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Abstract: Lung sound is a biological signal with the information of 

respiratory system health. Health lung sound can be differentiated from 

other pathological sounds by auscultation. This difference can be 

objectively analyzed by a number of digital signal processing techniques. 

One method in analyzing the lung sound is signal complexity analysis 

using fractal dimension. To improve the accuracy of lung sound 

classification, Fractal Dimension (FD) is calculated in the multiscale 

signal using the coarse-grained procedure. The combination of FD and 

multiscale process generates the more comprehensive information of lung 

sound. This study used seven types of FD and three types of the classifier. 

The result showed that Petrosian C in signal with the scale of 1-5 and 

SVM with fine Gaussian kernel had the highest accuracy of 99% for five 

classes of lung sound data. The proposed method can be used as an 

alternative method for computerized lung sound analysis to assist the 

doctors in the early diagnosis of lung disease.  

 

Keywords: Lung Sound, Fractal Dimension, Coarse-Grained Procedure, K-

NN, SVM, MLP 

 

Introduction 

Auscultation is an important procedure to establish 

the diagnosis of various lung disorders (Sarkar et al., 

2015). The sound of airflow through respiratory tract is 

listened by a doctor using a stethoscope to analyze sound 

that is different from normal. This process is highly 

dependent upon the doctor’s skill as it requires more 

practices for years (Abbas and Fahim, 2010). Various 

digital signal processing techniques, therefore, have been 

developed to analyze the lung sound quantitatively.  

Lung sound is produced from air turbulence in the 

respiratory tract. Kitaoka proposed a 3D model of branches 

in lung that have self-similarity property (Kitaoka et al., 

1999). So that lung has a finite fractal structure. As the lung 

structure has fractal property (Suki et al., 2003); thus, the 

lung sound follows the power law distributions 

(Ahlstrom et al., 2006). Gnitecki and Mousavi (2005) 

tested it using Katz Fractal Dimension (KFD), Sevcik 

Fractal Dimension (SVD) and Variance Fractal 

Dimension (VFD). They stated that lung sound has a part 

of fractal properties. The test of lung sound fractality 

using the degree of similarity (H) was conducted in by 

Rizal et al. (2018) where normal lung sound and crackle 

had H value ≈ 1, indicating that it had a strong indication 

to have fractal properties.  

The utilization of fractal dimension in lung sound 

analysis has been conducted in previous studies. KFD, 

SVD and VFD were used to identify the bronchial 

provocation in lung sound that had produced a True 

Positive (TP) value up to 90.3% (Gnitecki et al., 2004). 

Fractal Dimension (FD) also was used to detect the peak 

of explosive lung sound, such as crackle and squawk 

(Hadjileontiadis and Rekanos, 2003). The result showed 

that FD worked properly in the detection of crackle or 

squawk in lung sound or bowel sound. For a similar 

detection, a combination of FD and wavelet produced a 

higher accuracy and more resistant to noise 

(Hadjileontiadis, 2005a; 2005b). Meanwhile, a 

combination of FD and Empirical Mode Decomposition 

(EMD) can be implemented in denoising the explosive 

lung sound (Hadjileontiadis, 2007), noise removal in 

ECG signal (Agrawal and Gupta, 2013) and iris 

identification (Chen et al., 2013). 

Apart from fractal properties, lung sound as a 

biological signal has some multiscale properties     
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(Costa et al., 2005). The multiscale analysis of biological 

signal is often used in ECG signal (Costa et al., 2005), 

EEG signal (Lin et al., 2014), microvascular blood 

flow (Humeau-Heurtier et al., 2014), or lung sound 

(Rizal et al., 2016b). To the best of our knowledge, no 

study analyzes the combination of FD and multiscale 

analysis for lung sound analysis. Hence, this study 

conducted the feature extraction of lung sound using FD 

in multiscale signal. FD used in this study included Box-

Counting FD (BCFD) (Mandelbrot, 1985), Katz FD 

(KFD) (Katz, 1988), Sevcik FD (SFD) (Sevcik, 1998), 

Variance FD (VFD) (Kinsner, 1994), Higuchi FD (HFD) 

(Higuchi, 1988) and Petrosian FD (Petrosian C and 

Petrosian D) (Petrosian, 1995). Meanwhile, the coarse-

grained procedure was used for multiscale process 

(Costa et al., 2005). The FD of lung sound signal in each 

scale was used as a feature for classification. By 

implementing SVM, K-NN and MLP as a classifier, we 

found that Petrosian C FD and MLP produced the 

highest accuracy of 5-class lung sound classification.  

This paper is organized as follow. In next section, we 

presents the theory of fractal and coarse-grained procedure 

as multiscale method used in this study. We described lung 

sound data, features extraction method and classifier in 

Material and Method Section. Subsequent Section discusses 

the result of the experiment. Meanwhile, conclusion of this 

paper is presented in Conclusion Section.  

Fractal Theory and Coarse-Grained 

Procedure 

One parameter used to define signal complexity by 
chaos approach is by implementing fractal dimension, 
which can be translated as the appearance dimension of 
self-similarity; the repetitive pattern of signals in some 
different patterns (Mandelbrot, 1985). The more self-
similarity signal pattern appears, the higher the fractal 
dimension value would be. The value of the fractal 
dimension is not an integer as a Euclidean dimension 
that has 1, 2 and 3 dimensions for the line, area and 
space, respectively. For 1-dimension signal, the fractal 
dimension has a value of 1 ≤ FD < 2 where the more 
complex signal leads to the higher value of its FD (closer 
to 2) (Sevcik, 1998).  

As lung structure has a self-similarity (Kitaoka et al., 

1999), so we can expect that the lung sound also has a 

self-similarity property. The pulmonary sound produced 

by different disorders will have different properties, it is 

estimated that this can be seen through the fractal 

dimensions of each type of lung sound. Several FD 

calculations used in this study are explained in the 

following subsections. 

Box-Counting Method 

One of the earliest fractal dimension calculation 

techniques is box-counting (BC) method, which uses 

curve properties when filled by boxes (Mandelbrot, 

1985). In this approach, the curve is covered by a set of 

boxes and the number of boxes of a particular size is 

calculated to obtain a total number of boxes required to 

cover all parts of the curve. If the size of the box is close 

to zero, the whole curve will be covered by boxes and it 

can be expressed mathematically as Equation 1: 

 

( )

( )0

log
lim

log 1 /
B

r

N r
D

r→

=  (1)  

 

where, N(r) refers to the number of boxes size r required 

covering all parts of the curve. Practically, BC method 

estimates a fractal dimension by calculating the number 

of boxes with various sizes required covering all parts of 

the curve. Then, DB is calculated by observing straight 

line in the logarithmic plot of N(r) to r. It can be 

expressed mathematically as Equation 2: 
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where, C is constant and DB is a gradient of the logarithmic 

graph of N(r) to r. This method is commonly known as the 

grid method and it requires a long computing time.  

Katz Method 

Katz Fractal Dimension (KFD) of a curve in series 

with length = N is defined as in Equation 3 (Katz, 1988): 
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where, KFD is a fractal dimension in Katz method, while 

Lc is total curve length that can be calculated using 

Equation 4: 
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where, dist (i,i +1) is a distance of two sequential points, 

while d in Equation 3 is the maximum distance or the 

curve diameter. This value can be obtained by calculating 

a distance between curve original point and the longest 

length of the curve, as expressed in Equation 5: 

 

( )max 1, , 2,..,d dist i i N=   =   (5)  

 

Sevcik Method 

Fractal dimension calculation using Sevcik method 

(SVD) in a curve with N length can be expressed as 

Equation 6 (Sevcik, 1998).  
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Lc in Equation 6 is total length as expressed in 

Equation 4. Another variation of Sevcik method is by 

using normalization in x and y-axis before implementing 

LC and SVD calculation. Normalization in the x-axis is 

expressed in Equation 7: 
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where, xi is the initial value in x-axis while xmax is the 

maximum value of xi. Meanwhile, normalization in y-

axis is expressed in Equation 8: 
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where, yi is the initial value in x axis, ymin is the 

minimum value of y and ymax is the maximum value of y.  

Variance Method 

Variance Fractal Dimension (VFD) of signal s(t) is 

calculated using Hurst Exponent (H) as expressed in 

Equation 9: 
 

( ){ }
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where, H is signal smoothness. In Equation 9, (∆s)∆t can 
be calculated with s(t2)-s(t1) and ∆t = t2-t1. With 

Equation 10, VFD can be calculated as Equation 10: 
 

1VFD E H= + −   (10)  

 
where, E is Euclidean dimension where for 1-dimension 

signal, E value is 1. Therefore, Equation 10 can be 

simplified as Equation 11: 
 

2VFD H= −  (11)  

 

VFD calculation can use varied values of ∆t as required. 
When separating signal and noise, ∆t = 1 (1 data sample), 
while for separating several data components, ∆t > 1.  

Higuchi Method  

Higuchi method (HFD) is one of fractal dimension 

calculation algorithms frequently used for biomedical 

signal analysis (Higuchi, 1988). The advantages of 

Higuchi method are that it has high accuracy and is 

efficient for fractal dimension calculation. A signal with 

N number of samples can be converted into a series of 

signal with length = k and varied resolution, as expressed 

in Equation 12: 
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where, m is original time indication (m =1, 2,…, k). Then, 

curve length m

k
X , lm(k) is defined as in Equation 13: 
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Notation a represents floor(a) where (N-m/k)k is 
normalization factor. The curve length of each k interval 

is expressed in Equation 14: 

 

( ) ( )
1

k

mm
L k l k

=
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Fractal dimension is obtained by a slope between plot 

ln(L(k)) and ln(1/k)). The value obtained by relation 

L(k)∝k−D with Higuchi Fractal Dimension (HFD) = D. 

Petrosian C and Petrosian D Methods 

Petrosian algorithm calculates the fractal dimension 

of a signal by converting the signal series into binary 

series (Petrosian, 1995). This algorithm has several 

variations with several different methods to convert the 

signal into binary series. In Petrosian C algorithm, the 

difference of sequential signals is calculated by ∆s(t) = 

s(t+1) – s(t). If ∆s(t)> 0, then ∆s(t) value will be set as 1, 

while, the value of ∆s(t) will be set as -1 if ∆s(t)<0. 

Therefore, binary series of ‘1’ and ‘-1’ is generated. 

∆s(t) = s(t+1) – s(t) is also calculated in Petrosian D 

algorithm. If ∆s(t) > standard deviation of s(t), then the 

value of binary series is ‘1’. In contrast, if ∆s(t) < 

standard deviation of s(t), then the value of binary series 

is ‘-1’. Petrosian Fractal Dimension (PFD) is calculated 

using Equation 15: 
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log log
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 (15) 

 

where, n is the signal length and N∆ is the sign change of 

binary series.  

The Coarse-Grained Procedure 

The coarse-grained procedure is a multiscale analysis 

method that is used in multiscale entropy in (Costa et al., 

2005). This procedure can be expressed mathematically 

as in Equation 16: 
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where, τ is the scale, ( )
jy
τ

 is the output signal of coarse-

grained procedure in τ scale and xi is an input signal.  

Coarse-grained procedure in τ scale is a process of 

calculating the average of τ number of sequential data to 

generate a new signal. For example, in scale τ = 1, 
( ) ( )1

, 1,2, ,
j

y x i i N= = …  while if τ = 2, then 
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( ) ( ) ( ) ( )
3

3 2 3 1 3

3
i

x i x i x i
y

 − + − +  =  and so on. The length 

of data in ( )
jy
τ

decreas to reach N/τ. 

Materials and Methods 

Lung sound has two properties that would be 
explored in this research that is multiscale and fractal. For 
that in this study characteristic that would be used as a 
differentiation between the sound of one lung and the 
other is a multiscale fractal dimension. The process 
undertaken in this study is as in Fig. 1. In the lung sound, 
the multiscale process was done to break the lung sound 
into new signals with the different scale. The fractal 
dimension was calculated on the signal to characterize the 
signal. The next process was the classification to find out 
the accuracy of the designed method. The next 
subsection describes each step of Fig. 1 in detail. 

Lung Sound Data 

Lung sound data was obtained from various data 

on the internet (The Auscultation Assistant - Breath 

Sounds, no date; Ward, 2005). The data was used in 

our previous research (Rizal et al., 2016b; 2017). Data 

was comprised of 5 classes, which could be classified 

into one normal lung sound class and four abnormal 

lung sound data. Abnormal lung sound consisted of 

wheeze, crackle, pleural rub and stridor. There were 

22 data of normal lung sound, 18 data of wheeze 

sound, 21 data of crackle sound, 18 data of pleural rub 

sound and 20 data of stridor sound. The length of 

sound recording data was one breathing cycle with a 

sampling frequency of 8000 Hz. Lung sound was 

normalized to eliminate any variation caused by the 

recording process. Normalization process used in this 

study were zero mean normalization to set mean value 

to 0 and amplitude normalization, as expressed in 

Equation 17 and 18: 

 

( ) ( )
1

1
( )

N

j
y i x i x j

N =

= − ∑  (17)  

 

 ( )
( )

max

x i
y i

x
=  (18) 

 

where, y(i) and x(i) are respective output and input 

signals, while N is signal length. 

The example of wheeze and normal lung sounds and 

spectrums are displayed in Fig. 2. In normal sound, there 

was a clear gap between inspiration and expiration 

phase. Most of the frequency spectrum was located in 

frequency less than 1000 Hz. In contrast, there was no 

clear gap between breathing phases in wheeze sound. 

The dominant frequency was less than 400 Hz, which is 

a pitch higher than normal sound. 

Feature Extraction 

The feature extraction process consists of two 

steps, coarse-grained procedure to break the signal 

into multiple scales and calculate the fractal 

dimension of the multiscale process signal. In the first 

step we used the coarse-grained procedure to form 

new signal with different scale as in Equation 6. This 

study used the scale τ of 1-20. In the next process FD 

was calculated for each output signal of the multiscale 

process. Fractal dimension methods used in this study 

included BCFD, KFD, SFD, VFD, HFD, Petrosian C 

and Petrosian D. As this study used the scale in the 

range of 1-20, there were 20 FD values generated as 

the lung sound features.  

 

 
 

Fig. 1: Block diagram of proposed system 

Lung sound 
Coarse-grained 

procedure 

Fractal 

dimension 

calculation 

Classification 
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(a) 

 

 
(b) 

 
Fig. 2: (a) Normal lung sound and spectrum (b) Wheeze sound and spectrum 

 
This scale was then reduced in some steps to observe 

the effect of scale on accuracy. Scales used in this study 

were in the range of 1-20, 1-15, 1-10, 1-5, 1-4, 1-3, 1-2 

and 1. On a high scale, the scale was reduced by 5 in 

every step since signal variance in high scale was very 

low, meaning that information contained in the signal 

was relatively low (Humeau-Heurtier, 2015). Scale 1 

represented the original signal used as a reference 

whether the multiscale process with coarse-grained 

procedure had higher accuracy compared to the one 

without the coarse-grained procedure.  

Classifier  

This study used several classifiers in the 

classification process. Classifiers tested in this study 

were SVM with its various kernels (Theodoridis and 

Koutroumbas, 2010), K-NN with its variations and 

Multilayer Perceptron (MLP).  

SVM was initially intended to classify linear 

problems by finding the best hyperplane to separate the 

two data classes (Cortes and Vapnik, 1995). Hyperplane 

can be a straight line or a surface that can separate two 

data classes. The best hyperplane is obtained by finding 

the maximum margin between two sets of objects of 

different classes. The margin, in this case, is the closest 

distance between the hyperplane and the nearest data in 

each class called the support vector. In its development 

SVM can be used to solve non-linear problems using a 

technique called kernel trick. There are two methods of 

kernel trick used in this study. The first is a polynomial 
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kernel covering quadratic SVM and cubic SVM. The 

second method is the radial base kernel function which 

consists of fine, medium and coarse Gaussian SVM. 
K-Nearest Neighbor is a nonparametric classification 

method that calculates the similarity of test data with K 

training data stored previously (Bugdol and Mitas, 2014). 

The similarity of data, for example, is done by distance 

measurement. In the K number of training data closest to 

the test data, the most data class is selected. In this research, 

five KNN types with different K values are used in 

accordance with KNN type characteristics. At KNN fine 

used K = 1, KNN medium used K = 10 while in cosine 

KNN used K = 10 by using cosine distance. Meanwhile, the 

cubic KNN uses K = 10 with cubic spacing and weighted 

distance with K = 10 used in weighted KNN. 
Multilayer Perceptron (MLP) is one of the 

architectures of artificial neural networks that are widely 
used to solve classification problems (Palaniappan, 
2010). MLP is the simplest form of an artificial neural 
network. MLP consists of three layers of the input 
layer, hidden layer and output layer. The input layer 
contains the neurons with the same number of features 
to be classified and the output layer contains the 
neurons of the classes to be recognized. The number of 
neurons in the hidden layer is determined by trial and 
error. Simply MLP can be explained by the model of one 
neuron as in Equation 19: 
 

0 0 1 1 n n j j

j

z x w x w x w x w= + + + =∑⋯  (19)  

 

where, x is the input signal and w is the weighting 

representing synaptic modulation, i.e., how strong or 

how many neurotransmitters are affected by the input 

signal. While z is the number of responses that affect the 

neuron. The output of the neuron is expressed by the 

activation function which is with the input of the total 

weighted response of the input signal expressed by y = f 

(z). The most straightforward function of y is a linear 

function that is y = z while the activation function which 

is often used is the sigmoid function.  
The three-fold cross-validation (three-fold CV) was 

used to validate the classifier performance in the 
classification process. Three-fold CV was selected because 
there were 18-22 of data for each class, meaning that there 
were 6-8 data for each class in one data set. Performance 
parameter used in this process was accuracy, expressed as: 
 

% 100%
number of correct classified data

accuracy
number of data

= ×  (20) 

 

Results and Discussion 

Results of the coarse grained procedure for normal 
and wheeze lung sound are displayed in Fig. 3. 
Generally, the shape of both signals remained the same. 
The change mainly occurred in the number of sample 
data from N to N/τ, which reduced the signal variance. 
The value of τ was inversely proportional to the variance, 
as illustrated in Fig. 4. This in turns caused some 
changes in FD as shown in Fig. 5-11. 
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(b) 

 
Fig. 3: (a) Normal lung sound for scale 1-5 (b) Wheeze sound for scale 1-5 
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Fig. 5: BCFD value for scale τ = 1 – 20 

 

 
 

Fig. 6: KFD value for scale τ = 1 – 20 
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Fig. 7: SFD value for scale τ = 1 – 20 

 

 
 

Fig. 8: VFD value for scale τ = 1 – 20 
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Fig. 9: HFD value for scale τ = 1 – 20 

 

 
 

Fig. 10: Petrosian C FD value for scale τ = 1 – 20 
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Fig. 11: Petrosian D value for scale τ = 1 – 20 

 

As seen in Fig. 5-11, the value of FD was in the 

range of 1-2, except for KFD with FD in the range of 2 – 

7. This out of range value was caused by a weakness in 

the calculation of KFD as reported by Castiglioni (2010). 

As the objective of this study was the utilization of FD 

as features, then the precision of FD was not considered 

as a focus. Other methods with different FD were Pet C 

and Pet D, which were extremely small and relatively 

constant. This was caused by the process of FD 

calculation that considered a sign change as in Eq. 15 

As seen in Fig. 5-11, the value of FD was in the range 

of 1-2, except for KFD with FD in the range of 2-7. This 

out of range value was caused by a weakness in the 

calculation of KFD as reported by Castiglioni (2010). As 

the objective of this study was the implementation of FD 

as features, then the precision of FD was not considered as 

a focus. Other methods with different FD were Pet C and 

Pet D, which were extremely small and relatively constant. 

This was caused by the process of FD calculation that 

considered a sign change as in Equation 15.  

FD value tends to increase as the scale increases and 

then at some point, the value decreases. The decrease of 

FD indicates a drop of signal complexity caused by the 

coarse-grained procedure. The coarse-grained procedure 

reduces the signal variance that subsequently reduces 

signal complexity, which influences FD value on each 

scale. In this study, FD change patterns became the 

features of each lung sound.  

However, this tendency does not seem applicable to 

HFD, as its FD value increases when the scale increases. 

HFD depends on the value of Kmax where Kmax value is 

directly proportional to FD. In the coarse-grained 

procedure, the data length N decreased and Kmax was 

constant. This was equivalent to when N value was constant 

with the increase of Kmax and then HFD would increase.  

Wheeze had the highest value of FD among other 

lung sound classes. Meanwhile, normal lung sound had 

lower FD compared to wheeze but higher than other 

three classes, except for stridor on BC FD. Wheeze had 

higher FD for being more complex than other signals. It 

had a musical pattern, high pitch and continued 

(Bohadana et al., 2014), while other lung pathological 

sounds were the discontinued signals. 

The accuracy using various classifiers for each FD is 

displayed in Table 1-7. It can be seen that the results 

mostly indicated that the highest accuracy was achieved 

after the number of scales was reduced. This means that 

a large number of scales have no guarantee for the 

highest accuracy. The highest accuracy was achieved by 

Pet C on a scale of 1-5 using fine Gaussian SVM with 

99% accuracy. The next highest accuracy was VFD with 

98% accuracy on 15 scales using quadratic SVM, Pet D 

with 97% accuracy on 10 scales using MLP and SFD with 

97% accuracy on a scale of 1-10 using cubic SVM. The 

summary of results and comparison between single scale 

and multiscale FD can be seen in Table 8. There was a 

significant increase in accuracy between FD measurement 
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in the original signal and FD on a multiscale signal. The 

recommended features are also only five compared to one 

feature on regular FD measurements. 

Table 9 shows the comparison between the proposed 

method and the multiscale method for lung sound 

analysis in previous studies. It is seen that the proposed 

method has yielded higher accuracy compared to the 

previous methods. FDs on multiscale signals for lung 

voice analysis resulted in higher accuracy than Hjorth 

descriptor on multiscale signal (Rizal et al., 2016b), the 

multiscale gray-level difference (Rizal et al., 2016a) and 

multiscale entropy (Charleston-Villalobos et al., 2013). 

Another advantage of the proposed method is that it is a 

parameter-free to calculate FD. 

 
Table 1: Accuracy (%) using BC FD for various scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 77.80 72.70 69.70 65.70 64.60 58.60 48.50 54.50 

 Quadratic SVM 86.90 81.80 79.80 74.70 62.60 62.60 66.70 68.70 

 Cubic SVM 85.90 81.80 79.80 74.70 73.70 65.70 64.60 68.70 

 Fine Gaussian SVM 79.80 85.90 85.60 80.80 74.70 75.80 70.70 67.70 

 Medium Gaussian SVM 74.70 74.70 76.80 71.70 75.80 68.70 68.70 70.70 

 Coarse Gaussian SVM 70.70 68.70 65.70 61.60 61.60 57.60 56.60 56.60 

K-NN Fine KNN 81.80 84.80 86.90 69.70 74.70 70.70 66.70 58.60 

 Medium KNN 75.80 73.70 75.80 69.70 71.70 71.70 70.70 69.70 

 Cosine KNN 54.50 53.50 57.60 56.60 51.50 47.50 44.40 29.30 

 Cubic KNN 73.70 74.70 71.70 70.70 71.70 70.70 70.70 69.70 

 Weighted KNN 79.80 80.80 83.80 82.80 78.80 75.80 69.70 57.60 

ANN MLP 82.83 80.81 81.82 82.83 75.76 73.74 70.71 68.69 

 

Table 2: Accuracy (%) using HFD for various scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 82.80 83.80 84.80 89.90 91.90 90.90 82.80 62.60 

 Quadratic SVM 87.90 90.90 85.90 86.90 89.90 88.90 88.90 68.70 

 Cubic SVM 88.90 91.90 92.90 93.90 93.90 92.90 88.90 63.60 

 Fine Gaussian SVM 93.90 92.90 90.90 92.90 92.90 92.90 87.90 73.70 

 Medium Gaussian SVM 90.90 92.90 90.90 92.90 89.90 89.90 81.80 67.70 

 Coarse Gaussian SVM 64.40 64.60 60.60 59.60 59.60 63.60 61.60 61.60 

K-NN Fine KNN 92.90 91.90 91.90 91.90 91.90 91.90 86.90 63.60 

 Medium KNN 74.70 74.70 76.80 75.80 75.80 76.80 73.70 58.60 

 Cosine KNN 71.70 69.70 72.70 74.70 70.70 70.70 69.70 34.30 

 Cubic KNN 75.80 74.70 76.80 76.80 76.80 76.80 73.70 58.60 

 Weighted KNN 88.90 88.90 91.90 91.90 91.90 91.90 85.90 64.60 

ANN MLP 87.88 87.88 88.89 90.91 88.89 88.89 81.82 66.67 

 
Table 3: Accuracy (%) using KFD for Various Scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 85.90 88.90 90.90 86.90 87.90 83.80 83.80 67.7 

 Quadratic SVM 93.90 90.90 92.90 91.90 73.70 86.90 81.80 59.6 

 Cubic SVM 89.90 90.90 93.90 91.90 92.90 85.90 83.80 59.6 

 Fine Gaussian SVM 86.90 87.90 89.90 88.90 88.90 86.90 82.80 75.8 

 Medium Gaussian SVM 89.90 90.90 90.90 87.90 86.90 83.80 78.80 68.7 

 Coarse Gaussian SVM 56.60 59.60 57.90 66.70 65.70 69.70 65.70 62.6 

K-NN Fine KNN 88.90 90.90 91.90 91.90 91.90 86.90 79.80 67.7 

 Medium KNN 83.80 85.90 87.90 86.90 81.80 78.80 82.80 71.7 

 Cosine KNN 71.70 80.80 97.90 82.80 78.80 73.70 63.60 34.3 

 Cubic KNN 83.80 85.90 97.90 87.90 83.80 81.80 84.80 71.7 

 Weighted KNN 85.90 88.90 89.90 90.90 90.90 8.6.90 83.80 12.3 

ANN MLP 95.96 95.96 94.95 91.92 91.92 87.88 84.85 66.7 
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Table 4: Accuracy (%) using SFD for Various Scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 91.90 94.90 92.90 90.90 82.8 81.80 82.80 67.70 

 Quadratic SVM 94.90 97.00 96.00 92.90 90.9 86.90 80.80 67.70 

 Cubic SVM 96.00 97.00 97.00 92.90 91.9 89.90 82.80 68.70 

 Fine Gaussian SVM 96.00 96.00 96.00 94.90 91.9 89.90 86.90 73.70 

 Medium Gaussian SVM 91.90 92.90 89.90 87.90 88.9 86.90 81.80 67.70 

 Coarse Gaussian SVM 69.70 69.70 70.70 72.70 68.7 62.60 62.60 64.60 

K-NN Fine KNN 94.90 94.90 94.90 91.90 91.9 87.90 84.80 68.70 

 Medium KNN 84.80 87.90 86.90 85.90 85.9 84.80 81.80 66.70 

 Cosine KNN 89.90 90.90 89.90 88.90 83.8 84.80 81.80 34.30 

 Cubic KNN 88.90 87.90 86.90 85.90 85.9 87.90 82.80 66.70 

 Weighted KNN 93.90 94.90 94.90 92.90 92.9 90.90 87.90 68.70 

ANN MLP 93.94 93.94 95.96 91.92 89.9 88.89 85.86 70.71 

 
Table 5: Accuracy (%) using VFD for various scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 90.90 93.90 92.90 89.90 89.90 87.90 81.80 60.60 

 Quadratic SVM 86.90 94.90 94.90 98.00 85.90 93.90 82.80 71.70 

 Cubic SVM 93.90 96.00 96.00 93.00 92.90 93.90 86.90 71.70 

 Fine Gaussian SVM 87.90 89.90 91.90 90.90 92.90 91.90 91.90 81.80 

 Medium Gaussian SVM 91.90 88.90 88.90 90.90 90.90 89.90 82.80 68.70 

 Coarse Gaussian SVM 73.70 75.80 79.80 77.80 69.70 69.70 67.70 65.70 

K-NN Fine KNN 90.90 91.90 89.90 92.90 92.90 79.80 88.90 75.80 

 Medium KNN 85.90 87.90 88.90 89.90 86.90 79.80 78.80 72.70 

 Cosine KNN 90.90 83.80 90.90 90.90 89.90 84.80 74.70 34.30 

 Cubic KNN 85.90 87.90 88.90 89.90 89.90 82.80 79.80 72.70 

 Weighted KNN 88.90 89.90 90.90 91.90 91.90 90.90 89.90 74.70 

ANN MLP 87.88 93.94 93.94 93.94 90.91 90.91 86.87 72.73 

 
Table 6: Accuracy (%) using petrosian C for various scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 92.90 77.80 86.90 82.80 82.80 82.80 76.80 45.5 

 Quadratic SVM 98.00 96.00 96.00 92.90 91.90 93.90 83.80 56.6 

 Cubic SVM 98.00 96.00 97.00 96.00 97.00 94.90 87.90 71.7 

 Fine Gaussian SVM 97.00 94.90 98.00 99.00 98.00 96.00 87.90 69.7 

 Medium Gaussian SVM 98.00 96.00 98.00 93.90 91.90 91.90 83.80 63.6 

 Coarse Gaussian SVM 78.80 81.80 82.80 81.80 79.80 78.80 64.60 47.5 

K-NN Fine KNN 96.00 94.90 96.00 97.00 93.90 92.90 84.80 69.7 

 Medium KNN 78.80 82.80 78.80 82.80 79.80 75.80 68.70 62.6 

 Cosine KNN 77.80 80.80 77.80 83.80 81.80 74.70 63.60 19.2 

 Cubic KNN 76.80 80.80 77.80 79.80 78.80 73.70 69.70 62.6 

 Weighted KNN 98.00 96.00 97.00 97.00 94.90 93.90 88.90 68.7 

ANN MLP 97.98 97.98 97.98 92.93 90.91 91.92 78.79 62.6 

 

The proposed method in this study is FD 

calculation in the multiscale signal, which is different 

from the multiscale fractal dimension that is explained 

in various papers. Rahmad et al. (2014) used 

Multiscale Fractal Dimension (MFD) is explained as 

follows, Boulignd-Minkowski defined FD as in 

Equation 20 (Tricot, 1995): 

0

log ( )
2 lim

log( )r

A r
D

r→

= −  (20)  

 

where, A(r) is the number of calculated elements and r 

is counting window. Then, multiscale fractal is 

defined as:  
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( )
( )

2
du t

D t
dt

= −  (21)  

 

where, u(t) is log(A(r)) and t is log(r) and D(t) or 

Multiscale Fractal Dimension (MFD) is first derivative 

of logarithmic curves (Florindo et al., 2012). 

Other MFD approach was explained by Moisy 

(2008). BCFD was conducted in various ranges of r 

that yielded some values of D(r). In this approach, 

multiscale manipulation was applied to FD 

calculation, not to the signal. Using lung sound data in 

this study, the method yielded 55.6% accuracy in 

Cubic SVM.  

The result showed that proposed FD calculation on 

the multiscale signal generated a better result than 

other similar multiscale. The advantage of the 

proposed method was that it only had one FD feature 

calculated in one signal, but the calculation was 

performed repetitively by the desired scale. For HFD, 

Kmax value influences generated FD that in turns 

produced the different accuracy. This study did not 

discuss the effect of noise on accuracy. Future work 

will focus on adding noise to lung sound. 

 
Table 7: Accuracy (%) using petrosian D for various scales 

  Accuracy (%) for scale 

  ------------------------------------------------------------------------------------------------------------- 

 Classifier 1-20 1-15 1-10 1-5 1-4 1-3 1-2 1 

SVM Linear SVM 91.9 91.9 91.9 90.9 90.9 80.8 82.8 59.6 

 Quadratic SVM 94.9 96.0 96.0 88.9 89.9 83.8 83.8 54.5 

 Cubic SVM 94.9 94.9 93.9 90.9 89.9 86.9 83.8 52.5 

 Fine Gaussian SVM 89.9 90.9 93.9 93.9 92.9 85.9 80.8 55.6 

 Medium Gaussian SVM 96.0 96.0 94.9 91.9 87.9 83.8 84.8 53.5 

 Coarse Gaussian SVM 79.8 85.9 86.9 81.8 75.8 72.7 64.6 46.5 

K-NN Fine KNN 93.9 92.9 91.9 90.9 89.9 88.9 87.9 59.6 

 Medium KNN 87.9 88.9 87.9 83.8 77.8 75.8 71.7 55.6 

 Cosine KNN 83.8 87.9 85.9 83.8 79.8 76.8 73.7 36.4 

 Cubic KNN 87.9 88.9 87.9 82.8 76.8 76.8 70.7 55.6 

 Weighted KNN 90.9 91.9 88.9 88.9 88.9 87.9 87.9 61.6 

ANN MLP 96.0 97.0 97.0 95.0 96.0 83.8 83.8 62.6 

 
Table 8: Accuracy comparison of single scale FD and multiscale FD 

 Single scale  Multiscale 

 -------------------------------------------------------------- ------------------------------------------------------- 

FD Acc (%)  classifier  Acc (%)  Scale, classifier  

BC FD  70.7  Medium Gaussian SVM  86.9  5, Fine Gaussian SVM  

HFD  73.7  Fine Gaussian SVM  93.9  4, cubic SVM  

KFD  75.8  Fine Gaussian SVM 96.0  15, MLP  

SFD  70.7  MLP  97.0  10, Cubic SVM  

VFD  81.8  Fine Gaussian SVM  98.0 15, quadratic SVM  

Petrosian C  71.7  Cubic SVM  99.0 5, Fine Gaussian SVM  

Petrosian D  62.6  MLP  97.0 10, MLP  

 
Table 9: The comparison of Multiscale FD and other multiscale feature extraction for lung sound classification 

    Scale and feature for 

Reference Data Method Result the best result 

Rizal et al. (2016b) 81 data, 5 class of data Multiscale Hjorth 95.06% Scale 1-10, Complexity 

  descriptor, MLP (96.9% using the same 

   data with this paper) 

Rizal et al. (2016a) 81 data, 5 class of data Multiscale gray 91.36% Scale 1-10, Gradient entropy, 

  level difference (97.9 % using the same D =10 

   data with this paper) (scale 1-20, 100 feature, D = 10 

Charleston-Villalobos et al. 384 inspiratory /expiratory Multiscale entropy Accuracy N.A, MSE Scale 1-4, m = 2, r = 0.2 

(2013) BLS segments for healthy  more consistent (scale 1-5, m = 2, r = 0.2) 

 subjects, 384 BLS segments  (86.8 % using the same 

 for patients  data with this paper) 

Proposed method 99 data, 5 class FD on multiscale 98.99% Scale 1-5, Pet C, Fine 

  signal  Gaussian SVM  
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Conclusion 

This paper described the implementation of FD as a 

feature for lung sound classification. FD was calculated 

on various scales of the signal as the part of the coarse-

grained procedure. Signal change in coarse-grained 

procedure created changes in FD value. Changes in FD 

value on various scales were used to differentiate one 

class data and the others. Petrosian C obtained accuracy 

of 99% in the scale of 1-5 with fine Gaussian SVM as a 

classifier. The result was obtained from 99 data consist 

of five classes. This finding is expected to aid doctors in 

the lung sound analysis using auscultation. This 

proposed method can be used in other biological signals, 

such as EEG or EMG that has the fractal properties. The 

multiscale method used in this study can still be 

improved to increase accuracy. Moreover, a variation of 

FD methods or other signal complexity calculation 

methods can be explored in future work.  
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