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Abstract: Maize is the main food crop that meets the nutritional needs of 

both humans and livestock in the sub-Saharan African region. Maize crop 

has in the recent past been threatened by the fall armyworm (Spodoptera 

frugiperda, J.E Smith) which has caused considerable maize yield losses in 

the region. Controlling this pest requires knowledge on the time, location 

and extent of infestation. In addition, the insect pest’s abundance and 

environmental conditions should be predicted as early as possible for 

integrated pest management to be effective. Consequently, a fall armyworm 

pheromone trap was deployed as a monitoring tool in the present study. The 

trap inspection is currently carried out manually every week. The purpose 

of this paper is to bring automation to the trap. We modify the trap and 

integrate Internet of Things technologies which include a Raspberry Pi 3 

Model B+ micro-computer, Atmel 8-bit AVR microcontroller, 3G cellular 

modem and various sensors powered with an off-grid solar photovoltaic 

system to capture real-time fall armyworm moth images, environmental 

conditions and provide real-time indications of the pest occurrences. The 

environmental conditions include Geographical Positioning System 

coordinates, temperature, humidity, wind speed and direction. The captured 

images together with environmental conditions are uploaded to the cloud 

server where the image is classified instantly using Google’s pre-trained 

InceptionV3 Machine Learning model. Intended users view captured data 

including prediction accuracy via a web application. Once this smart 

technology is adopted, the labour-intensive task of monitoring will reduce 

while stakeholders shall be provided with a near real-time insight into the 

FAW situation in the field therefore enabling pro-activeness in their 

management of such a devastating pest. 

 

Keywords: Internet of Things, Integrated Pest Management, Fall 

Armyworm, Raspberry Pi, Machine Learning 
 

Introduction  

The agriculture sector is a major contributor to job 
creation, health, family cohesion, wealth and political 
stability in most African economies (MoNDP, 2018). In 
the sub-Saharan Africa, maize is among the cash-crops 
and most grown crops in addition to being the staple 
food crop that meets the nutritional needs of both 
humans and livestock. It is grown in almost all parts of 
the country especially the rural areas (Smale et al., 
2011). Therefore, the economical importance of maize 
and its role in securing Zambia’s food and nutrition 
security including political stability cannot be over 
looked. Kwasek (2012) stated that food security is achieved 

when all people, at all times, have physical, social and 
economic access to sufficient, safe and nutritious food that 
meets their dietary needs and food preferences for an active 
and healthy life. Threats to food security include but not 
limited to climate change, droughts, emerging diseases, 
salty soils, fertilizer dependence and pests (Thompson, 
2016). According to MoA (2019a), the greatest threats to 
national food and nutrition security in Zambia include 
illegal export of maize, also known as smuggling and fall 
armyworm infestation, among others. In this paper, we 
focus on the trapping of adult fall armyworm moths.  

The main objective of this paper is to bring 
automation to the FAW trap and reduce on the labour-
intensive tasks which include field visits, manual 
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counting and recording of the moths by field inspectors. 
We modify the trap and integrate Internet of Things 
(IoT). The IoT technologies include a Raspberry Pi 3 
Model B+ micro-computer, Atmel 8-bit AVR 
microcontroller, 3G cellular modem and various sensors 
which include the pi camera, DHT11 
temperature/humidity, Davis anemometer, powered 
with an off-grid solar photovoltaic system for capturing 
FAW images and environmental conditions in the field. 
This work is a build-up on the preliminary works that 
were published by Chiwamba et al. (2019; 2018) and 
Chulu et al. (2019a; 2019b).  

The system captures an image of the funnel path 

every second alongside environmental conditions and 

saves the image on local folder. The captured images 

together with environmental conditions are uploaded to 

the cloud server where the image is classified instantly 

using Google’s pre-trained InceptionV3 machine 

learning model. The object is uploaded using the 3G 

cellular modem. Once the sending is successful, the 

image is deleted from the local drive on the Raspberry Pi 

as a way of managing the storage space dynamically and 

avoid over filling the SD card.  

Literature Review 

Fall Armyworm  

The Fall Armyworm (FAW) (Spodoptera frugiperda) 

is a lepidopteran pest and it is native to the Americas 

(Day et al., 2017). The FAW is named after the Autumn 

(Fall) due to its presence during the said season in North 

America where it lays eggs and the larvae develops 

(Nagoshi et al., 2009; Plessis et al., 2018). According 

to Plessis et al. (2018), the FAW gained prominence 

when it was found to be attacking crops during the 

mid-19th Century in the Southern United States. 

Prasanna et al. (2018) further reports that the FAW 

has been found to be a more devastating pest than 

many others pest in Africa due to its ability to feed on 

over 80 different crop species; spread quickly across 

large geographic areas; and being persistent 

throughout the year. The FAW feeds on leaves and 

stems of a variety of plants including economically 

important maize, forage grass, rice, sorghum, 

sugarcane, cotton and vegetable crops, among others 

(Banson et al., 2019).  

According to IAPRI (2019), the FAW mating occurs 

at high temperature and low humidity hence the high 

prevalence of the infestation in long periods of drought. 

The tropical habitat is ideal for the FAW to quickly 

reproduce and spread without pause. The FAW life cycle 

is a four staged one as shown in Fig. 1 and it takes about 

30 days during the warm summer months and may 

extend to 60-90 days in cooler temperatures (IAPRI, 

2019; 2018; Capinera, 2007).  

It is believed that the FAW was introduced to Africa 

through transportation and subsequent widespread 

dispersal by the wind (Cock et al., 2017). In 2017/2018 

season, the Zambia FAW infestation affected 

approximately 130,000 hectares of crops which resulted in 

over USD $3 million for control costs during the early 

stages of its introduction (Otim et al., 2018). Day et al. 

(2017) reported that the impact of FAW ranges between 

22% and 67% of yield in Ghana and Zambia, respectively. 

Similarly, Kenya and Ethiopia reported estimated yield 

losses of 32% and 47%, respectively (Kumela et al., 

2018). The above-mentioned losses will continue with 

the establishment of the FAW in Zambia. 

Addressing the food security threat posed by FAW 

requires surveillance, monitoring and scouting of the 

spread of FAW to ensure adequate crop protection. 

Knowing the time, location and extent of infestation is 

vital to pest control. The current African response to 

FAW has faced several challenges arising from weak 

monitoring, surveillance and scouting systems. Other 

challenges include delayed recognition of the pest’s 

widespread presence across the continent and lack of 

information about the dynamics of FAW migration that 

would allow effective prediction of where infestation 

might occur next. The spread of FAW has resulted in 

indiscriminate spraying of pesticides, often without 

knowing whether chemical control is necessary or 

effective within the local context (Prasanna et al., 2018).  
Meagher (2001) stated that the monitoring of FAW 

male moths should be done with a multicomponent sex 
pheromone as a lure in traps. This is a type of insect trap 
that uses pheromones to lure insects to the trap. The trap 
can be used to detect early pest infestations such as the first 
occurrence of migratory pests; define areas of pest 
infestations; track the build-up of a pest population and help 
in decision making for pest management (Ahmad and 
Kamarudin, 2011; Baker et al., 2011; Anderson et al., 2012; 
Guerrero et al., 2014). Furthermore, Cluz et al. (2012) 
reported that the use of pheromone traps data in 
insecticide application was found to be more effective 
with a larval mortality rate above 90% in maize fields. 
Some notable pheromone traps are the sticky and Funnel 
(green lid/yellow funnel/transparent bucket) as shown in 
Fig. 2 and 3 respectively. Figure 4 shows the Funnel 
(green lid/yellow funnel/transparent bucket) components. 

Historically, the sticky trap has been found to be 
more effective in capturing FAW male moths when 
positioned approximately one meter above the ground in 
and around the preferred hosts such a maize (Mitchell, 
1979). The Funnel (green lid/yellow funnel/transparent 
bucket) pheromone trap has been found to outperform other 
pheromone traps including the sticky trap when trapping 
FAW moth in maize fields. Given its efficacy, it is no 
surprise that the Government of the Republic Zambia with 
the help of the FAO has secured over 2200 pheromone traps 
to be used in the monitoring and surveillance of the FAW 
moths (MoA, 2019b).  
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Fig. 1: FAW life cycle (Cereals, 2019) 

 

 

 
Fig. 2: Pheromone trap that employs a sticky surface (Indiamart, 2019) 
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Fig. 3: Funnel/bucket pheromone trap (LSU, 2019) 
 

 
 

Fig. 4: Funnel/bucket pheromone trap components (FAO, 2018) 
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that helps to communicate and engage inside themselves 

and exterior environment (Chihana et al., 2018). The IoT 

concept was first developed in 1999 by a Radio Frequency 

Identification (RFID) development community (Shi et al., 

2019; Bilal, 2017) and it has recently become more relevant 

to the practical world largely because of the growth of 

mobile devices, embedded and ubiquitous communication, 

cloud computing and data analytics. 

Application of IoT 

IoT has many applications including smart home, 
smart city, smart grids, smart retail, smart supply chain, 
industrial internet, connected car, connected health 
(digital health/telehealth/telemedicine) among others 
(Gour, 2018; Chihana et al., 2018). According to 
Muangprathub et al. (2019), the applications of IoT in 
the agriculture sector can be used to improve crop yields 
or quality and reduce costs. The seamless integration of 
transducers and the IoT in agriculture can raise the sector 
to levels which were previously unimaginable. IoT has 
the potential of streamlining procedures, reduce wastage 
and enhance productivity in the agriculture sector. 
According to Ayaz et al. (2019), IoT can help to improve 
the solutions of many traditional farming issues, like 
drought response, yield optimization, land suitability, 
irrigation and pest control by following the practices of 
smart agriculture. Further benefits can come from the 
quantity of fertilizer that has been utilized to the number 
of journeys the farm vehicles have made or the spray of 
pesticides (Ayaz et al., 2019). The major applications, 
services and transducers being used for smart agriculture 
applications are shown in Fig. 5. 

IoT Architecture 

IoT architecture consists of different layers of 

technologies supporting the scalability, modularity and 

configuration of IoT deployments in different scenarios. 

The IoT architecture has been presented using different 

layer numbers and names by many researchers 

(Yelizavet and Florentino, 2019; Chihana et al., 2018; 

Bilal, 2017; Sethi and Sarangi, 2017; Vermesan et al., 

2013). In this paper, we discuss the ITU Y.2060 IoT 

architecture (Yelizavet and Florentino, 2019; 

Vermesan et al., 2013) shown in Fig. 6.  

IoT Application Layer 

The IoT application layer is the top most layer which 

covers “smart” environments/spaces in domains such as 

agriculture, homes, smart cities, grids, building, 

transport, retail, supply chain, healthcare environment 

and energy. It interacts directly with the end user by 

providing services and determining a set of protocols for 

message passing at the application level (Yassein et al., 

2016). According to Haikun et al. (2018), connection to IoT 

management system platform by users is achieved using 

browser or client software through Ethernet/3G network.  

IoT Service and Application Support Layer 

In literature, some scholars refer to this layer as the 

Management Service Layer (Gour, 2018; Chihana et al., 

2018). It is the layer that is responsible for processing 

the information through analytics, information 

extraction, security controls, process modeling and 

management of devices and gadgets. Business and 

process rule engines are among the most important 

features of the layer. IoT brings connection and 

interaction of objects and systems together providing 

information in the form of events or contextual data such 

as temperature of goods, current location and traffic data. 

Some of these events require filtering or routing to post-

processing systems such as capturing of periodic sensory 

data, while others require response to the immediate 

situations such as reacting to emergencies on patient’s 

health conditions. The rule engines support the 

formulation of decision logics and trigger interactive and 

automated processes to enable a more responsive IOT 

system (Yelizavet and Florentino, 2019). 

IoT network Layer 

As the devices and gadgets produce enormous 

volumes of data, a robust and high performance wired or 

wireless network infrastructure is required to transmit 

this data. Due to the diversity of the IoT, it is often tied 

with heterogeneous protocols to support Machine-to-

Machine (M2M) networks and their applications. These 

networks can be in the form of a private, public or hybrid 

models and are built to support the communication 

requirements for latency, bandwidth or security 

(Haikun et al., 2018). According to Chihana et al. 

(2018), the network layer is responsible for ensuring that 

the transmission of transducer data to the next layer is 

achieved in a scalable and flexible manner. 

IoT Device Layer 

This is the layer that is made up of smart objects 

integrated with transducers that enable the 

interconnection of the physical and digital worlds 

allowing real-time information to be collected and 

processed (Bilal, 2017). According to Chihana et al. 

(2018), the layer consists of sensor networks, embedded 

systems, RFID tags and readers or other smooth sensors. 

The sensors have identification and capacity to take 

measurements such as temperature, air quality, wind 

speed, wind direction, humidity and pressure among 

others. The sensor may also have a degree of memory, 

enabling them to record a certain number of 

measurements. Most of these sensors require 

connectivity to the sensor gateways which can be 

through a Local Area Network (LAN) such as Ethernet 

and Wi-Fi connections or Personal Area Network (PAN) 

such as ZigBee, Bluetooth and Ultra Wideband (UWB) 
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(Bilal, 2017). Some sensors do not require connectivity to 

sensor aggregators therefore their connectivity to 

backend servers/applications can be provided using 

Wide Area Network (WAN) such as GSM, GPRS and 

LTE. For those sensors that use low power and low 

data rate connectivity, they typically form networks 

commonly known as Wireless Sensor Networks 

(WSNs) (Shi et al., 2019). 

 

 

 
Fig. 5: Major applications, services and transducers for smart agriculture (Ayaz et al., 2019) 
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Fig. 6:  IoT Architecture. (Vermesan et al., 2013) 
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learn and act like humans do and improve their learning 

over time in autonomous fashion by feeding them data 

and information in the form of observations and real-

world interactions. ML includes adaptive mechanisms 

that empower computers to learn by example, learn by 

analogy and learn from experience (Negnevitsky, 2005).  
ML algorithms include Convolutional Neural 

Network (CNN), Recurrent Neural Networks (RNNs), 
Long Short-Term Memory Networks (LSTMs), Stacked 
Auto-Encoders, Deep Boltzmann Machine (DBM) and 
Deep Belief Networks (DBN). According to Ding and 
Taylor (2016), the use of CNN for identifying and 
counting pest in field traps has the potential to effectively 
remove the human from the loop and achieve a complete 
automated, real-time pest monitoring system. Similarly, 
Martineau et al. (2017) reported that many researchers 
had acknowledged that CNN had outstanding 
performance in terms of image classification accuracy. 

ML model can be built using transfer learning. 
Transfer learning allows building of accurate machine 
learning models in a timesaving way by starting from 
patterns that have been learned when solving a different 
problem (Marcelino, 2018). Instead of starting from 
scratch, it leverages on previous learning’s and this is 
usually expressed through the use of pre-trained models. 
A pre-trained model is a model that was trained on a 
large benchmark dataset to solve a problem similar to 
the one that is being solved. In the work of Marcelino 

(2018), it was reported that transfer learning had 
become the core of several state-of-the-art image 
classification solution. The pre-trained models include 
but not limited to Mask R-CNN, YOLOv2, 
MobileNet, VGG-Face Model, 3D Face 
Reconstruction from a Single Image, Google 
Inception, ImageNet, VGG-16, Xception, VGG19, 
ResNet50, InceptionV3 and InceptionResNetV2. 

Related Works  

In literature, some works use electronic devices to feed 

data into some control station. For example, the work of 

Marković et al. (2017) used a Raspberry Pi 3 micro-

computer with four Cortex-A53 processing cores, 1.2 GHz 

and two level of cache memory to monitor the Western 

Corn Rootworm (WCR) trapped by the sticky WCR 

pheromone trap. The pi camera was attached to the 

Raspberry Pi 3 and used to capture images of the sticky 

surface of pheromone trap. The counting of insects was 

done using the python module installed on the Raspberry Pi 

3 by defining the number of pixels with dark or near dark 

colour and removing the impurities. While the system 

had a 0.3% accuracy, the system behaviour was not 

tested on unclear images and other objects that could be 

caught in the trap. 
Eliopoulos et al. (2018) introduced a device for 

automatic detecting and reporting of crawling insects in 

urban environments which complied with the context of 

smart homes and smart cities. The device architecture 

embraced the IoT concepts by modifying the sticky 

pheromone trap and integrating it with a microcontroller, 

image sensor, infrared light sensor to detect targeted 
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insect and capture they picture which were delivered to 

an authorized person/stakeholder using Wi-Fi. The 

results showed that the e-trap had potential application in 

tourism, hospitality, health, military and residential 

places. Furthermore, the trap achieved a detection 

accuracy ranging from 96 to 99%. 

In the work of Potamitis et al. (2014), an Arduino 

Mega2560 microcontroller platform (Atmel 

ATmega2560 microcontroller, 16 MHz clock speed, 256 

KB Flash, 8 KB SRAM, 4 KB EEPROM) powered by a 

4.8 Volt battery NiMH power supply was used to 

perform the counting of insects entering the trap and 

recognize the species. In order to sense the insects, an 

optoelectronic (TCRT5000) sensor and phototransistors 

were placed at the entrance of the McPhail trap to detect 

light interruption due to the partial occlusion from 

insect’s wings as they flew into the trap. The output of 

the optoelectronic sensor was analog and, it was sent to 

the Arduino Mega2560 microcontroller to perform the 

counting of insects passing the beam and recognize the 

class the insects belonged to. The events was stored in 

the device’s memory and transmitted once per day as 

text message via the GSM expansion board SM5100B to 

a predefined recipient. With the real time count and 

classification of insects present per trap, stakeholder’s 

efficiency was enhanced by knowing the time and 

location of insect infestations as early as possible.  
Similarly, Facello and Cavallo, 2013), used an 

Arduino Uno microcontroller platform (Atmel 

ATmega328P microcontroller, 16 MHz clock speed, 2KB 

Flash, 2 KB SRAM, 1 KB EEPROM) powered by a 43W 

solar panel, 18Ah Pb battery to monitor pests in vineyards 

and orchards. The trap was equipped with a 2592×1944 

pixels (5Mpixels) wide-angle lens 6mm focal length IP 

camera, temperature/humidity sensor and LED illuminator. 

The sensor, led and camera were connected to the Arduino 

Uno board running a custom firmware developed for the 

application. The led and IP camera were powered 

separately using a 12V and up to 0.3A power supply 

because the 5V and 0.04A from Arduino was not sufficient. 

The Arduino Uno communicated and was controlled 

through a standard USB connection on the embedded mini-

ITX pc-board (Intel DN2700MT). The main software 

running on the mini-ITX pc-board governed all the 

necessary operations needed to acquire, store and transmit 

the images and environmental information. The images 

were stored on the a local disk and they were automatically 

uploaded and synchronized with a free file hosting service 

on the web using a standard Wi-Fi connection. Remote 

users were given access to the images by simply connecting 

to the webpage.  

Zhong et al. (2018) designed and implemented a vision-

based counting and classification system for flying insects 

using a YOLO pre-trained model and Support Vector 

Machines learning algorithm. The system was based on a 

sticky pheromone trap that was installed in the field to trap 

flying insects and camera attached to a raspberry pi to 

capture real-time images. When compared with the 

conventional methods, the test results showed an average 

counting accuracy of 92.50% and average classifying 

accuracy of 90.18%. These results were breakthrough 

towards smart and intelligent agriculture applications 

which could forecast the occurrence probability of 

pests to enable agricultural workers provide suitable 

prevention and control measures. 

We see more work in Muminov et al. (2017) when a 

solar powered audible intelligent bird repeller system is 

developed based on Arduino UNO microcontroller to 

deter domestic birds which are a major threat in the field 

of agriculture causing damage to economic field crops, 

storage houses and also dirtying human life area. The 

other system components included a solar panel (7W, 

12V), an intelligent PWM solar charge controller, 12V 

battery, MP3 Player, amplifier (Stereo 20W Class D 

Audio Amplifier - MAX9744), two 20W speakers, three 

sonar sensor and PIR sensor. The SD Card was loaded 

with domestic bird’s predators’ calls and special sounds 

(such as gunshot sounds) stored using the MP3 file 

format. The signal level of predators’ calls and special 

sounds were played out via the speakers and increased 

using the amplifier while the solar panel was used to 

charge the battery and power the amplifier, speaker 

and Arduino Uno. The other components were 

powered by the Arduino Uno. The system algorithm 

was designed in such a way that it was able to play 

special sounds which had not played for a long time. 

This technique was applied due to an acknowledgment 

that birds can learn sounds overtime and that would 

render the repeller ineffective.  

Other works proposed a solar powered rice black bug 

light trap that would help reduce rice black bug 

infestation based on an Arduino Uno microcontroller 

platform and C++ programming language (Calderon, 

2017). The notable components included a 12V 20W 

standard polycrystalline solar cells panel, 30×40×15 

(width × length × thickness) clear acrylic square box,150 

LED size 7×7 mm, 5A battery charger, 12V 14Ah 

Sealed Lead Acid battery, light sensor switch circuit, 

DS1307 Real-Time Clock (RTC) and high voltage 

circuit of mosquito trap all enclosed in steel box to 

prevent any damages. The proposed design was assessed 

in terms of efficiency, functionality, maintainability, 

reliability, usability and cost-effectiveness of the 

materials using questionnaires and a 3.7 overall 

weighted mean was observed where experts’ response 

was highly acceptable. 
A custom-made microprocessor hardware embedded 

with a SIM card and the Global System for Mobile 
Communications (GSM) antenna to transmit 
accumulated detection results of all insects entering the 
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trap using Short Message Service (SMS) to the base 
station is seen in the work of Potamitis et al. (2015). The 
insects were lured and as they flew into the trap, an 
optoelectronic sensor composed of an array of 
photoreceptors that acted as a receiver and an array of 
infrared LEDs on the opposite side of the circular entrance 
guarded the entrance by forming a light gate. The insect 
wings interrupted the flow of infrared light from emitter to 
receiver. The optoelectronic sensors captured an analog 
signal of the wingbeat recording which was sent to the 
microprocessor embedded in the trap. The job of the 
microprocessor was to analyze the frequency content of the 
acquired recording and calculate the distance metric from 
the spectrum of the unknown incoming recording to the 
spectrum of pre-stored prototype spectra of the pest results 
in order to identify the insect. Other efforts are seen the in 
the work of Holguin et al. (2010), when two electronic trap 
prototypes based on a microcontroller from Microchip 
Technology Inc. Model PIC18F8722A to automate the 
labour-intensive operations of monitoring insect 
populations and reduced the cost of integrated pest 
management programmes are compared. The trap in 
question was the bucket pheromone. The first trap used 
Light Dependent Resistor (LDR) sensors and the second 
one used Infrared (IR) sensors. The LDR-based traps were 

tested in a laboratory environment while the IR-based traps 
were tested in apple fields.  

Materials and Methods 

The modification of the FAW pheromone trap to 

bring about automation started with the PV systems 

design followed by trap fabrication and ended with 

integration. The high-level systems design of the 

automated FAW pheromone trap is shown in Fig. 7 and the 

Modified FAW Trap Block Diagram is shown in Fig. 8.  

Step I- Solar PV Systems Design 

The researchers growing energy needs can be 

satisfied by the enormous energy from the sun which 

provides over 150,000 terawatts of power to the Earth 

(Crabtree and Lewis, 2007; Camacho et al., 2010). 

Crabtree and Lewis (2007) reported that the Earth 

surface only receives about half of that energy while the 

other half is reflected to the outer space. The main 

components of a solar PV system include solar panel, 

charge controller and battery. Figure 9 and this section 

highlights the procedures used to determine the ratings 

and quantities for each of these components. 

 

 
 

Fig. 7: High level design of the automated FAW pheromone trap 
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Fig. 8: Modified FAW trap block diagram 
 

 
 

Fig. 9: Solar PV Design Model 
 

Determine Battery Operated Hours 

Climatemps (2019) reported that Lusaka, the 

capital city of Zambia at latitude 15°25'S and 

longitude 28°27'E receives a minimum of 5 h, an 

average of 7:35 h and a maximum of 09:42 h sunshine 

per day. This is in agreement with the results obtained 

by (Mwanza et al., 2017). We determined the battery 

operated hours using Equation 1: 
 
Tb Td Ts   (1) 
 
Where: 

Tb = The battery operated hours (hrs) 
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Td = The total hours in day (hrs) 

Ts = The minimum sunshine hours per day (hrs) 
 

Determine Total Load  

Many researchers modify the already existing traps 

by integrating single-board computers, microcontrollers 

and various sensors (Holguin et al., 2010; Facello and 

Cavallo, 2013). At this stage, we identified all the 

electronic components to be used to realize an automated 

energy independent pheromone trap and used Equation 2 

to estimate the load for the Off-grid solar PV system: 
 

1

k k k

k

p i v t


    (2) 

 
Where: 

P = The total load (Wh) 

ik = The current for a single component (A) 

vk = The voltage for a single component (V)  

tk = the running hours for single component (hrs) 
 

The subsections that follow gives detailed 

descriptions and specifications of the components used. 

Single-Board Computer and Microcontroller 

A Single-Board Computer (SBC) is a complete 

computer built on a single circuit board, with 

microprocessor(s), memory, Input/Output (I/O) and other 

features required of a functional computer. Some notable 

SBC’s available on the market include Raspberry Pi, The 

Beagles PandaBoard, MK802, MK808, Cubieboard, 

MarsBoard, Hackberry Udoo and MinnowBoard among 

others (Maksimović et al., 2016). In the work of 

Maksimović et al. (2016), the Udoo is found to be the best 

in performance but expensive while Raspberry Pi 

remained an inexpensive computer and very successful in 

diverse range of research applications in Internet of 

Things (IoT). In addition, the Raspberry Pi offers support 

for a large number of input/output peripherals, network 

communication and can interface with many different 

devices and used in a wide range of applications. Table 1 

gives the Raspberry Pi 3 Model B+ specifications. 

A microcontroller is a small computer on a single 

integrated circuit and Arduino Uno is among the mostly 

used (Maksimović et al., 2016; Ferdoush and Li, 2014). 

Arduino is an open-source single-board microcontroller 

development platform with flexible, easy-to-use hardware, 

software components and supports two working modes: 

stand-alone or slave connected to a computer via USB cable 

(Cvijikj and Michahelles, 2011). Table 2 gives the Arduino 

Uno Rev 3 specifications.  

DHT11 Temperature/Humidity Sensor 

The DHT11 is digital environment sensor used to 

measure the moisture and temperature of the surrounding 

air. It is low cost temperature and humidity sensor. 

Characteristics of this sensor are given in Table 3. The 

sampling rate for the DHT11 is 1Hz or one reading every 

second, the operating voltage for sensor ranges from 3 to 

5 volts, while the max current used when measuring is 

2.5 mA. In the work of Ferdoush and Li (2014), the 

DHT11 is used to measure the humidity and 

temperature in grape fields. Table 3 gives the DHT11 

sensor specifications. 

IR Break Beam 

The use of light sensors in detecting and counting of 

insects has been seen in the of works Potamitis et al. 

(2015; 2014) and Holguin et al. (2010). One of the 

notable light sensor is the Infrared (IR) break-beam. 

According to Adfruit (2019), the Infrared (IR) break-

beam is a motion detector with an emitter side that sends 

out a beam of human invisible IR light and a receiver 

across the way which is sensitive to that same light. 

Adfruit (2019) goes on to state that the break beams are 

faster and allow better control of where you want to detect 

the motion as compared to Passive IR sensing. The IR 

break beam is offered as 3 mm or 5 mm. The 3 mm 

sensing distance is about 25 cm while the 5 mm is about 

40 cm. Both can be powered from 3.3 V or 5 V. The 5 V 

power gives a better range and it is the recommend one. 

Table 4 gives the 3 mm sensor specifications. 

Pi Camera Module 

The raspberry pi camera module v2 is a high definition 

vision sensor that comes with a Sony IMX219 sensor 

(Raspberry, 2019). The IMX219 is a diagonal 4.60 mm 

(Type 1/4.0) Complementary Metal-Oxide-Semiconductor 

(CMOS) active pixel type image sensor with a square 

pixel array and 8.08M effective pixels. It operates with 

three power supplies, analogue 2.8 V, digital 1.2 V and IF 

1.8 V and has low power consumption drawing between 

200-250 mA. It achieves high sensitivity, low dark current 

and no smear through the adoption of R, G and B primary 

colour pigment mosaic filters. This chip features an 

electronic shutter with variable charge-storage time. The 

camera module can be used to take high-definition video 

at 1080p30, 720p60 and VGA90 video modes, as well as 

stills photographs. According to Raspberry (2019), it is 

attached to Raspberry Pi through the Camera Serial 

Interface (CSI) port and it works with Raspberry Pi 1, 2, 

3 and 4 models. It can be accessed through the 

Multimedia Abstraction Layer (MMAL) and 

Video4Linux (V4L) Application Program Interfaces 

(APIs) in addition to numerous third-party libraries built 

for it such as Picamera Python. In the works of 

Marković et al. (2017), the pi camera is attached to the 

Raspberry Pi 3 and used to capture images of the sticky 

surface of WCR pheromone. Table 5 gives the pi camera 

module V2 specifications. 
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Table 1: Raspberry Pi 3 Model B+ specifications 

Chip Broadcom BCM2837B0, Cortex-A53 

 (ARMv8) 64-bit SoC @ 1.4GH  

RAM 1GB LPDDR2 SDRAM 

Network 2.4GHz and 5GHz IEEE 802.11 b/g/n/ 

Interface ac wireless LAN, Bluetooth 4.2, BLE 

Card Gigabit Ethernet over USB 2.0  

 (maximum throughput 300 Mbps) 

Ports UART Extended 40-pin GPIO header 

 Full-size HDMI4 USB 2.0 ports, 4-pole 

 stereo output and composite video, CSI camera 

 Micro SD port 

Power Micro USB 5V/2.5A DC power input  

 

Table 2: Arduino Uno Rev 3 specification 

Microcontroller ATMega328P 

Operating Voltage 5V 

Input Voltage (recommended) 7-12V 

Input Voltage (limit) 6-20V 

Digital I/O Pins 14 (of which  

 provide PWM output) 

PWM Digital I/O Pins 6 

Analog Input Pins 6 

DC Current per I/O Pin 20 mA 

DC Current for 3.3V Pin 50 mA 

Flash Memory 32 KB (ATmega328P) 

 of which 0.5 KB used 

 by bootloader 

SRAM 2 KB (ATmega328P) 

EEPROM 1 KB (ATmega328P) 

Clock Speed 16 MHz 

LED_BUILTIN 13 

Length 68.6 mm 

Width 53.4 mm 

Weight 25 g 

 
Table 3: DHT11 sensor specifications 

 DHT11 

Temperature Range/Accuracy 0 to 50/±2C 

Humidity Range/Accuracy 20-80%/±5% 

Sampling Rate 1Hz (one reading every second) 

Size 15.5×12×5.5 mm 

Operating Voltage 3 to 5V 

Max Current During 2.5 mA 

Measuring  

 

Table 4: IR Break beam 3mm sensor specifications 

Sensing Distance Approx. 25cm/10" 

Power Voltage  3.3 to 5.5VDC 

Emitter Current Draw 10 mA@3.3V, 30 mA@5V 

Output Current 100 mA sink 

Capability of receiver:  10° 

Transmitter/Receiver 

LED Angle: 10° 

Cable Length 234 mm/9.2 

Dimensions:  20×1×8 mm/0.8"×0.4×0.3" 

Weight (of each half) 3g 

Response Time:  <2 ms 

Table 5: Pi camera Module V2 specifications 

Size 25×23×9 mm 

Weight  3g 
Power Voltage  3.3 to 5.5VDC 
Still Resolution 8 Megapixels 
Video mode  1080p30, 720p60 and 640×480p60/90 
Sensor Sony IMX219 
Sensor resolution 3280×2464 pixels 
Sensor image area 3.68×2.76 mm (4.6 mm diagonal) 
Pixel size 1.12×1.12 µm 
Optical size 1/4" 

 
Table 6: Quectel EC25 Mini PCle 4G/LTE module 

specifications 

Shield Raspberry Pi 3G-4G/LTE Base Shield V2 

LTE FDD B1/B3/B5/B7/B8./B20 
LTE TDD B38/B40/B41 
WCDMA B38/B40/B41 
GSM B3/B8 
Data LTE FDD: Max 150Mbps (DL)/Max 
Speeds 50 Mbps (UL); LTE TDD: Max 130 Mbps 
 (DL)/Max 35 Mbps (UL); DC-HSDPA: 
 Max 42 Mbps (DL); HSUPA: Max 
 5.76 Mbps (UL); WCDMA: Max 384Kbps 
  (DL)/Max 384Kbps (UL); EDGE: Max 
 296 Kbps (DL)/Max 236.8 Kbps (UL); GPRS: 
 Max 107 Kbps (DL)/Max 856 Kbps (UL) 
Interface USB 2.0 with High Speed up to 480 Mbps; 
 1.8V/3.0V (U)SIM Card; UART×1 
Protocol TCP/UDP/PPP/FTP/HTTP/NTP/PING 
 QMI/CMUX/HTTPS/SMTP/MMS/ 
 FTPS/SMTPS/SSL/FILE 
Supported Windows XP - 10, Windows CE 5.0-7.0* 
OS ; Linux 2.6-4.1; Android 4.x-7.x 
Current 3.6 mA @Sleep, Typically35mA @Idle; 
Consum- 750 mA @WCDMA data transfer, Typ. 
ption (GNSS OFF); 950 mA @LTE data transfer, 
 Typ. (GNSS OFF); 75Ma@Searching, GNSS, 
 Typ. 55 mA @Tracking, GNSS, Typ 
Output Class 3 (23 dBm ± 2 dB) for LTE; Class 3 E2 
Power (24 dBm +1/-3 dB) for UMTS; Class (27 dBm 
 ±3dB) for EDGE; 850/900 MHz; Class E2  
 (26 dBm ±3 dB) for EDGE 1800/1900 MHz;  
 Class 4 (33 dBm ±2 dB) for GSM 850/900 MHz  
 Class 1 (30 dBm ±2 dB) for GSM;1800/1900 MHz 

 

Quectel EC25 Mini PCIe 4G/LTE Module 

This is an interface between the raspberry pi and 

internet. According to Sixfab (2019a), the Quectel EC25 

Mini PCIe is a series of LTE category 4 module adopting 

standard PCI Express® MiniCard form factor (Mini 

PCIe). Sixfab (2019a) goes on to state that it is 

optimized specially for Machine-to-Machine (M2M) and 

IoT applications and delivers 150Mbps downlink and 

50Mbps uplink data rates. The EC25 is integrated 

with Global Navigation Satellite System (GNSS) to 

provide quicker, accurate and dependable positioning. 

It is inserted in the Raspberry Pi 3G-4G/LTE base 

shield V2 which has both the UART and USB 

communication for the raspberry (Sixfab, 2019b). For 

detailed specifications Table 6. 

mailto:10%20mA@3.3V
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Table 7: Davis Anemometer specifications 

Range: Wind Speed 1 to 200 mph, 1 to 173 knots, 

 0.5 to 89 m/s, 1 to 322 km/h 

Range: Wind Direction 0° to 360° or 16 compass points 

Range: Wind Run 0 to 1999.9 miles (1999.9 km) 

Accuracy: Wind Speed ±2 mph (2 kts, 3 km/h, 1 m/s) 

 or ±5%, whichever is greater 

Accuracy: Wind Direction  ±7° 

Accuracy: Wind Run  ±5% 

Resolution: Wind Speed 1 mph (1 knot, 0.1 m/s, 1 km/hr) 

Resolution: Wind Direction  1° (0° to 355°), 22.5° between 

 compass points 

Resolution: Wind Run 0.1 m (0.1 km) 

Measurement Timing: Wind 2.25 2nds 

Speed Sample Period 

 

Davis Anemometer 

The anemometer and wind vane are the other devices 

used for sensing environmental conditions. The 

anemometer measures the wind speed while the wind 

vane measures wind direction. Davis (2019) has 

combined the two functions and called the devices Davis 

anemometer. Cactus (2014) has shown that the Davis 

anemometer can be interfaced with Arduino Uno to 

create a weather station, this is in agreement with the 

results obtained by Kong (2017). Table 7 lists some of 

the Davis anemometer specifications. 

Determine Storage (battery) Capacity 

As PV cells generate electricity during sunshine, a 

rechargeable battery system is required to store it for use 

in the absence of sunshine. Currently, the battery types 

include Lithium-ion, Nickel, Sodium sulfur, Flow redox 

and Lead acid among other. According to Daniel et al. 

(2014) lead acid batteries have been found to be reliable 

and cost-effective while Maya et al. (2018) reports that 

the lithium-ion is a high energy efficiency battery rated 

at 90% despite the high cost and safety concerns 

compared to the lead acid at 85%. To determine the 

battery size, we used Equation 3: 

 

Safe

E
Ah F

Vdc
   (3) 

 

Where: 

Ah = The battery Amp hour (Ah) 

E = The total load (Wh) 

Vdc = The system Voltage preferred (V) 

Fsafe = The Safe Factor 

 

Determine the Solar PV Panel 

Conversion of the solar energy to electricity can 

either be direct or indirect. According to Taşçıoğlu et al. 

(2016), the indirect method is through collecting and 

Concentrating the Solar Power (CSP) to produce 

steam which is then used to drive a turbine to provide 

the electricity while Bayrak and Cebec (2011) states 

that the direct method uses the Photovoltaic (PV) 

cells. The most used PV cells are the polycrystalline 

and monocrystalline. Abdelkader et al. (2010) 

reported that the monocrystalline PV cells were more 

efficient compared to the polycrystalline and this is in 

agreement with results obtained by several authors 

(Taşçıoğlu et al., 2016; Husain et al., 2018) a. We used 

Equation 4 to determine the solar PV panel wattage size 

(AlShemmary et al., 2019): 

 

Safe

F
PVW F

T
   (4) 

 

Where: 

PVW = The PV power required (W) 

E = The total load (Wh) 

T = The minimum sunshine hours per day (hrs) 

Fsafe = The Safe Factor 

 

Determine the Charge Controller Capacity 

Storing power from solar PV cells into a battery 

requires a charge controller. According to Maya et al. 

(2018), charge controller controls the rate of flow of the 

charge carriers and protect the battery from overcharging 

in addition to preventing battery over discharge and 

electrical overload. We determined the charge controller 

capacity by applying Equation 5: 

 

Safe

PVW
CCAO F

Vdc
   (5) 

 

Where: 

CCAO = The charge controller amp out (A) 

PVW = Solar PV panel power (W) 

Vdc = The system voltage in direct current(V)  

Fsafe = The Safe Factor 

 

Costing the PV System 

We prepared the System Requirements Specification 

(SRS) based on the battery (Voltage/Amp hour), solar 

PV panel (Voltage/Wattage) and charge controller 

(Voltage/Amperage) determined in Equation 3 to 5 We 

then used the SRS to obtained quotations from various 

solar system suppliers. 

Step II- Trap Housing Fabrication 

We used 40×50 mm and 40×50 mm square tubes to 

fabricate the solar housing, 3mm metal sheet to house 

the battery, 1.2×22 mm outside diameter GI pipe to hold 

the Anemometer, 2 mm sheet metal to house the Charge 

Controller, Raspberry PI 3 Model B+, Arduino Uno Rev 

3 and support the FAW Funnel (green lid/yellow 
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funnel/transparent bucket) pheromone trap. We then 

attached everything to the 3×90 mm inside diameter 

black pole. 

Step III- Integration 

The 12V 100Watt solar monocrystalline PV panel is 

used to generate the electricity and it is connected to a 

12V 15A charge controller. In order to avoid 

overcharging, over discharge and electrical overload of 

the 55 Ah battery, we connect it on the battery side of the 

charge controller. We then power the raspberry pi using 

one of the USB port on the charge controller. The pi 

camera is connected to the CSI camera connector and 

mounted on the top cover (lip) next to the lure holder of 

the FAW pheromone trap. The Raspberry Pi 4G/LTE 

shield with Quectel EC25 Mini PCle 4G/LTE module is 

connected to one of the USB ports on raspberry pi using 

the 90-degree right angle micro USB cable in order to 

achieve maximum data rates as opposed to the UART 

which is limited to a data rate of about 900 Kbit/s 

downlink and uplink. The Arduino Uno is connected to 

the raspberry pi USB port in a slave mode. The Davis 

anemometer is connected to pin A4 for wind direction, 

digital pin 2 for wind speed, 5V power and ground on 

the Arduino Uno while the IR break beam motion sensor 

is connected to pin 6 on Arduino Uno. The DHT11 

Temperature/Humidity sensor is connected to the 

Arduino Uno 5v pin, GND pin and pin 4. The 3W led is 

connected to 13 and 5 Vpin while the photocell is 

connected to 5v pin, GND pin and A0. 

The raspberry pi is loaded with Raspbian GNU/Linux 

9.9 stretch, python 2.7.13, SQLite database and Arduino 

IDE 2:1.0.5 dfsg2-4.1. We use python to develop two 

custom-made programs. The first program captures an 

image of the funnel path every second alongside 

environmental conditions and saves the image on the 

local folder of 16 Gb SD card while the temperature, 

humidity, GPS coordinates, image identifier, wind speed 

and direction are saved in the SQLite database. The 

second program sends a picture together with 

environment conditions to the cloud server together as a 

JSON object by establish an internet connection using 

Raspberry Pi 4G/LTE shield with Quectel EC25 Mini 

PCle 4G/LTE module and Application Programming 

Interface (API).  

Results 

Step I- PV Systems Design 

The automated FAW Pheromone Trap was designed 

to run for 24 h per day taking into account the five 

minimum sunshine hours for Lusaka. When we applied 

Equation 1, we got a total of 19 battery operated hours. 

The main components of the automated FAW 

pheromone trap that required to be powered by Off-grid 

solar PV system are listed in Table 8. When Equation 2 

was applied, we got a total of 412.72 Wh as the system 

load. Table 8 shows the total system load (power) for 

each individual system component.  

We then applied Equation 3 to determine the battery 

size in terms of Amp hours. We used a 1.25 safe factor 

and 12 Vdc due to the max power requirement for 

Arduino Uno to obtained a 42.99 Ah battery size which 

was then rounded off to 55 Ah industry offering. We 

then chose to use a 12V 55 Ah system voltage lead acid 

battery because it was readily available on the Zambian 

market as opposed to a Lithium ion battery of the same 

size. The detailed specifications for the battery are 

shown in Table 9. We obtained the solar PV panel 

wattage by applying Equation 4. We applied a safe factor 

of 1.25 and the result was 103.18 W. We then rounded 

off the wattage and settled for an 100watt 

monocrystalline panel due to its efficiency and 

availability on the Zambian market. The detailed 

specifications of the solar panel are shown in Table 10. 

Thereafter, we used the solar panel wattage (100W) as 

the PVW, battery voltage (12V) as the Vdc and a safe 

factor of 1.25 to determine the charge controller and the 

result was an 8.33A which we rounded off to 15A charge 

controller due availability. The detailed specifications for 

the charge controller are shown in Table 11. The total 

cost of the Off-grid solar PV system came to USS$ 

190.00 as shown in Table 12. 

Step II- Trap Housing Fabrication 

Our fabricated trap housing is shown in Fig. 10 and 

11 shows the inside of the case housing the Charge 

Controller, Raspberry PI 3 Model B+ and Arduino Uno 

Rev 3. The housing case is also used as the holder for the 

FAW Funnel (green lid/yellow funnel/transparent 

bucket) pheromone trap. 

 
Table 8: Main component of the automated FAW pheromone 

trap 

Item Power Per  Hours Power 

description item (W) per day per day 

Raspberry PI 12.500000 19 237.50 

Arduino Uno 3.000000 19 57.00 

IR Break Beam 0.150000 19 2.85 

DHT11 0.125000 19 2.38 

3G Modem 3.750000 19 71.25 

PI Camera 0.150000 19 2.85 

LED 3.000000 12 36.00 

LDR 0.002500 19 0.05 

Anemometer 0.150000 19 2.85 

Total Load   412.72 

 
Table 9: Solar Rechargeable Battery specifications 

Type AGM sealed lead acid maintenance free  

Voltage DC 12V  

Amp Hour 55 
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Table 10: Solar PV panel specification 

Type Monocrystalline 

Voltage 12 

Wattage 100 

Size Rated Max Voltage 18.5V 

Rated Max Current 5.40A 

Open circuit voltage Voc 21.5V 

Short circuit current Isc 6.20A 

Dimension 1/4" 

 
Table 11: PWM 15A 12/24V Digital Charge Controller 

specifications 

Charging Mode PWM (Pulse Width Modulation) 

Voltage 12/24V 

Current 15A 

Display Type Digital 

Low Voltage Disconnect 10.8/21.6V 

Low Voltage Reconnect 12.6/25.2V 

Built-In Protections Over charging, over discharging, 

 overload and Reverse connection 

Other features Automatic identification of system 

 voltage level 

 
Table 12: Off-grid solar PV system 

Item description Quantity Total price US$ 

100 W Solar PV panel 1 60 

15A charger controller 1 15 

55Ah battery 1 100 

Accessories 1 15 

Total  190 

 

 
 
Fig. 10: Fabricated trap housing 

 
 
Fig. 11: Housing case for the Charge Controller, Raspberry PI 

3 Model B+ and Arduino Uno Rev 3 
 

 
 
Fig. 12: Moth in flight in the funnel path 
 

Step III- Integration 

Figure12 shows an image of a moth in flight in the 
funnel path while Fig.13 shows the local folder with 
captured images on the Raspberry Pi. Figure 14 shows 
records corresponding to the captured images alongside 
temperature, humidity, GPS coordinates, wind speed and 
direction saved in SQLite database table on the 
Raspberry Pi. The image identifiers is the primary key 
and corresponds to the filenames shown in Fig. 13. The 
image and environmental conditions are combined in a 
JSON object and uploaded to the cloud server using an 
API. Figure 15 shows the daily trap capture 
summaries on the Web Application Dashboard while 
Fig. 15 shows the details of a single record on a 
webpage uploaded to the cloud server. The ML 
attribute (prediction accuracy) is based on the Googles 
pre-trained InceptionV3 Machine Learning model 
adopted by Chiwamba et al. (2019) and Chulu et al. 
(2019b). The model achieved a 90% plus prediction 
accuracy for all images that contained a FAW moth as 
shown in Fig. 16 while a percentage less than 60% 
was observed for images that did not contain a FAW 
moth as shown in Fig. 17. 
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Fig. 13: Local folder with captured images on the Raspberry Pi 

 

 
 

Fig. 14:  Capture records in SQLite database table on the Raspberry Pi 
 

 
 

Fig. 15: Daily trap Capture summaries on the Web Application Dashboard 
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Fig. 16: Detailed single trap capture on the web application 

 

 
 

Fig. 17: Prediction Accuracy an image without FAW moth 
 

Discussion 

We modified the FAW trap and integrated it with 

various sensors which included the camera, temperature, 

humidity, motion, photocell powered by an off-grid solar 

PV system for capturing FAW images and 

environmental conditions in the field. The greatest 

challenges included but not limited to, off-grid solar PV 

system configuration, FAW motion sensing and 

Raspberry PI camera capture timing. We had to upsize or 

down size the off-grid solar PV system components in 

order to align them to what was readily available on the 

Zambian market. On the FAW motion sensing, the IR 

Break Beam could not detect the FAW moth motion 

accurately leaving as with the Raspberry PI camera as 

the only way to remotely monitor the presence of the 

FAW moth on the trap. After setting the PI camera to 

capture FAW moth images every second, we observed 

that the PI camera captures ranged between 1s to 5s 

when we cross-checked the image id (record) in the 

database and image names in the folder. We then 

adjusted the timing to 5s and we instantly observed a 5s 

consistency in the capture interval. Furthermore, we 

observed that API took more than 5s to return prediction 

accuracy hence adjusting the image data upload to 10s. 

Our modified trap can be improved in a number of 

areas including but not limited to reduced solar panel 

and battery size; reduced trap size and weight; integration 

of optoelectronic sensors similar to the ones used in the 

work of Potamitis et al. (2015); reduce on the data transfer 

rate and avoid stressing the cloud server by performing 

primary image classification on the Raspberry Pi. 

Conclusion 

Our automated FAW trap embraces the IoT concepts 

by integrating a Raspberry Pi 3 Model B+ micro-

computer, Atmel 8-bit AVR microcontroller, 3G cellular 

modem and various sensors powered with an off-grid 

solar photovoltaic system to capture real time FAW 
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moth images and environmental conditions including 

GPS coordinates, temperature, humidity, wind speed and 

direction in the field. The captured images together with 

environmental conditions are uploaded to the cloud 

server where the images are classified instantly using 

machine learning to determine whether the image 

contains a FAW moth or any other insect. The users are 

provided with an easy to use web application platform 

that shows near real-time indication of the FAW pest 

occurrence. Furthermore, users can view the population 

dynamics of the FAW together with environmental 

conditions and use the information to design suitable pest 

control strategies. The designed system has the potential to 

increase accuracy of monitoring, shorten data collection 

intervals, reduce field visits and minimize human 

intervention for a more efficient and effortless early 

warning and monitoring system that provides a near real-

time insight into the FAW situation in the field. 
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