

© 2019 KaiLun Eng, Abdullah Muhammed, Sazlinah Hasan and Mohamad Afendee Mohamed. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

A Great Deluge Algorithm with Bi-Decay Rate for Efficient

Task Scheduling in Grid Computing

1
KaiLun Eng,

1
Abdullah Muhammed,

1
Sazlinah Hasan and

2
Mohamad Afendee Mohamed

1Department of Communication Technology and Networking,
Faculty of Computer Science and Information Technology, Universiti Putra Malaysia, Serdang, Malaysia
2School of Computer Science, Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Besut, Malaysia

Article history

Received: 06-07-2017
Revised: 17-08-2017
Accepted: 01-03-2019

Corresponding Author:
Abdullah Muhammed
Department of Communication
Technology and Networking,
Faculty of Computer Science
and Information Technology,
Universiti Putra Malaysia,
Serdang, Malaysia
Email: abdullah@upm.edu.my

Abstract: To realise the utmost idea of global collaborative resource
sharing with Grid computing, the fundamental scheduling process is
playing a critical role. However, scheduling in Grid computing environment
is a well-known NP-complete problem. In this study, we propose a new
extension of Great Deluge algorithm with an effective diversification
strategy for the Grid scheduling problem. The proposed approach, namely
BiGD, exploits two different decay rates (a linear and a non-linear decay
rate of water level) to provide a better diversification strategy for exploring
the solution space. The performance of the proposed algorithm has been
evaluated and compared with the standard Great Deluge and Extended
Great Deluge algorithm, through the GridSim simulation toolkit. Four
different scheduling scenarios or cases which comprise different
combination of task heterogeneity and resource heterogeneity are
considered for the performance evaluation. Moreover, we have adapted all
the algorithms to have same total number of evaluation for solution
searching in order to ensure a fair comparison is established in the
performance evaluation. The experimental simulation results show that the
proposed algorithm is superior and able to produce good quality solutions
compared to the other algorithms in all the problem instances.

Keywords: Heuristic, Great Deluge, Extended Great Deluge,

Diversification, Grid Scheduling Problem

Introduction

As new generation of information technologies and

applications demand more and more computing power,

Grid computing has become one of the most popular

computing infrastructures to satisfy this ever-increasing

demand of computing power. Grid computing is a form

of computing infrastructure that allow users from

anywhere to work together for obtaining the capability of

executing computational intensive and data-intensive

applications with the ideas of resource sharing and

virtual organisation. The key concept of Grid computing

is the ability to negotiate resource-sharing arrangements

among the participating parties and then to use the

resulting resource pool in a flexible, secure and

coordinated fashion for some purpose (Lindner, 2002).
To fully realise the utmost concept of global

collaborative resource sharing of Grid computing, the
underlying resource management system which consists
of techniques and mechanisms for resource discovery,
negotiation, allocation, scheduling and monitoring is

significant and critical. One of the most impactful
functions in Grid resource management system is the
scheduling process, which involves the assignment of
application tasks to resources.

Scheduling in Grid computing which consists of

various phases and steps is viewed as a whole family of

problems (Xhafa and Abraham, 2008). The detailed

description of the phases and steps of scheduling process

that commonly defined by Grid researchers can be found

in (Dong and Akl, 2006; Schopf, 2004; Yanmin and Ni,

2003). Among all the phases, the most important phase

which has significant impact on the overall efficiency of

Grid scheduling process is mapping. Basically, mapping

can be considered as a function that produces a schedule

from a given set of tasks and a set of appropriate

resources. There are two types of mapping modes

(Maheswaran et al., 1999), which are on-line mode

(dynamic) and batch-mode (static). In the dynamic mode

of mapping, a task is mapped onto a resource as soon as

it arrives at the scheduler. In this mode of mapping,

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

314

upcoming tasks or future tasks are not considered in the

mapping decision. Whereas in the static mode of

mapping, tasks are grouped in batches first and each task

is considered at each mapping decision. In this study, the

proposed scheduling algorithm is designed for global

and static scheduling in Grid computing environment.

Although scheduling is a problem that has previously

been studied in traditional distributed computing

environments, scheduling in Grid computing

environment is significantly challenging and demands a

re-examination due to the unique characteristics of Grid

which induce additional challenges in each phase and

step of scheduling. Moreover, the task of mapping in

Grid Computing environment is very large-scale due to

the enormous amount of tasks and resources that need to

be considered in each mapping decision. To solve such

large-scale NP-Complete problem, exact optimisation

method or exhaustive search is not viable. Therefore,

many studies have been focused on developing a

powerful heuristic algorithm that can solve this problem

effectively and efficiently. However, developing a search

algorithm to find an optimal or near-optimal solution

effectively and efficiently for Grid scheduling problem is

still a challenge. One of main challenges is to effectively

prevent the search process from being trapped in local

optima of search space. Therefore, diversification

strategy is playing a significant role in the design of an

efficient and effective heuristic search algorithm. In this

study, the Great Deluge algorithm is extended with two

different decay rates to provide a better diversification

strategy for escaping from local optima and allowing the

search process to examine wider regions of solution space.

This paper is organised as follows. Section 2 gives

the concept of Great Deluge algorithm metaheuristic and

provides a brief overview of the existing research on

Great Deluge and scheduling problem in Grid computing

environment. Section 3 presents the problem formulation

and describes the proposed algorithm. Section 4 contains

the detailed information of experiments setup for

performance evaluation and results. Finally, Section 5

offers conclusion and future work.

Literature Review

The Great Deluge (GD) is a global search

metaheuristic, which first proposed by (Dueck, 1993) as

an alternative to Simulated Annealing (SA)

metaheuristic. In contrast to SA, GD uses a deterministic

acceptance function rather than a probability measure to

accept worse neighboring solutions. GD employs a

boundary level (water level) as the diversification

strategy to guide the search. The water level is constantly

decrease in a linear fashion throughout the search. In

brief, Great Deluge metaheuristic always accepts a

solution that is not worse than the current best

solution and allows worse neighboring solution to be

accepted only if its value of quality evaluation is same

as or lower than the water level. This diversification

strategy of GD algorithm is far less dependent upon

parameters as compared to Simulated Annealing

algorithm, because it needs just two parameters: The

“rain speed” and the initial water level. The “rain

speed” parameter is used to control the amount of

computational time of the algorithm while the initial

water level parameter is an estimate of the quality of

initial solution. This is an advantage over SA since the

effectiveness of a metaheuristic technique is often

dependent upon parameter tuning.

To improve the standard GD, (McMullan, 2007) has

proposed an extended version of the GD for the course

timetabling problem. The standard GD has been

extended by adding re-heat mechanism to widen the

boundary condition when a lack of improvement has

been observed for a specified amount of time. The

motivation for this extension is to improve the

convergence speed (obtain solutions in a relatively short

amount of time) while avoiding the problem of getting

trapped in local optima.

Implementation of this extended version of the GD

algorithm for dynamic job scheduling problem in Grid

environment has been presented by (McMullan and

McCollum, 2007). Simple neighborhood structures such

as adding, removing and swapping the tasks and

resources, were employed in the algorithm to avoid the

scheduler repeatedly getting stuck in local optima.

According to the authors, the proposed extended GD

algorithm can provide the means of achieving the

balance between solution quality and speed in searching

a solution by producing good quality schedules quickly.

Experiments were carried out and the results showed

that, given the limited time, the Extended Great Deluge

generally performs better over Simulated Annealing in

terms of computation time.

Landa-Silva and Obit (2008) made another extension
to the original Great Deluge algorithm by proposing a
non-linear decay rate for the boundary value (water
level) in order to find a better quality neighborhood
solution. The proposed method produced superior results
in four out of the eleven course timetabling problem
instances. Moreover, the results shown the proposed
method is effective on medium problem instances whilst
is not effective on the small instances.

A hyper-heuristic based scheduling algorithm which
adopts Great Deluge as heuristic acceptance and Tabu
Search as heuristic selection method is proposed by
(Aron et al., 2013). The proposed algorithm aims to
minimise the makespan and cost (in Grid dollars) for
scheduling of jobs in Grid environment. The
performance of the proposed algorithm is evaluated
using GridSim toolkit and (Braun et al., 2001)
simulation model with different test cases which consist
of different heterogeneity of jobs and resources. From

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

315

the results obtained, the authors conclude that the
proposed algorithm is able to outperform Simulated
Annealing (SA), Genetic Algorithm (GA) and GA-TS
algorithm in all cases with respect to makespan and cost.

Noticeably, there has been a growing interest in
attempting to improve the efficiency of search process
by enhancing the diversification strategy in
metaheuristic algorithms. The aim of this study is to
develop a global search algorithm that offers a better
strategy for diversification in such a manner that a good
quality of solution can be obtained while avoiding from
being trapped in the local optimum. Therefore, a novel
heuristic based algorithm, namely BiGD, which
extends from Great Deluge metaheuristic, is proposed
with the hope to improve the ability of escaping from
local optima by exploiting two different decay rates as
the diversification strategy.

Problem Formulation

In this study, the Grid system considered is consists

of a set of heterogeneous resources, which located at

different sites and they are coordinated by a Grid

scheduler. Given n independent tasks T1, T2, T3,…,Tn,

which are submitted by users to Grid scheduler in a

particular interval of time for scheduling and m

heterogeneous resources R1, R2, R3,…,Rm, which located

by GIS, the problem is to generate an optimal mapping or

schedule that can optimise the objective function. In this

study, this problem is formulated based on the Expected

Time to Compute (ETC) Matrix Model (Ali et al., 2000)

and the following constraints are considered:

1. The computing load or length (in millions of

instructions, MI) of each task is known

2. A task can only be executed in one Grid resource in

each interval

3. Task migration and pre-emptive process are not

allowed

4. Tasks which submitted to Grid scheduler are

scheduled in batch mode

5. A Grid resource may consist of multiple machines

that may have one or more than one processor

6. The processing power of each resource (in millions

of instructions per second, MIPS) is known

7. A Grid resource cannot remain idle when it has

tasks in queue and free processors

8. A processor can only process one task at a time

Solution Representation

In this study, direct-based representation is used to
encode the schedules or solutions. The size of the vector
is equal to the number of tasks and the index number of
the element in the vector denotes the ID of task. The
element in the vector indicates the resource that assigned
for the corresponding task. All the elements are integers,
which in the range of [1, m], where m is the total number

of resources. These values in the vector can be repetitive,
which means that different tasks can be scheduled to a
same resource. For example, given six tasks and three
resources (with ID: 1, 2, 3), let assume that the first task
and the last task are assigned to Resource 3, the second
task to Resource 1, the third and fifth task to Resource 2
and the fourth task to Resource 3. With the direct
representation, let schedule be the vector denoting a
solution, the solution can be represented as schedule =
[3, 1, 2, 3, 2, 3].

Solution Evaluation

In order to describe the quality of each solution and

guide the search process over the solution space, an

evaluation function is used to associates a real value to

every solution. As makespan is one of the most popular

metric used for representing the quality of a schedule for

Grid scheduling problem, the evaluation function in this

study is defined as a function that gives a makespan

value from any given candidate schedule. Under the ETC

matrix model, the evaluation function can be expressed as:

[]{ }max |makespan completionTime r r Resources= ∈ (1)

where, completionTime[r] is the time when resource r

has finished executing all the tasks that assigned to it.

Meanwhile, the completion time of resource r can be

expressed as:

[] [] [][]
[]{ }|

i
t Tasks S t r

completionTime r readyTime r ETC t r
∈ =

= + ∑ (2)

where, readyTime[r] is the time when resource r has

finished executing all the previously assigned tasks.

Objective Function

The objective function is the function that needs to be

satisfied in order to achieve our goal. In this study, we

have considered the most well-studied optimisation

criteria, i.e., the minimisation of the makespan (Rajni

and Chana, 2013; Xhafa and Abraham, 2010) and it is

formulated by defining the objective function as the

evaluation function.

Accordingly, let f(S) denotes the evaluation

function or objective function and Schedules denotes

the set of all possible schedules, the Grid Scheduling

problem is formulated as:

{ }min () max [] | Re
i

S Schedule

f S completionTime r r sources
∈

= ∈ (3)

Proposed Algorithm

It has been observed that in the standard Great

Deluge algorithm (Dueck, 1993; McMullan and

McCollum, 2007), the decay rate at which the boundary

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

316

value B decreases, is determined by a linear function (B

= B − ∆B, where ∆B is a constant). On the other hand,

(Landa-Silva and Obit, 2008) proposed a non-linear

decay rate for the water level in order to find a better

quality of solution. In this study, we propose a new

extension of Great Deluge algorithm with bi-decay rate,

which uses a linear and a non-linear decay rate of water

level to efficiently guide the search in finding a better

quality of solution meanwhile preventing it from getting

stuck in the local optima.

In the first half of iterations, our proposed algorithm

will exploit the strength of non-linear decay rate of water

level (Landa-Silva and Obit, 2008) (shown in Equation

4) to guide the diversification of search. Furthermore, we

allow the water level to decrease immediately to the

same level of current best makespan when a significant

improvement is found. Alternatively, we decelerate the
decay rate of water level when the water level has dropped

too much below the current best makespan. Two

parameters, Fbottom and Ftop are used to control this

floating strategy (in line 12 of Algorithm 1). This floating
water level strategy, together with the exponential

function of decay rate are aim to further improve the

diversification of search by allowing wider search of

solution in hoping to get a new better quality of solution.

[]()()min,max

exp
rnd

B B
δ

β
−

= × + (4)

In the second half of iterations, we however, use a

linear (steeper) decay rate to help algorithm to speed up
the search of optimal solution. The initial decay rate of
boundary in the second phase is reset using reheat
mechanism (McMullan, 2007) at the quarter of the initial
solution penalty cost. The boundary value of this phase
is constantly decreased in a linear fashion based on the
remaining iteration. To avoid wasting much computation
time in generating neighboring solutions, two simple
neighborhood structures which based on swap move and
insertion move (Xhafa, 2007; Xhafa and Abraham,
2010) have been implemented in this study. Pseudo-code
of the BiGD algorithm is given in Algorithm 1.

Algorithm 1: BiGD algorithm for minimization
Input: x, rainSpeed, totalIter, min, max, δ, β

Output: x

1: waterLevel ← f (x)

2: decayRate ← f (x) × rainSpeed ÷ totalIter

3: halfIter ← (totalIter ÷ 2)

4: reheated ← false

5: for iter = 1 to totalIter do

6: x' ← generateNeighbor(x)

7: if (f (x') ≤ f (x) or f (x') ≤ waterLevel) then

8: x ← x'

9: endif

10: if iter ≤ halfIter then

11: diff ← waterLevel − f (x)

12. if diff < Fbottom or diff >Ftop then

13: waterLevel ← f(x)

14: else

15: waterLevel ← waterLevel ×

 (exp
−δ(rnd[min, max])

)+β

16: endif

17: else

18: if reheated then

19: waterLevel ← waterLevel − decayRate

20: else

21: waterLevel ← f(x)

22: reheated ← true

23: endif

24: endif

25: endfor

Illustration of Algorithm

A small-scale task scheduling problem, which

involves 5 tasks and 3 resources, is used to illustrate

mathematical calculation related to the algorithm

process. Let us consider the task lengths of 5 tasks are 3,

1, 2, 6 and 5 MI, respectively, whereas the processing

power of 3 resources are 1, 2 and 3 MIPS, respectively.

Assume that all the resources are available and ready

time for each resource is 0:

Initialisation

Given that initial solution, x = [1, 1, 1, 1, 1],

rainSpeed = 0.3, totalIter = 6, min = 1000, max = 1500,

δ = 0.00005, β = 0, Ftop = 10 and Fbottom = −5:

f(x) = max(17, 0, 0) = 17

waterLevel = 17

decayRate = 17 × 0.3 ÷ 6 = 0.85

halfIter = 3

reheated = false

First Iteration

Assume that a neighboring solution of x, which denoted

as x’, is generated by inserting 4th task into Resource 2 and

a random number, 1022 is generated from:

rnd[1000, 1500]

x’ = [1, 1, 1, 2, 1]

f(x’) = max(11, 3, 0) = 11

x = x’

diff = 17 − 11 = 6

waterLevel = 17 × (exp
−0.00005(1022)

) + 0 = 16.153122

Second Iteration

Assume that a neighboring solution of x, which

denoted as x’, is generated by inserting 3rd task into

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

317

Resource 2 and a random number, 1373 is generated

from rnd[1000, 1500]:

x’ = [1, 1, 2, 2, 1]

f(x’) = max(9, 4, 0) = 9

x = x’

diff =16.153122 − 9 = 7.153122

waterLevel = 16.153122 × (exp
−0.00005(1373)

) + 0 = 15.081417

Third Iteration

Assume that a neighboring solution of x, which

denoted as x’, is generated by inserting 1st task into

Resource 3 and a random number, 1279 is generated

from rnd[1000, 1500]:

x’ = [3, 1, 2, 2, 1]

f(x’) = max(6, 4, 1) = 6

x = x’

diff = 15.081417 − 6 = 9.081417

waterLevel = 15.081417 × (exp
−0.00005(1279)

) + 0 = 14.147152

Fourth Iteration

Assume that a neighboring solution of x, which

denoted as x’, is generated by swapping 1st task which

assigned to Resource 3 with 4th task which assigned to

Resource 2 and a random number, 1154 is generated

from rnd[1000, 1500]:

x’ = [2, 1, 2, 3, 1]

f(x’) = max(6, 2.5, 2) = 6

x = x’

waterLevel = 6

reheated = true

Fifth Iteration

 Assume that a neighboring solution of x, which
denoted as x’, is generated by swapping 5th task which
assigned to Resource 1 with 3rd task which assigned to
Resource 2 and a random number, 1304 is generated
from rnd[1000, 1500]:

x’ = [2, 1, 1, 3, 2]

f(x’) = max(3, 4, 2) = 4

x = x’

waterLevel = 6 – 0.85 = 5.15

Sixth Iteration

Assume that a neighboring solution of x, which
denoted as x’, is generated by inserting 3rd task into
Resource 2 and a random number, 1379 is generated
from rnd[1000, 1500]:

x’ = [2, 1, 2, 3, 2]

f(x’) = max(1, 4.5, 2) = 4.5

x = x’

waterLevel = 5.15 – 0.85 = 4.3

Performance Evaluation

Simulation experiments have been carried out by

using the GridSim simulator (Buyya and Murshed, 2002)

to test and evaluate the proposed algorithm. GridSim is a

very popular simulator which has been widely used by

Grid researchers to evaluate the performance of their

proposed algorithms (Anderson et al., 2012; Aron et al.,

2013; Naik and Satyanarayana, 2013; Rajni and Chana,

2013; Maipan-Uku et al., 2016). The simulation was

coded using JAVA programming language and

implemented on Eclipse IDE. All the experiments were

performed in the environment of Window 10 Pro with

64-bit and run on a PC with Intel Core i5-3470 CPU 3.20

GHz and 8 GB RAM. The proposed algorithm, BiGD

was evaluated and compared with the standard GD and

EGD in order to investigate the performance of search by

introducing the bi-decay rate diversification strategy into

GD algorithm. Four different scheduling scenarios or

cases which comprise different combination of task

heterogeneity and resource heterogeneity are considered

for the performance evaluation. Every algorithm was

repeated run for 30 times to obtain the average and best

results of makespan. We have adapted all the algorithms

to have same total number of evaluation. The settings of

the parameters of GridSim environment for all the

experiments are shown in Table 1 while the parameter

settings of the algorithms are shown in Table 2.

Performance Metrics

In this study, two performance metrics, namely

makespan and computation time, are selected to evaluate

the performance of our proposed algorithm. Makespan is

one of the most popular performance measures for

evaluating scheduling algorithm in heterogeneous

computing environment (Xhafa and Abraham, 2010).

Makespan can be an indicator of the productivity of a

Grid scheduler. A small value of makespan indicates the

scheduling algorithm which adopted by the Grid

scheduler is effective as it is able to produce a good

quality of solution. In GridSim simulation, the makespan

of a schedule can be defined as the time when the last

task is finished and can be expressed as:

max{ [] | }makespan finishTime i i Tasks= ∈ (5)

Second performance metric is computation time.

Computation time is the time taken for the scheduling

algorithm in Grid Scheduler to produce a solution. It

can be used to determine the efficiency of a

scheduling algorithm in finding a good quality of

schedule. Small values of computation time indicate

that the scheduling algorithm is efficient as it does not

required to spend huge amount of search time in

obtaining a good quality of solution.

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

318

Table 1: Simulation parameters of GridSim

Parameters Values

Number of tasks 512

Input file size of task 100+(10%-40%)B

Output file size of task 100+(10%-40%)B

Task length for LoLo 10-1000 MI

Task length for LoHi 1000-100000 MI

Task length for HiLo 10-30000 MI

Task length for HiHi 1000-3000000 MI

Number of resources 16

Allocation policy Space-Shared

of resources

Number of machines 1-16

per resource

Number of PE per machine 1-4

PE rating for low 1-10 MIPS

resource heterogeneity

PE rating for high 1-1000 MIPS

resource heterogeneity

Baudrate of resources 10,000,000,000.0

and scheduler

Propagation delay 0.0005 sec

Table 2: Parameters of algorithms

Algorithms Parameters Values

GD rainSpeed 0.5

 totalIter 50000

EGD rainSpeed1 0.5

 rainSpeed2 0.75

 wait 15

 totalIter 50000

BiGD rainSpeed 0.3

 min 1000

 max 1500

 δ 0.000000005

 β 0

 Ftop 100

 Fbottom -50

 totalIter 50000

Results and Discussion

In this section, the results of best makespan and best

average makespan among all the algorithms are

presented. In addition, the values of computation time

and number of evaluation for each algorithm are also

reported. It should be mentioned again that in the

experiments for evaluating the performance of BiGD

algorithm, all the algorithms were configured to have

same total number of evaluation in order to have a fair

comparison among them.

The resulting makespan values of the schedule

produced by the algorithms for low task and low

resource heterogeneity (LoLo) scheduling case are

illustrated in Table 3. In terms of the best makespan

obtained, both EGD and BiGD algorithms are able to

obtain the best schedule with makespan value of 219.45

sec, whereas in terms of average makespan of 30 runs of

experiments, BiGD algorithm is performing better than

GD and EGD algorithms, with the lowest makespan

value of 222.55 sec been generated.

The comparison results for low task and high

resource heterogeneity (LoHi) scheduling case are

presented in Table 4. In this case, BiGD is again able to

produce the most optimal schedule with makespan value

of 258.32 sec. In terms of average makespan, BiGD is

also able to achieve the lowest among all the algorithms

with makespan value of 273.33 sec.

Table 5 presents the results of all the algorithms

for high task and low resource heterogeneity (HiLo)

scheduling case. From the makespan results, although

it is showed that the best schedule obtained by BiGD

(5936.34 sec) is slightly worse than EGD (5936.34

sec), but BiGD is able to outperform EGD and also

GD in terms of average makespan. In average, BiGD

achieved the lowest makespan (6162.03 sec) among

all the algorithms.

As shown in Table 6, it is observed that BiGD is

still able to provide excellent performance in high task

and high resource heterogeneity (HiHi) scheduling

case. BiGD obtained the most optimal schedule with

makespan value of 7357.29 sec. In addition, BiGD

obtained the best average makespan result with

7665.77 sec.

Overall, from the results of all the scheduling cases, it

reveals that the linear decay rate diversification strategy

of the GD algorithm is not effective in helping the search

to jump out from local optima as the GD algorithm

performed worst among all the algorithms. On the other

hand, the reheat mechanism of EGD algorithm appeared

to be a good diversification strategy as the EGD

algorithm is able to obtain the best results of best

makespan in two out of four scheduling cases (LoLo and

HiLo), whereas the proposed BiGD algorithm obtained

the best results in most of the scheduling cases except

HiLo. These findings indicate that the bi-decay rate

diversification strategy is able to help the GD algorithm

to jump out from local optima effectively and at the

same time widen the search in order to obtain new

solution with better makespan. The average makespan

results showed that the BiGD is able to consistently

perform better than the GD and EGD algorithms in

guiding the search to obtain a better solution while

escaping from local optima.

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

319

Table 3: Comparison results for the LoLo scheduling case

 Makespan (s) Computation time (s)
 -- -- Number of
Algorithm Best Average Min Average evaluation

GD 225.39 228.01 13.62 15.71 50000
EGD 219.45 222.98 14.55 15.68 50000
BiGD 219.45 222.55 14.39 15.16 50000

Table 4: Comparison results for the LoHi scheduling case

 Makespan (s) Computation time (s)
 -- --- Number of
Algorithm Best Average Min Average evaluation

GD 289.46 292.12 13.09 15.00 50000
EGD 261.52 275.56 13.04 13.79 50000
BiGD 258.32 273.33 13.93 13.93 50000

Table 5: Comparison results for the HiLo scheduling case

 Makespan (s) Computation n time (s)
 --- -- Number of
Algorithm Best Average Min Average evaluation

GD 6319.29 6386.94 13.36 16.36 50000
EGD 5902.54 6166.56 13.07 14.51 50000
BiGD 5936.34 6162.03 13.16 13.26 50000

Table 6: Comparison results for the HiHi scheduling case.

 Makespan (s) Computation n time (s)
 -- --- Number of
Algorithm Best Average Min Average evaluation

GD 8214.33 8287.38 12.19 15.08 50000
EGD 7364.45 7867.04 13.85 14.50 50000
BiGD 7357.29 7665.77 13.08 13.33 50000

Conclusion

In this study, a new extension of Great Deluge

algorithm with two different decay rates (a linear and a

non-linear decay rate of water level) is proposed to

provide a better diversification strategy for exploring the

solution space of Grid scheduling problem. Simulation

experiments have been carried out to test and evaluate

the performance of the proposed algorithm. Computation

time and number of evaluation are also reported to show

that a fair comparison of performance evaluation is

established in this study. Four different scheduling

scenarios or cases which comprise different combination

of task heterogeneity and resource heterogeneity are

considered for the performance evaluation. From the

experimental results, it is concluded that the novel bi-

decay rate diversification strategy is effective in

preventing premature convergence to local optima and

hence beneficial to improve the performance of search.

Funding Information

This research was supported by the Malaysian

Ministry of Higher Education [Grant No:

FRGS/1/2014/ICT03/UPM/03/1].

Author’s Contributions

All authors are equally contributed in this work and

this paper.

KaiLun Eng: Designed the study, developed the

methodology, collected the data, performed the analysis,

and wrote the manuscript.

Abdullah Muhammed: Invented the idea of GD bi-

decay rate for his FRGS research proposal and been

implemented in this work, helped shape the research,

assisted in data analysis and interpretation, and provided

critical feedback and comments on writing.
Sazlinah Hasan: Helped shape the research, assisted

in research design and methodology, and provided
critical feedback and comments on writing.

Mohamad Afendee Mohamed: Helped shape the
research, assisted in data collection and interpretation,
and provided critical feedback and comments on writing.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

KaiLun Eng et al. / Journal of Computer Science 2019, 15 (3): 313.320

DOI: 10.3844/jcssp.2019.313.320

320

References

Ali, S., H.J. Siegel, M. Maheswaran, D. Hensgen and

S. Ali, 2000. Task execution time modeling for

heterogeneous computing systems. Proceeding of

the 9th Heterogeneous Computing Workshop,

May 1-1, IEEE Xplore Press, Cancun, Mexico,

pp: 185-199. DOI: 10.1109/HCW.2000.843743
Anderson, D., C. Zhao, C. Hauser, V.

Venkatasubramanian and D. Bakken et al., 2012.
Intelligent design" Real-time simulation for smart
grid control and communications design. IEEE
Power Energy Magazine, 10: 49-57.

 DOI: 10.1109/MPE.2011.943205
Aron, R., I. Chana and A. Abraham, 2013. Hyper-

heuristic based resource scheduling in grid
environment. Proceedings of the International
Conference on Systems, Man and Cybernetics,
Oct. 13-16, IEEE Xplore Press, Manchester, UK,
pp: 1075-1080. DOI: 10.1109/SMC.2013.187

Braun, T.D., H.J. Siegel, N. Beck, L.L. Bölöni and M.
Maheswaran et al., 2001. A comparison of eleven
static heuristics for mapping a class of independent
tasks onto heterogeneous distributed computing
systems. J. Parallel Distributed Comput., 61: 810-837.
DOI: 10.1006/jpdc.2000.1714

Buyya, R. and M. Murshed, 2002. GridSim: A toolkit for

the modeling and simulation of distributed resource

management and scheduling for grid computing.

Concurrency Comput. Pract. Exp., 14: 1175-1220.

DOI: 10.1002/cpe.710

Dong, F. and S.G. Akl, 2006. Scheduling algorithms for

grid computing: State of the art and open problems.
Dueck, G., 1993. New optimisation heuristics: The

great deluge algorithm and the record-to-record
travel. J. Comput. Phys., 104: 86-92.

 DOI: 10.1006/jcph.1993.1010
Landa-Silva, D. and J.H. Obit, 2008. Great deluge with

non-linear decay rate for solving course timetabling
problems. Proceeding of the 4th International IEEE
Conference Intelligent Systems, Sept. 6-8, IEEE
Xplore Press, Varna, Bulgaria.

 DOI: 10.1109/IS.2008.4670447

Lindner, B., L. Schimansky-Geier and A. Longtin, 2002.

Maximizing spike train coherence or incoherence in

the leaky integrate-and-fire model. Phys. Rev. E.,

DOI: 10.1103/PhysRevE.66.031916
Maheswaran, M., S. Ali, H.J. Siegal, D. Hensgen and

R.F. Freund, 1999. Dynamic matching and
scheduling of a class of independent tasks onto
heterogeneous computing systems. Proceedings of
the 8th Heterogeneous Computing Workshop, Apr.
12-12, IEEE Xplore Press, San Juan, pp: 30-44.
DOI: 10.1109/HCW.1999.765094

Maipan-Uku, J.Y., A. Muhammed, A. Abdullah and M.
Hussin, 2016. Max-Average: An extended max-min
scheduling algorithm for grid computing
environtment. J. Telecommunication, Electronic
Comput. Eng., 8: 43-47.

McMullan, P. and B. McCollum, 2007. Dynamic job
scheduling on the grid environment using the great
deluge algorithm. Proceedings of the International
Conference on Parallel Computing Technologies,
(PCT’07), Springer International Publishing AG, pp:
283-292. DOI: 10.1007/978-3-540-73940-1_29

McMullan, P., 2007. An extended implementation of the

great deluge algorithm for course timetabling.

Proceeding of the International Conference on

Computational Science (CCS‘2007), Springer Berlin

Heidelberg, pp: 538-545.

 DOI: 10.1007/978-3-540-72584-8_71

Naik, K.J. and N. Satyanarayana, 2013. A novel fault-

tolerant task scheduling algorithm for computational

grids. Proceedings of the 15th International Conference

on Advanced Computing Technologies, Sep. 21-22,

IEEE Xplore Press, Rajampet, India, pp: 1-6.

 DOI: 10.1109/ICACT.2013.6710529

Rajni and I. Chana, 2013. Bacterial foraging based

hyper-heuristic for resource scheduling in grid

computing. Future Generation Comput. Syst., 29:

751-762. DOI: 10.1016/j.future.2012.09.005

Schopf, J.M., 2004. Ten actions when grid scheduling.

Proceedings of the Grid Resource Management,

(GRM’04), Springer US, pp: 15-23.

 DOI: 10.1007/978-1-4615-0509-9_2

Xhafa, F. and A. Abraham, 2008. Meta-heuristics for

grid scheduling problems. Proceedings of the

Metaheuristics for Scheduling in Distributed

Computing Environments, (DCE’08), Springer

International Publishing AG, pp: 1-37.

 DOI: 10.1007/978-3-540-69277-5_1

Xhafa, F. and A. Abraham, 2010. Computational models

and heuristic methods for grid scheduling problems.

Future Generation Comput. Syst., 26: 608-621.

DOI: 10.1016/j.future.2009.11.005

Xhafa, F., 2007. A Hybrid Evolutionary Heuristic for

Job Scheduling on Computational Grids. In: Hybrid

Evolutionary Algorithms. Studies in Computational

Intelligence, Abraham, A., C. Grosan and H.

Ishibuchi (Eds.), Springer Berlin Heidelberg,

 ISBN-10: 978-3-540-73296-9, pp: 269-311.

Yanmin, Z. and L.M. Ni, 2003. A survey on grid

scheduling systems. Department of Computer Science,

Hong Kong University of Science and Technology.

