple methods, with object names to identify the data
and overloaded parameters to provide context. This
design gives the API the flexibility to access the various
university functions identified in the previous section.
However, flexibility is useless if there is not enough
structure and documentation for a programmer to write
codes. Using the CRUD+N principles, the method names
for the seMeja API are known. The next step is to
determine the objects and parameters used in the methods.

To get an initial set of objects, it is proposed that an
existing ontology for universities be used. The Bowlonga
Ontology is a good fit for this purpose (Demartini,
2011). The Bowlonga Ontology was created as part of the
Bowlonga Process (BBS, 2010). The Bowlonga Process
was a multi-national reform process aimed at increasing
standardization among universities in FEurope. The
Bowlonga Ontology defines a set of objects and properties
to use in a university environment (Table 3).

By using the CRUD+N principles paired with objects
defined in the ontology, a programmer can deduce a set of
steps to perform a task. For example, if a programmer
wants to create application to allow users to register for
courses, the steps would look as described in Table 4.

The same technique of combining CRUD concepts
and university objects can be extended to any operation
that requires access to university services. These
flexible function calls must be combined with detailed
documentation complete with examples. The result
should be a system that is interoperable between
various universities and faculties but still simple and
efficient for programmers to use.

Object Description

Academic degree Two levels of academic degree are defined: Bachelor and Master.

Department A Department can be associated with a Study Track and Teaching Units.

Teaching unit Several types of teaching units are defined including obligatory, optional and specialisation modules.
Evaluation Conveys the concept of a grade for a class.

Person Includes professor and student.

Study program A program of teaching units and requirements needed to get an academic degree.

Thesis Scientific work written as part of the academic degree which presents the results of a research

project on a topic related to the field of study covering the study program.

Teaching unit Equivalent to a class.

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661

DOI: 10.3844/jcssp.2015.645.661

Table 4. Steps for course registration

Step Action

1 READ all the teaching units for the computer science department.

2 The application then displays the courses to the student in a nice user interface, allowing the user to
pick and choose classes.

3 CREATE anew registration for the Student.

4 Call NOTIFICATION to receive notifications of changes in the teaching unit.

ITALIC indicates CRUD+N principles.
Bold indicates objects from the ontology.

Table 5. seMeja methods and parameters for learning activity object

CRUD+N

CREATE, READ, UPDATE, DELETE, NOTIFY

Ontology Object

Description / parameters / sample code

Learning_Activity

A Learning_Activity is any activity conducted in conjunction with a
Teaching_Unit. Examples include labs, assignments and tutorials. Calls to READ
retrieve information about a learning activity. CREATE lets a user add new
learning activities. For example, a user calls CREATE to submit an assignment.
UPDATE allows users to change a learning activity. For example, adding an
annotation to a tutorial. DELETE will remove a learning activity. NOTIFY allow
users to receives notifications about changes to a learning activity.

Possible parameters: Teaching_Unit

Example:

create(“Learning_Activity”, “Teaching_Unit=Algorithms101”, data);

Tier 1 Tier2 Tier 3 Backend services
Applications API System
<<component=> Agent services =
SeMejaAPl il <ccomponent>>]
@ poirié El Course
Courses registration
RegisterNewCourse
g I registration B R e, backend
@ L service |
GetCour gl -
I = <ccomponent=>
O ol L g
GelCourseNotes administration E administration
H agent backend
@ © ' &l
ate - e
: <<component>> a
Module
@ Register for
e Update © e - Stores registered
Applications : natifications
Vo - Retrieves and displays
O = O notifications
Delete Receive
H netifications.
Nnnﬂt:alloné
: ©
GeiData Data Cache gl
’{: - Stores persistent data [
Ahﬁata
Upd\a_benala
/7 <<OoMponent>> gl
Authentication Module .
GetAuthObj
- Stores usernames,
|— passwords, login
credzsntials
<
QueryUser
<< com ponent>>
Profile Manager

Fig. 7. Components of the seMeja API

651

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661
DOI: 10.3844/jcssp.2015.645.661

Method Summary

Modifier and Type Method and Description

intc create (Java.lang.5tring cbjliame,
java.uril.Map<java.lang.String, java.lang.Object> paramlistc)
Performs 2 CREATE operation

int delete (Java.lang.String objlams,

java,uril Map<java,lang.String, java.

lang.Object> paramList)

Performs a DELETE operation

java.ucil

java.lang.Object

Ferforms a READ operation

update (java.lang.Strin

notify (java.lang.S5cring cbjlame,
.Map<java.lang.String, java.l
Performs a NOTIFY operation

read (java.lang.5tring objName,

.Object> paramLisc)

java.lang.Object> paramlistc)

objName,
java.ucil.Map<java.lang.S5tring, java.

Performs an UPDATE operation.

lang.Object> parambist)

Fig. 8. seMeja API method summary

Components of the seMeja API

The seMeja API interacts with other components
within the seMeja Operating System (seMeja OS). It also
communicates with university services (as shown
previously in Fig. 4). These interactions are shown in the
component diagram Fig. 7.

The large box in the middle contains the modules that
make up the seMeja API. The boxes on the left represent
components that are part of the seMeja OS, but not part
of the API. Applications interact with the API by calling
any of the five CRUD+N methods.

The seMeja API acts as an interface between the
applications and the services. For simplicity, Fig. 7
shows only two of the five agent services. All five have
similar behaviour. As previously discussed, the agent
services access various university services provided by
the university servers. Henceforth, the university servers
and their functions may be referred to as university server-
side services, or simply server-side services. The server-
side services are shown as the boxes on the right (Fig. 7).

seMeja API Method

From a developer’s point of view, there are only five
methods in the seMeja API, each corresponds to the
CRUD+N methods. Documentation for the seMeja API
was created using Javadoc (Kramer, 1999), which is an
industry standard Java documentation technique. Figure
8 shows the Javadoc summary documentation for the 5
CRUD+N methods. Table 5 shows the one example of
seMeja API methods and parameters used to develop the
prototypes for this research.

Implementation of Application Prototype

Two prototypes were created to showcase that the
seMeja API fulfils its requirements. In another work,

652

the question is can the seMeja API be used to
successfully create applications that are useful for
university students? The prototypes were chosen to
cover a reasonable subset of the CRUD+N calls. The
first, a PDF transcript generator, focuses on the READ
operation. The second, a Facebook forums tool, shows
NOTIFICATION and CREATE operations. Both
prototypes are implemented with UKM students in
mind, using UKM server-side services.

PDF Transcript Application Prototype

The PDF transcript application is designed as a tool
to generate standardised and well-formatted grade
transcripts. The PDF format is a widely supported format
that is known for ease of viewing and printing. The
proposed use of the prototype is two-fold. For students,
it provides an easy way to generate a clean grade
transcript document than can be printed and/or emailed
for internships applications and transfer request. For
administrators, a standardised format makes it easier to
compare the results of students from different
educational programs. The PDF transcript application
was chosen as a prototype because it illustrates the use of
the READ operation. For many applications, the READ
operation is the one that is used the most.

Using CRUD+N and Ontology

By using the CRUD+N principles and studying the
Bowlonga ontology, a developer can get a good idea
of the seMeja API methods that need to be called.
Looking at the information that needs to be displayed,
the application programmer are able to deduce that
there are 2 READ operations required. The first
READ is to retrieve the list of courses and the second
READ to retrieve the grade.

Marini Abu Bakar ef al. / Journal of Computer Sciences 2015, 11 (4): 645.661
DOI: 10.3844/jcssp.2015.645.661

By reading the ontology, the relevant objects are
identified. For this research, an open source ontology
viewer was used to read the Bowlonga ontology more
effectively (Mindswap, 2006). In the ontology,
courses are labelled as Teaching Units and a grade are
labelled as an Evaluation. Using this information, it is
possible to work out the steps that the application
needs to perform (Table 6).

Components and Processes

Figure 9 shows the components that are used by the
PDF transcript prototype. The components are as follows:

e Authentication module

The system already knows who the user is. The
authentication module has (or can obtain) the
authentication information needed for the other agents

e Course registration agent

The seMeja system interacts with the course
registration module to get a list of the user’s registered
courses

e Student data agent

e This module provides access to student data and
is used to obtain student grades

READ Operation for Teaching Units

Each READ operation is a multi-step process. The
sequence diagram in Fig. 10 shows the steps for reading
the registered courses. First, the application initiates a
READ operation, requesting to read a student’s
registered courses. The registered courses are returned as
a list of teaching units. Keep in mind that to perform this
process, the student must have logged into the seMeja
OS, therefore the seMeja OS already knows who the user
is. The system can now query the authentication module.
Based on the user and the operation, the authentication
module returns the correct authentication object. If the
authentication object (for reading registered courses) is
not available, the authentication module can then query
the user to get the authentication information.

The system now queries the course registration agent,
passing it the required authentication object. The course
registration agent communicates with the server-side
course registration system. The course registration
system may take the form of a web page or a database,
depending on the university services available.

The course registration agent passes the student’s
authentication object to the server-side system. The
authentication object may contain a user name, a matrix
number, a password and other information, as required

653

by the server-side system. The server-side system passes
the requested registration information to the course
registration agent. The course registration agent parses
the information and converts it into a list of Teaching
Units. Finally, the list of registered courses is passed to
the application and the application can use the data for
further processing. From reading the ontology, it is
known that each item in the list of registered courses has
a property called has Name. This property is used as
identifier. This identifier will be used by the application
as a parameter to perform further READ operations.

READ Operation for Grade Information

Once the course registration information has been
retrieved, the application needs to get the student’s grade
for each course. To do that, a further READ operation is
needed for each course. The READ operation retrieves
the student’s grades. For this operation, the server-side
student data system needs to know the identity of the
student. The external system may also require other
authentication information, such as a password, to access
private data. Therefore, this operation is similar to the
registration information READ operation (Fig. 11).

The READ operation is called, passing in the
Teaching Unit has Name property. First, an
authentication object is acquired from the authentication
module. This authentication may be the same or different
from the previous authentication object, depending on
the external agents involved. The authentication object
and course identifier are passed to the student data agent.
The agent interacts with the external student data system
to get the grade. The agent parses the data and converts it
to an Evaluation, then returns it to the application. After
looping through all the courses, the application now has
a complete list of courses, course descriptions and
student grades. The application takes that information
and uses it to create a standardised PDF file.

Implementation

To retrieve the data, the two service agents (the
course registration agent and the self-administration
agent) behave like a web browser. The service agent
