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Abstract: Ant Colony Optimization (ACO) is a generic algorithm, which 

has been widely used in different application domains due to its simplicity 

and adaptiveness to different optimization problems. The key component 

that governs the search process in this algorithm is the management of its 

memory model. In contrast to other algorithms, ACO explicitly utilizes an 

adaptive memory, which is important to its performance in terms of 

producing optimal results. The algorithm’s memory records previous 

search regions and is fully responsible for transferring the neighborhood of 

the current structures to the next iteration. Ant Colony Optimization for 

Clustering (ACOC) is a swarm algorithm inspired from nature to solve 

clustering issues as optimization problems. However, ACOC defined 

implicit memory (pheromone matrix) inability to retain previous 

information on an ant’s movements in the pheromone matrix. The problem 

arises because ACOC is a centroid-label clustering algorithm, in which the 

relationship between a centroid and instance is unstable. The label of the 

current centroid value changes from one iteration to another because of 

changes in centroid label. Thus the pheromone values are lost because they 

are associated with the label (position) of the centroid. ACOC cannot 

transfer the current clustering solution to the next iterations due to the 

history of the search being lost during the algorithm run. This study 

proposes a new centroid memory (A-ACOC) for data clustering that can 

retain the information of a previous clustering solution. This is possible 

because the pheromone is associated with the adaptive instance and not 

with label of the centroid. Centroids will be identified based on the 

adaptive instance route. A comparison of the performance of several 

common clustering algorithms using real-world data sets shows that the 

accuracy of the proposed algorithm surpasses those of its counterparts. 

 

Keywords: Data Clustering, Swarm Intelligence, Optimization Based-

Clustering, Ant Colony Optimization 

 

Introduction 

Clustering is an unsupervised learning technique that 
groups data without any prior information. This 
approach is an undirected learning technique that can be 
performed without the need for labeled data. This 
technique differs from the classification learning 

technique (Al-Behadili et al., 2018a; Jabbar, 2018; 
Wahid and Al-Mazini, 2018). Different clustering 
algorithms aim to classify data as clusters, in which each 
cluster has a set of members that share similar 
characteristics and are dissimilar to the features of the 
members of other clusters (Jabbar et al., 2018). The two 

approaches that can be used to perform clustering are the 

deterministic and stochastic approaches. The 
deterministic approach includes algorithms that consider 
clustering as a deterministic clustering problem. In 

contrast, the stochastic approach includes algorithms 
that belong to swarm algorithms which consider 
clustering as an optimization problem. The stochastic 
approach involves the problem of minimizing or 
maximizing an objective function to achieve a 
clustering solution. Both approaches have their 

limitations but the stochastic approach is more accurate 
than the deterministic because the target of the former 
is to optimize the problem, in which the clustering 
problem is regarded as a complex problem when more 
than three clusters are present (Shabanzadeh and Yusof, 
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2015). Ant colony optimization (ACO) was developed 
to solve different optimization problems, such as a 
clustering problem, in which the algorithm can produce 
global clustering solutions. The ACO for clustering 

(ACOC), which is an optimization algorithm for 
clustering proposed by Kao and Cheng (2006), entails 
centroid-based clustering, in which the problem of 
clustering is considered an assignment problem. ACOC 
uses the concept of the Ant Colony System (ACS) for 
clustering problems. The assignment problem is a 

clustering problem and the algorithm assigns each 
instance to the nearest centroid based on pheromone 
value and heuristic information. A major drawback of 
centroid-based clustering is the label position, in which 
the label refers to the current cluster number. The 
algorithm is a dynamic cluster center (centroid) and each 

iteration is randomly updated. Once updated, the 
pheromone information is forgotten and the algorithm 
learning process is lost. In this case, the algorithm is 
unable to transfer previous information to the next 
iterations. The algorithm becomes a local search algorithm 
similar to the K-means algorithm. The pheromone 

information becomes ineffectual in classification and the 
algorithm relies on the heuristic only. 

This study proposes a new pheromone memory 

approach that can retain the history of previously 

recorded information to be used in the learning process, 

in which such information is a learning tool employed in 

the algorithm. The new pheromone memory is similar to 

the one employed in a neural network. In this memory, 

each centroid is considered an optimization problem that 

contains m possibilities with n attributes, where m is the 

number of possibilities in the range of [0, 1] for each 

single attribute and n is the number of attributes for the 

current centroid. The problem of clustering entails 

finding the optimal value of every attribute of each 

centroid. The proposed algorithm presents new 

construction graphs, in which each ant travels from a 

single attribute of each centroid. Thus, the optimal 

clustering solution is produced on the basis of the 

optimal route between attributes generating a minimum 

intra-clustering distance. The proposed algorithm relies 

on phenome information only and no heuristic 

information is required. This approach will decentralize 

the algorithm. The learning process starts with a high 

exploration rate accepting some worse solutions, but the 

algorithm eventually moves toward the exploitation of 

the optimal clustering solution.  

The remainder of this paper is organized as follows. 

Section 2 presents the related research on the ACO-

based clustering and highlights the problem of 

pheromone memory. Section 3 provides the research 

methodology while Section 4 elaborates on the proposed 

clustering algorithms. Section 5 explores the experiments 

and evaluates the proposed algorithm against existing 

state-of-the-art clustering algorithms. Section 6 details the 

discussion of the results. Lastly, Section 7 presents the 

conclusion of this study and future research.  

Related Research 

Clustering is unsupervised learning for organizing 

similar data in the same cluster and dissimilar ones in 

another cluster (Ünlü and Xanthopoulos, 2019). The 

objective is to group data on the basis of a similar 

characteristic, in which the members of a single cluster are 

close to one another with suitable distance between clusters 

(Kumar and Sahoo, 2014). In clustering, all algorithms can 

produce a clustering solution labeled either as partitional 

clustering or hierarchical clustering solutions.  

The partitional clustering algorithm groups data into 

flat clusters according to global criteria (Singh et al., 

2019). The global criteria minimize the dissimilarity 

measure within a cluster (intra- clustering variance) and 

maximizes dissimilarity (inter- clustering variance) 

between clusters. Similarities between elements within 

single clusters are higher than the dissimilarities of other 

elements in other clusters (Nagpal et al., 2013).  

The hierarchical clustering algorithm visualizes data 

as a hierarchical tree that illustrates the fusion or division 

in each stage, in which the tree contains nested clusters 

(Popat and Emmanuel, 2014). The hierarchical clustering 

approach is classified into agglomerative and divisive 

methods. The agglomerative method starts by merging 

distinct clusters (objects) based on similarity until a single 

cluster that contains all members is obtained. The divisive 

method performs a series of partitions that contain single 

clusters and successively separates them into multiple sub-

clusters (Murtagh, 1983; Zhang and Xia, 2009). K-means is 

a local search algorithm that is popular in partitional 

clustering because of its efficiency and simplicity. 

Nevertheless, this algorithm has a problem in obtaining a 

global solution because it is easily trapped in local optima, 

while different centroid initializations produce different 

clustering solutions (Jain, 2010).  

Studies on the K-means algorithm have focused on 
the optimization approach, which employs metaheuristic 
algorithms to produce (near) optimal solutions in 
reasonable time. The clustering problem is formulated as 
an optimization problem or integrated with local search 
algorithm such as K-means integrated with a metaheuristic 
algorithm as a hybrid algorithm to produce more optimal 
clustering results. There are some methodologies applied 
for escape from local optima using different local search 
approaches; these include Variable Neighborhood Search 
(VNS) and Iterated Local Search (ILS) used in clustering 
algorithms (Abuhamdah, 2018).  

A metaheuristic is a framework of ideas, concepts 
and operators that is used to solve optimization 
problems. The metaheuristic algorithm is problem-
independent, has different optimization strategies and 
has been applied successfully to solve the clustering 
problem. Examples of such applications are the genetic 
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algorithm (GA), particle swarm optimization (PSO), 
artificial bee colony (ABC), simulated annealing (SA), 
firefly algorithm (FA), ant colony optimization (ACO) and 
hybrid approaches, such as the fuzzy C-means and PSO 
algorithm (FCPSO) and K-means and PSO algorithm 
(KPSO) (Al-Behadili, 2018; Binu, 2015) The key 
component that governs the search method in such 
algorithms is the memory model. Unlike other approaches, 
ACO explicitly utilizes an adaptive memory, called the 
pheromone memory, to retain previous information to adapt 
the algorithm solution (Stutzle and Linke, 2000). 

The first research that uses ACO is by Shelokar et al. 

(2004) who propose an algorithm that relies only on 

pheromone memory of dimension m by n, where m is the 

number of clusters and is the number of instances. The 

algorithm starts with an empty solution and each ant travels 

from one instance to another on the basis of the amount of 

pheromone between instances and the cluster centroid with 

the maximum amount of pheromones. However, the 

algorithm produces premature convergence and infeasible 

solutions and empty clusters may be produced, particularly 

in the beginning of the run (Kao and Cheng, 2006). 

Various studies have used the concept of dynamic 

cluster centers to produce clustering results (Kao and 

Cheng, 2006; Santos et al., 2009; Li and Yao, 2016; 

David and Kosala, 2018). Cluster centroids are randomly 

dynamic updates. The algorithms use pheromone and 

heuristic information as guides for the ant to perform a 

clustering task. The current pheromone memory is 

ineffective as ants fail to classify data to the correct 

group because the amount of pheromone laid by 

previous ants did not represent the right assignment. This 

situation occurs because centroids are updated in each 

iteration and the pheromone entries that have appropriate 

centroids are not static. This is because the pheromone 

value is associated with the centroid and this value will 

be lost. Thus, the current pheromone memory is a 

memory merely to retain the pheromone. The algorithm 

becomes a local search algorithm, which is similar to K-

means. In other words, the algorithm lacks the ability to 

transfer current information about the assignment to the 

next iteration to be used by other ants. This fact endows 

the algorithm with high exploration towards a clustering 

solution. The problem of pheromone memory can also 

be described as a centroid encoding label problem, in 

which each cluster is associated with one label. 

Accordingly, this label change occurs in each iteration 

following the random selection of the centroid. This 

issue can be described in the current pheromone memory 

(Fig. 1), in which two ants produce two clustering 

solutions s. The first ant produces s1 as (1-1-2-2-3-3) 

and the second ant produces s2 as (3-3-2-2-1-1). Note 

that the length of the clustering route is 6, the first 

instance of solution s1 is assigned to cluster number 1 

and the second instance is assigned to cluster number 1. 

Both clustering solutions show that each ant produced 

the same number of groups, in which each group has the 

same number of members. The difference is that the 

label of each group differs in each clustering solution. 

Thus, the pheromone associated with the first object o1 

that belongs to cluster number one (1) of the first 

solution s1 differs from solution s2, in which the 

pheromone is associated with cluster number three (3). 

Accordingly, the pheromone information produced by 

the first ant becomes useless for the second ant, in which 

both solutions produce the same result with the same 

accuracy. This problem will make the algorithm unable 

to retain the information of the current neighborhood 

assignment to be used in the next iterations (Fig. 1).

 

 

 
Fig. 1: Construction graphs of ant performing clustering solution based on random centroids 
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Research Method  

This study attempts to solve the problem of 

pheromone memory, in which such a memory cannot 

retain the information of a previous clustering 

assignment. To illustrate the proposed algorithm, this 

research considers the number of clusters defined by the 

user as the parameter for the algorithm. The proposed 

algorithm relies on only the pheromone which means 

that no heuristic information is required to construct the 

clustering solution. To construct a route of attributes, a 

centroid highly similar to the ant-Miner for the 

classification problem was employed (Al-Behadili et al., 

2019; 2018b) Given the use of an example of a data set, 

in which the number of attribute D is three (3), each 

centroid contains three attributes. The number of clusters 

K involves three (3) centroids, in which each single 

cluster has one single centroid. Thus, the total number of 

attributes is nine (9) and a centroid is represented by 

three (3) attributes. The proposed algorithm attempts to 

optimize the optimal value of each attribute of each 

centroid. The optimal attribute value is the optimal 

centroid that can provide the optimal assignment. 

However, finding the optimal value of each single 

attribute is complicated because it resembles an NP hard 

optimization problem. That is, each single attribute may 

obtain any value between [0, 1], in which the minimum 

value is zero (0) and maximum value is one (1). This 

characteristic is a continuous problem that is an 

optimization problem. The proposed algorithm will also 

optimize the problem to find the best value of each 

attribute giving the minimum intra-clustering distance. As 

an example, consider the maximum value of each attribute 

in the data set as [7.9, 4.4, 2.5], where 7.9, 4.4 and 2.5 

represent the first, second and third attributes respectively 

with all attributes having a minimum value of 0.0. Thus, 

an example of a possible value of the first attribute is 

between [0.0, 7.9] and the second attribute is [0,.0 4.4]. 

Accordingly, each attribute should have its own value 

between the maximum and minimum attribute values. 

Note that this instance is an example only of a single 

centroid. Thus, the remaining attributes of the other 

centroids are produced similarly. The proposed algorithm 

must identify the optimal value of each attribute according 

to Equation 1 (Zabihi and Nasiri, 2018): 

 

 ij ij ij ij ikv z z z    (1) 

 

where, zij is a real number that represents the minimum 

value of the current attribute and zik is the maximum 

attribute value. ij is a random number between [0, 1]. It 

controls the attribute value between zero (0) and the 

maximum attribute value. Equation (1) is suitable if the 

proposed algorithm deals with a co-unions problem, but 

the said algorithm is a discrete algorithm. Thus, the 

pheromone memory must be represented by all the 

possible values that can be carried by ij. In this study, 

the pheromone memory is the size of (P, (K*D)) where 

is the number of possible values (rows of the pheromone 

memory) while is the value of the pheromone memory 

attributes. Figure 2, the value of attributes from 0.1 to 

0.5 is discretize to facilitate the understanding of the 

construction graph of the proposed A-ACOC algorithm. In 

the graph, each ant travels from one attribute to another, 

based on the pheromone value. The point that has the 

maximum pheromone has maximum probability to be 

selected by the ant. Note that the first point is selected 

randomly. The ideal route is the route that produces 

clustering with minimum intra-clustering distance. Figure 

2 shows that the route with the bold arrow string contains 

the route string (0.1-0.2-0.1-0.3-0.3-0.3-0.1-0.5-0.3). If 

this route string is applied in Equation (1), the result will 

be three centroids as follows: [0.79, 0.88, 0.25], [2.37, 

1.32, 0.75] and [0.79, 2.2, 0.75]. Thus, the current ant 

carries those centroids to construct its clustering solution 

that produces three (3) groups. 

 

 
 

Fig. 2: Construction graph of A-ACOC 
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Table 1: Attribute matrix  

Attribute 1 Attribute 2 Attribute 3 

0.1 0.1 0.1 

0.2 0.2 0.2 

0.3 0.3 0.3 

0.4 0.4 0.4 

0.5 0.5 0.5 

 
Note that in the first run, the value of the pheromone 

entries are initialized to the same small value and that the 
value of attributes written in Fig. 2 are stored in another 
matrix (P*D) called the attribute matrix. Each attribute 
visited in the route produced compensates the 
corresponding value in the attribute matrix to obtain the 
final route using Equation (1). Table 1 presents the 
attribute matrix. Each attribute obtains a different value 
based on the values of P that are responsible for the 
discrete value of each row of the attribute. 

Algorithm Details 

The proposed algorithm assumes that the number of 

clusters is a predefined parameter known by the user. 

The centroids of each cluster are extracted from the route 

constructed by each ant, which means that each ant has 

its centroids. This outcome differs from those of 

previous studies (Kao and Cheng, 2006; Santos et al., 

2009; Li and Yao, 2016; David and Kosala, 2018), in 

which the centroids are randomly generated. To 

construct the clustering solution, the algorithm initializes 

the pheromone memory of (P,(K*D) and the attribute 

memory of (P * D), where P is a predefined parameter 

that represents the number of possible values (rows of 

the pheromone memory). The value of K is the number 

of clusters and D is the number of attributes. The value 

of is the value of the pheromone memory columns. The 

value of the pheromone memory is initialized to a small 

value and the attributes memory is initialized as 1/P. For 

example, when P is equal to the value 10, the first row 

starts with value 0.1 and gradually increases until the last 

value becomes 0.9, such as the example used in Table 1. 

After the initialization of the ants, each ant starts with a 

random attribute value. The next step is to select the best 

attribute value on the basis of the exploitation and 

exploration strategies. Exploitation drives the algorithm 

to produce a clustering solution using the greedy 

concept. By contrast, exploration drives the algorithm to 

produce diversity in the clustering solution to explore the 

search space. However, both strategies are the engines of 

the algorithm to produce an optimal clustering solution. 

Exploitation can be calculated as shown in Equation 2, 

where i is the current attribute value 0  j p, is the next 

attribute value between [0-1] and pij is the next attribute 

in which the value of the attribute is the maximum 

amount of the pheromone. Note that q is a random value 

between [0-1] generated by the algorithm with each 

selection, while q0 is a predefined parameter value 

between [0-1] and initialized by a user. If q is greater or 

equal to q0, then the algorithm executes the exploration 

strategy to select the next attribute value. In this study, q0 

is equal to 0.98. Thus, the probability of the algorithm 

toward exploitation is higher than that toward the 

exploration strategy (Equation 3): 

 
α

0( )

'

ij

ij
S

if q q
p

otherwise

 
 


 (2) 

 
α

α

0

( )

( )

ij

ij p

ijj

p








 (3) 

 

Equation 3 indicates that the algorithm normalizes 

the amount of the pheromone to fall in the range [0, 1]. 

The selection process has a stochastic selection based on 

the concept of proportionality called Roulette Wheel 

Selection (RWS). RWS can increase the diversity of the 

clustering solution by exploring the search space. Note 

that this approach is crucial in the beginning of the 

algorithm run, where the algorithm accepted a worse 

clustering solution in the beginning. This situation 

endows the algorithm with the ability to avoid being 

trapped in local optima in the early stages of the 

algorithm research. 

The construction of the centroid route is processed 

until the tabu list tbr of ant r becomes full. After 

constructing the centroid route by ant r, the next step 

converts this route to the centroid matrix. In this study, 

each ant has its own centroid matrix that contains (K*D), 

where K is the number of clusters and D is the number of 

attributes (Table 2). Each centroid route is converted 

using Equation 1 and store in centroid matrix of ant r. As 

an example, the route string which is mentioned earlier 

contains (0.1-0.2-0.1-0.3-0.3-0.3-0.1-0.5-0.3). The 

produced centroid matrix of ant will be as shown in 

Table 2. Note that the first three (3) numbers will be 

stored in the first row of the centroid matrix and the 

second three (3) numbers will be stored in the second 

row of the centroid matrix and so on. 

The assignment starts when each instance of the 

dataset is assigned to an appropriate centroid (best 

cluster) according to the distance between the instance 

and the centroid matrix. This process is similar to the 

process of K-means assignment using Equation 4, where 

N is the total instances, xi is the instance that belongs to 

N and cj is one of the centroids made available by ant r. 

The obtained value of u is the appropriate cluster where 

1  u  K (Jain, 2010). 

 

 
1

1

min
K

N

i ji
j

u x c




    (4) 
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Fig. 3: Proposed A-ACOC algorithm 

 

Table 2: Centroid matrix for each ant of the algorithm 

 Attribute 1 Attribute 2 Attribute 3 

Centroid 1 0.79 0.88 0.25 

Centroid 2 2.37 1.32 0.75 

Centroid 3 0.79 2.2 0.75 

 

Table 3: Ant clustering solution route 

Instances 1 2 3 4 5 6 7 8 

Cluster label 2 1 3 2 2 3 2 1 

 
The assignment is processed until all instances are 

grouped into the K cluster. The clustering solution 

produced by each ant r is similar to a 1D matrix (Table 

3). Notably, the first instance of the ant solution is 

assigned to cluster number 2 and the second instance is 

assigned to cluster number 1 and so on: 

Each ant r calculates its fitness (i.e., total error within 

each cluster) to show how close or far each cluster 

member is to the centroid and how far those clusters are 

from each other. The total error fitness fr is the 

summation of distance between each instance and ant 

centroid cr and can be calculated as shown in Equation 5. 

Note that d is the Euclidean distance between the first 

number x and the second number y which can be 

computed using Equation 6 (David and Kosala, 2018). 

 

 
1 1

,instance ,
K N r

r i j
f d c j

 
   (5) 

 

   
2

,d x y x y    (6) 

 

After each ant ranks its clustering solution, the 

algorithm selects the best in the current solution that has 

the lowest error, which is called the best-iteration-

solution. This solution is updated by adding an amount 

of pheromone. The purpose of this operation is to reward 

the best ant in its current iteration and so the algorithm 

guides the ants in the next iterations about that solution 

with more intensification for greater improvement. The 

updated pheromone will be implemented on the 

centroid’s route that produces the best clustering result, 

as shown in Equation (7) (Shelokar et al., 2004): 

 

     
1.0

1 1ij ij

r

t t
f

  
 

     
 

 (7) 

 

where, ij is the amount of pheromone between attribute i 

and attribute j at time t. The is the evaporation factor that 

minimizes the amount of pheromone in the centroid 

memory in each iteration. This p operation seeks to 

forget information gathered in previous iterations. Thus, 

only the best clustering solution frequently updated by 

the algorithm has a high chance to be alive in the 

memory for a longer time. This outcome reflects the 

general process of learning in the ACO, where the 

feedback of the algorithm plays an important role in the 

success of algorithms to generate optimal clustering 

solutions. Note that the algorithm is very sensitive to its 

parameters such that any change can produce different 

clustering results, thus the value of the parameters can be 

tuning as self-adaptive or adaptive to gain a more optimal 

result. Moreover, the algorithm lacks a local search that can 

also produce more optimal clustering results. To make the 

algorithm clearer and more comprehensible to researchers, 

Figure 3 describes the algorithm.  

Experimental Results 

To evaluate the performance of the algorithm, 

experiments were conducted using 14 standard data sets 

from the University of California Irvine (UCI) Machine 

Learning Repository (Bache and Lichman, 2013). Each 

data set has its own characteristics and the number of 

clusters varies from one to the other (Table 4). The data 

sets are from different problems, such as disease that 

includes Breast Cancer (BC), Breast Tissue (BT), 

Hepatitis (Hp) and E. coli (Ec); ascertaining the survival 

of patients (Haberman (Hb)); image analysis of the 

ionosphere (Io); metal signals in mining operations 

Step 1: Initialize all parameters 

Step 2: Iteration 0 

Step 3: While iteration < Max  

Step 4:  While r < R do  

Step 5:  Construct route centroid by each ant. 

Step 6: Construct clustering solution by each ant. 

  Select the best ant in a current iteration based on  

  its fitness and perform pheromone update and  

  evaporation process. 

Step 7:  r + + 

Step 8: Iteration + +  

Step 9: Print best ant result 
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(Sonar (So)), the iris flower (Ir), fitting contact lenses 

(Lenses (Le)), mammographic (Mm) analysis of images 

to distinguish malignant breast disease, measurements of 

geometrical properties of kernels belonging to three 

different varieties of wheat (seeds (Se)), Vertebral 

Column (VC) analysis of orthopedic patients and 

chemical analysis in wine (Wi). All datasets are of 

multivariate type, either real or integer. Table 4 lists the 

distribution of the data sets. 

Evaluation against the classical clustering algorithm 

includes the metaheuristic algorithm and local search 

algorithm. In the metaheuristic comparison, different 

clustering algorithms have been used. The algorithms are 

ACOC, M-ACOC, GA, SA and local search K-means. 

The number of executions of each algorithm is 10 times, 

except for the K-means algorithm which is 50 times 

because this algorithm is easily trapped in the local 

optima clustering solution. Table 5 presents the 

parameters of each algorithm. Note that the parameter 

setting of each algorithm is in a similar domain as 

reported in Niknam and Amiri (2010).  

The clustering result is assessed using the internal 

evaluation criteria, which is the main objective function 

of this study and is denoted as the sum of the intra-

cluster distances as shown in Equation (5). The quality 

of the clustering results is considered optimal if the sum 

of the intra-cluster distances is minimized. Another 

criterion is used in this research to measure the quality of 

the clustering results using entropy measurement. 

Accordingly, the best value is reached if the entropy 

measurement is minimized (Equation 8). 

The entropy values were employed to determine the 

knowledge of information in the clustering. Equation 8 

demonstrates how the entropy for single clustering w is 

calculated (Haghir et al., 2008): 
  

2( ) ( )log ( ),c cc C
H w P w P w


   (8) 

 
where, c is a classification in set C and P(wc) is the 

probability of a data point being classified as c in cluster 

w. The total entropy of a cluster is as follows: 

 

   
Ω

Ω ,w

w

N
H H w

N
  (9) 

where, H (w) is the entropy of a single cluster, Nw is the 

number of points in cluster w and N is the total number 

of points. A low total entropy indicates improved 

clustering results. 

Comparisons were performed in two phases. The first 

phase is a general comparison with the best known 

(common) clustering algorithms focusing on the internal 

and external criteria. The internal criterion is the average 

sum of the intra-cluster distance and the external 

criterion is the average of the entropy value. The second 

phase involves the comparison between clustering 

algorithms that belong to the ACO-based clustering. 

The result of the first phase is displayed in Table 6 

which shows that A-ACOC obtains the best result in 

seven (7) data sets (approximately 50%). Joint best 

performances by GA, SA and KM can be seen on Lo, Se 

and So datasets. However, among the three (3) 

algorithms, SA is superior. In the comparison between 

the algorithm that belongs to the ACO-based cluster, it 

can be seen from Figure 3 that the A-ACOC obtains the 

best results for the average intra-cluster distance in 11 

data sets (approximately 78%). The second best result is 

displayed by ACOC in the Lo, Se and So datasets. We 

can conclude that the proposed algorithm is superior for 

internal criteria. The proposed algorithm can find the 

optimal centroids because the learning process of the 

algorithm depends on previous information which is 

retained from previous processes. 

 
Table 4: Datasets characteristics  

Dataset Name Attributes Classes Instances 

Breast cancer  9 2 699 

Breast tissue  9 6 106 

E. coli  7 6 336 

Haberman  3 2 306 

Hayes  5 6 132 

Hepatitis  19 2 155 

Ionosphere  34 2 351 

Iris  4 3 150 

Lenses  4 3 24 

Mammographic  5 2 961 

Seeds  7 3 210 

Sonar  60 2 208 

Vertebral column  6 3 310 

Wine  13 3 178 

 
Table 5: Values of the parameters for each algorithm 

 GA  SA  ACOC  A-ACOC/ M-ACOC 

 ---------------------------- ----------------------------------------- ----------------------------------------- ------------------------------------- 

Algorithm Parameter Value Parameter Value Parameter Value Parameter Value 

 Population 50 Probability threshold 0.98 Ants 50 Ants 50 

 Crossover 0.8 Initial temperature 5 Probability threshold  0.98 Probability threshold  0.001 

 Mutation rate 0.001 Temperature multiplier 0.98 Local search rate 0.01 Local search rate 0.01 

 Iterations 10 Final temperature  0.001 Evaporation rate 0.01 Evaporation rate 0.01 

  Iterations 1000 Iterations 1000 Iterations 1000 
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The second comparison focuses on the external 

criteria, i.e., minimum value of entropy. Results are shown 

in Table 7 for all common clustering algorithms which 

show the absence of a dominant algorithm. Figure 4 

displays the results of ACO-based algorithms for external 

criteria. Joint best results were obtained by the three (3) 

algorithms for the Lo, Hp and Hb datasets. However, 

among the three (3) algorithms, A-ACOC is more superior 

because it obtained another five (5) best results. All the 

algorithms were design based on the internal criteria and, 

thus, no dominant algorithm can be seen in this experiment. 

Figure 5 displays the behavior of A-ACOC in 

performing the clustering task for three (3) experimental 

settings on Wi dataset. The number of ants used in the 

first, second and third runs are 250, 500 and 1000. The 

algorithm starts with high exploration followed by the 

long exploration period which shows how the search 

processes are performed. 
 

 
 

Fig. 3: Average intra-cluster distance for ACO-based clustering algorithms 

 

 
 

Fig. 4: Average entropy result for ACO-based clustering algorithms 
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Fig. 5: Behavior pattern of A-ACOC algorithm 

 
Table 6: Average intra-cluster distance for common clustering algorithms 

 Algorithms 

 ----------------------------------------------------------------------------------------------------------------------------- 

Dataset A-ACOC ACOC M-ACOC GA SA KM 

Breast cancer (BC) 3044.801 4196.055 3213.651 3055.420 3061.344 3055.64 

Breast tissue (BT) 7161.515 7222.337 8081.864 7130.35 7054.088 7082.394 

Ecoli (Ec) 71.134 71.550 74.136 69.801 70.249 67.953 

Haberman (Hb) 2568.964 2625.918 2601.155 2625.585 2625.107 2625.290 

Hayes (Hy) 142.832 144.854 152.362 145.778 142.947 143.940 

Hepatitis (Hp) 8717.622 8831.952 8948.949 8853.492 8853.492 8854.854 

Ionosphere (Lo) 809.870 796.336 803.280 796.044 796.044 796.055 

Iris (Ir) 97.028 97.167 99.193 97.332 97.222 97.229 

Lenses (Le) 20.787 21.798 24.727 20.884 20.784 20.876 

Mammographic (Mm) 6969.332 7779.805 7023.550 7034.043 7216.227 7033.208 

Seeds (Se) 316.622 315.188 315.596 313.216 313.216 313.216 

Sonar (So) 249.054 234.753 258.363 234.740 234.740 234.742 

Vertebral column (VC) 7958.531 7969.347 8091.551 7856.606 7846.458 7860.869 

Wine (Wi) 16309.284 16525.214 16427.749 16530.537 16530.537 16540.328 

 
Table 7: Average entropy result for common clustering algorithms 

 Algorithm 

 ------------------------------------------------------------------------------------------------------------------------------ 

Dataset A-ACOC ACOC M-ACOC GA SA KM 

Breast cancer (BC) 0.230 0.224 0.280 0.214 0.221 0.249 

Breast tissue (BT) 2.039 2.052 2.104 2.049 1.981 2.060 

Ecoli (Ec) 0.719 0.805 0.809 0.812 0.837 0.747 

Haberman (Hb) 0.833 0.833 0.833 0.832 0.832 0.830 

Hayes (Hy) 1.284 1.295 1.371 1.259 1.293 1.284 

Hepatitis (Hp) 0.733 0.733 0.733 0.734 0.734 0.732 

Ionosphere (Lo) 0.828 0.816 0.816 0.814 0.814 0.811 

Iris (Ir) 0.380 0.396 0.390 0.380 0.379 0.466 

Lenses (Le) 1.286 1.202 1.035 1.191 1.145 1.163 

Mammographic (Mm) 0.901 0.893 0.898 0.894 0.906 0.901 

Seeds (Se) 0.484 0.526 0.473 0.485 0.485 0.486 

Sonar (So) 0.987 0.990 0.996 0.990 0.990 0.988 

Vertebral column (VC) 0.873 0.917 0.839 0.831 0.864 0.882 

Wine (Wi) 0.893 0.889 0.891 0.909 0.909 0.911 
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Discussion 

This section explores the clustering results and the 

proposed memory strategy. The proposed algorithm 

outperforms all best-known clustering algorithms in the 

minimum average of intra-cluster distance but is at par 

with other clustering algorithms in the minimum value of 

entropy measurement. Entropy measurement is external 

clustering calculated on the basis of information that reflects 

real data classification. Conversely, the objective function 

of all the clustering algorithms in this study is the internal 

clustering calculated based on internal information 

according to the minimum intra-clustering variance.  

Finding the optimal centroid has been solved by the 

proposed algorithm which uses the adaptive instance route 

instead of the random strategy that has been used by other 

algorithms. This was possible because the process of 

finding the optimal results is based on the process of finding 

best centroids using only the pheromone. 

The learning process in the proposed algorithm is 

better than in other algorithms because the proposed 

algorithm was able to control the pheromone update 

better than the algorithms that belong to the ACO-based 

clustering. The reason for this is because the learning 

process was successfully applied when each clustering 

solution was rewarded according to fitness. The ACO-

based clustering algorithm fails to identify the centroids 

in an explicit way.  

The proposed algorithm identifies the centroids based 

on the centroid’s route and intensifies the search in the 

neighborhood of the centroids by using both exploration 

and exploitation strategies. Thus, further exploration of 

the neighborhood helps to identify more clustering 

results with lower intra-distances.  

Conclusion 

This study has addressed the problem of finding the 

optimal initial cluster center (centroids) to avoid being 

trapped in the local minima problem. The improvement 

is achieved using a new and improved pheromone 

memory as the centroid’s memory. The algorithm 

identifies optimal centroids by finding the optimal 

centroid’s route that minimizes the clustering problem. 

The proposed algorithm finds the optimal centroids on 

the basis of the amount of pheromone without any 

involvement of heuristic information. This approach 

served to control the decentralization aspect of the 

proposed algorithm.  

The performance of the proposed A-ACOC was 

tested using 14 standard data sets taken from the UCI 

Machine Learning Repository. The proposed algorithm 

outperformed other common clustering algorithms based 

on minimum intra-clustering distance. Future research 

will focus on evaluating the proposed algorithm on other 

datasets using other evaluation criteria. 
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