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Abstract: In learning problems, there are situations where training data is not 

fully available at the learning time. They are incrementally generated by time, 

defining a type of domain called online that has among its characteristics the 

possibility of data failure or even missing data. In Bayesian networks, learning 

is divided into two categories: structure (related to the graph of conditional 

relations) and parameters (related to the strength of conditional relations). In 

this work we present an online parameter learning method that quickly adapts 

to changes in the environment aiming not only the reproduction of the 

probability distribution (generative learning) but also the increase of accuracy 

in the network (discriminatory learning). Our approach is compared with the 

Adaptative Voting EM method considering two simulation conditions: when 

distributions are unknown and when distributions undergo abrupt changes. The 

proposed method achieves good results in both situations by adjusting to 

environment changes more quickly and by simplifying the parameterization of 

the traditional approach. 

 

Keywords: Parameter Learning, Bayesian Networks, Online Learning, 

Discriminative Learning, Generative Learning 
 

Introduction 

Bayesian Networks (BN) have become extremely 

popular in the last decades because they have been able 

to map the between variables Friedman et al. (1997). In 

addition, they are an appropriate language with efficient 

resources for representing the joint probability distribution 

over a set of random variables. The technique is even more 

attractive by being able to model real world problems 

and by the interpretation of the network by non-

specialists Zhou (2015). 

The learning process in Bayesian Networks is divided 
between structure learning and parameters learning 
(Kurihara et al. (2001); Chen et al. (2001); Zhang and 
Liu (2008). While the first aims to build the network 
graph, the second focuses on updating the conditional 

probabilities among the variables. 
Parameters learning algorithms are divided into two 

main categories: generative and discriminative Su et al. 
(2008). The first one creates conditional probabilities 
considering the data distribution and the second does it 
with the objective of increasing the accuracy on the 
network. Among the most used generative algorithms is 
the maximization of likelihood (MLE) obtained directly 

from the dataset and the (EM) Expectation-Maximization 
Dempster et al. (1977) algorithm in case of missing data. 

One of the difficulties in parameters learning is the 

computational complexity of the algorithms, since the 

problem in the worst case is NP-hard Ratnapinda and 

Druzdzel (2015). There is also the risk of the algorithm 

being stopped at a local maximum Myers et al. (1999). 
Online parameter learning is usually accomplished 

through adaptations in the generative methods by 
informing the influence of future data against past data. 
The goal of those methods is the model convergence, 
that is, to reproduce the distribution of the data in the 
Conditional Probability Tables (CPT). 

Although Bayesian reasoning is probabilistic, it is 
possible to combine complementary techniques and 
reasoning in BN. Take for example, the Fuzzy-Bayesian 
model Brignoli (2013) that combines diffuse (fuzzy) 
reasoning with the probabilistic reasoning. 

In a previous work e Lima (2014), a discretization 
method was developed for Bayesian networks through 
rules of data-based cuts and the overall optimization of 
them using genetic algorithm. 

By combining different reasoning techniques on the 

uncertainty it is possible to address more than one face 
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of the same problem. In this work it is proposed a 

method that performs the online parameters learning in a 

hybrid way between the discriminative approach and the 

generative approach. The proposed method is based on 

the Voting EM Cohen et al. (2001b) and it inherits some 

of its characteristics as online learning and the possibility 

of missing data during learning. 

Although there are other methods of parameters 

learning in literature that make the hybridism between 

the discriminative approach and the generative one, it is 

usually done by separating the variables into two distinct 

sets. The first set is treated in a generative way (where 

the goal is to reproduce the data distribution) and the 

second in a discriminatory manner (where the goal is 

increase the accuracy in classification problems). The 

proposed method carries out this hybridism in an 

integrated way between two approaches: The same 

variable is learned simultaneously in a generative and 

discriminatory way through a fuzzy learning system. 

Related Work 

Models in Bayesian networks are made from the 

graph topology and the conditional probabilities 

between the variables. The definition of these two 

properties is accomplished through the process known 

as learning where: 

 

• Structure Learning: It determines whether or not 

there is independence between the variables of BN 

and it gives a score for each candidate structure 

• Parameter learning: It is related to the estimation of 

conditional probabilities among the variables 

 

Parameter learning is related to the estimation of 

Conditional Probability Tables (CPT) and it is divided 

into two approaches: Generative and discriminative. 

In generative learning the conditional probabilities are 

computed directly from data. On the other hand, in the 

discriminative approach, learning is done considering the 

conditional probability of the variables in order to provide 

the increase of accuracy in the BN Su et al. (2008). 

Generative learning is made from the distribution of 

data and it seeks the likelihood maximization Zhou (2015). 

The most common method is the (MLE) Maximum 

Likelihood Estimation for cases where there is no 

missing data Friedman et al. (1997). 

When there is occurrence of missing data, the EM 

method is the most used Dempster et al. (1977). It 

enables the estimation of parameters through a repeating 

structure that toggles between two steps: E-step and M-step 

until it reaches the convergence. Reaches convergence 

some variations of EM method were proposed in the 

literature, for example the EM ( η) Bauer et al. (1997). This 

algorithm defines the concept of learning rate in EM and 

the update rules considering a Bayesian network. The 

Voting EM method is an online version of EM (η) 

Cohen et al. (2001b), Cohen et al. (2001a). The main 

features of Voting EM are: 

 

• Adaptation to data distribution changes 

• Ability to escape from the local maximum in the 

likelihood function 

• It reaches the convergence more rapidly than the 

MLE method 

• Faster adaptation in cases where there are changes in 

data distribution when it is compared to MLE 

 

Another method related to EM is the EM-like 

proposed by Saloj¨arvi et al. (2005). The method is a 

discriminative version of EM and it aims to maximize 

conditional probabilities rather than likelihood 

probabilities as it happens in classical EM method. 

The pioneering method in discriminative approach is 

the (ELR) Extension to Logistic Regression proposed by 

Greiner and Zhou (2002), where CPT are estimated by a 

process that uses the downward gradient as a way to 

maximize the conditional probability. The authors show 

that discriminative learning requires fewer training 

instances than generative to converge and that usually 

leads to a more efficient classifier. However, the 

computational cost can be significantly higher. 

Raina et al. (2003) propose a hybrid method between 

the generative and discriminative approach. The method 

divides the variables into two groups: Discriminative and 

generative. Therefore, if a variable has a direct influence 

on classification, it is learned in a discriminatory way 

and, if not, in a generative way. The method obtained a 

high accuracy rate and a low error when compared when 

it I compared to ELR. 

Kang and Tian (2006) propose the HBayes-NB which 

is a hybrid approach to learning parameters and 

structure. The HBayes-NB performs the relaxation of the 

na¨ıve Bayes topology by creating additional arcs in the 

graph. The variables are separated into two sets: 

discriminative and generative. Discriminative learning is 

done by the ELR method and the generative by the 

MLE. The method obtained good results when it is tested 

on public databases and compared with state-of-the-art 

methods in classification problems. 

Liu and Liao (2008) propose an online learning 

method made by combining MLE and VotingEM. The 

method proposed by the authors changes the VotingEM 

learning rate proportionately to the time of arrival of the 

data in a similar way to the MLE method. The method 

proposed obtained similar results to VotingEM but 

proved less sensitive to the parameters configuration 

Su et al. (2008) propose the (DFE) Discriminative 

Frequence Estimate that learns parameters in a 

discriminatory way considering the data frequency. DFE 
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is a variation of the MLE method and uses the error (loss) 

as a penalty in learning. The method was compared with 

MLE, ELR and with an ensemble method in several public 

databases of the UCI repository. The DFE obtained good 

results and the authors conclude that the method is 

computationally efficient, converges quickly and has results 

similar to the state-of-the-art methods. 

Pernkopf and Wohlmayr (2009) propose three 

discriminative methods of parameters learning. The first 

is an extension to RB of the Baum-Welch algorithm 

Bridle (1990). The other two methods are based on EM-

like Saloj¨arvi et al. (2005): (ECL) Exact conditional 

likelihood method and (ACL) Approximate Conditional 

likelihood method. The methods were tested in public 

databases and compared with the MLE method, 

obtaining superior results in classification problems.  

Xue and Titterington (2010) propose (JoDiG) Joint 

Discriminative Generative Modelling. The method 

performs the parameters learning by dividing the 

variables into two sets: Discriminative and generative. A 

variable is treated in a discriminatory manner if the 

process or function that originates the data is not found, 

that is, if it does not have a good adherence to some 

probability distribution function. The method was tested 

on public databases of the UCI repository and obtained 

similar or better results than other methods that are only 

discriminative or generative. 

Jing et al. (2011) propose a method of parameters 

learning based on the theory of interactive control of 

learning. The proposed algorithm provides the dynamic 

system and rules for upgrading CPT. The authors 

analyzed the convergence of the algorithm and 

concluded that the conditional probabilities reached 

reflected accurately to those desired. In addition, the 

convergence rate has been significantly improved when 

compared to other learning algorithms in the literature. 

Carvalho et al. (2011) propose a data-based score 

metric without the use of parameters through 

Conditional Log-Likelihood factoring (CLL). The 

technique is used both for the structure learning and for 

parameters learning aiming to increase the classification 

in BN. The authors obtained good results by comparing 

the proposed method with other classifiers considered 

state of the art on public databases. In addition, the 

authors concluded that the computational time of the 

technique is significantly lower. 

Broeck et al. (2014) propose a new family of 

algorithms for parameters learning considering missing 

data. The main features are: Parameters are computed in 

a non-interactive way, estimates are obtained without the 

need for Bayesian inference and the estimation of 

parameters is consistent for large databases. The authors 

conclude that the algorithms are faster than EM and 

avoid local minima. 

This paper aims to explore the hybridism between 

fuzzy, basic statistics and Bayesian inference to compose 

an online method of parameters learning that is able to 

combine elements of generative and discriminative 

learning in Bayesian Networks. 

Bayesian Networks 

A Bayesian Network (BN) Pearl (1988) is a model of 

representation and reasoning of uncertainty that uses the 

conditional probability between variables of a specific 

domain, expressed by Directed Acyclic Graphs (DAG). 

Its graphical structure can tackle correlations between 

variables effectively, with appropriate language and 

efficient resources to represent the joint probability 

distribution over a set of random variables (Friedman and 

Goldszmidt (1996). 

Defining formally, a BN is a pair (S, P), where S = 

(X, E) is a DAG. The nodes X = {X1,…,Xn} represent the 

variables and edges E = {e1,…, em} represent a direct 

correlation between each node in X. 

P is defined as a set of probabilistic parameters 

expressed through tables. Given a particular variable, a 

conditional probability distribution is made for each of 

their classes/values Xi = { 1

i
x ,…., k

i
x } joining each 

classes/value of their parents Pai. 

With that configuration, the network establishes that 

a variable is independent of all other variables except 

their descendants in the graph, given the state of its 

parents. The inference inside the network is done by the 

Bayes theorem for ( )k j

i i i i
P X x pa pa=  = . 

The joint probability is determined by the called 

chain rule and assumes the conditional independence 

between the variables: 

 

( ) ( )1 2

1

, ,...,

n

n i i

i

P X X X P X pa
=

= ∏  (1) 

 

where, Pai determines the set of parent nodes from Xi. 

The BN reasoning is established in two distinct 

scenarios: 

 

if “input” then “output”

if “output” then “input”





 

 

Considering all the possible network topologies for a 

Bayesian network the well-known structure Na¨ıve 

Bayes is the simplest one. It assumes that all variables 

are mutually independent given the class context. 

Although this model does not reflect the reality in most 

real-world tasks it is very effective, because the parameters 

of each attribute can be learned separately, facilitating the 

learning process McCallum and Nigam (1998). The na¨ıve 
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Bayes topology is there for a set of mutually independent 

variables that works as the input which collectively has a 

single parent (output node). 

Parameters Learning 

Parameter learning is related to filling the CPT in a fixed 

structure S*. That is, it is assumed that there is a joint 

mdistribution of probability P (.) that represents a domain. 

Generative Parameters Learning  

Generative learning is made from the data set, seeking 
the maximization of likelihood Zhou (2015) and is 
known as (MLE) Maximum Likelihood Estimation) 
Friedman et al. (1997). The MLE estimate for each 
CPT after T samples, without missing data, is given 
by the formula: 
 

T

ijkT

ijk T

ij

N

N
θ =  (2) 

 

where, T

ijkN  is the number of times that the data was 

observed in the configuration k

i
x for the parent set 

j

i
pa and T

ijN the total amount of Xi.  

Parameters Learning with Missing data 

Missing data can be divided into three categories 

Rubin (1976): 
 
• MCAR: Missing completely at random 

• MAR: Missing at random 

• NMAR: Missing not at random 
 

Missing data of type MCAR are those that have the 

highest degree of randomness and occur when the 

likelihood of finding a missing value is the same for 

all variables in any dataset. For example: In a network 

of sensors some of them, randomly, fail to capture 

data at certain times. 

Data of type MAR occur when a variable Xj of the 

dataset influences the existence of missing data in a 
different variable Xi. For example, imagine a network of 
security sensors that capture the temperature and the 
existence of movement in a particular environment. Also 
imagine that some motion sensors have environmental-
sensitive hardware: In the case of higher temperatures 

they cannot always capture the existence of movement. 
In this case a variable other than the one observed 
changes the likelihood of missing data happening. 

Missing data is considered as NMAR when they are 

related to unobserved events or even the attribute itself. 

For example, if the ambient temperature influences the 

ability of the sensor to capture the data of the temperature 

itself or even if the factor influencing the occurrence of 

missing data is unknown. 

Parameters learning with missing data can be summed 

up in three different approaches: 

 

• Ignore/Discard data: It is the simplest way to deal 

with missing data, because it removes a data entry or 

even a variable. It is not always feasible and can 

generate large data distortions and is only 

recommended in MCAR cases 

• Imputation: Technique that replaces the missing 

values with estimated values. The estimate may be by 

statistical measures obtained by the data or by some 

other technique of artificial intelligence. A good 

summary of the subject is found at Silva (2010) 

• Parameters estimation: Methods that use the 

likelihood in the estimation. Two techniques are 

generally used: (EM) Expectation Maximization or 

likelihood optimization with a gradient-type method 

and are known to consistently estimate data of type 

MAR Broeck et al. (2014) 
 

A variable with missing data is not a variable of hidden 

type: So there is data from the variable, but not in all cases. 
The EM algorithm Dempster et al. (1977) enables the 

parameters estimation in models with missing data and is 
the most used algorithm in literature Zhou (2015). This 
algorithm uses a reiteration system that toggles in two 
steps (E step and M step) until it reaches convergence. 

In a given instance yl it is possible to have missing data 

(Zl = {zl1,…, zl0}) and observed variables (Γl = {γl1,…., γlh}) 

where o + h = n. The steps for convergence are given by: 
 
• E Step (expectation step): From the current parameters 

setting (θ
(t)

), where the first interaction is given by θ
(0)

 
and has the initial configuration given by random 
values. Expectation is calculated through the maximum 
likelihood function considering the data set D: 

 
( )( ) ( ) ( )

1 ,...,

log

l lh

t

l l

l

l P P z

γ γ

θ θ γ =∑ ∑  (3) 

 

where, ( ) ( )( )1
,..., ,

t

l l lh l
P Pγ γ γ θ= Ζ  and 

( ) ( )( 1
, ,...,

t

l l l lh
P Z P Z γ γ θ=  . 

 
• (M Step) Maximization Step: Calculates the new 

estimation of θ
(t+1)

 parameters by maximizing the 
first step: 

 
( ) ( )( )t 1 t

 arg max /l
θ

θ θ θ
+

=  (4) 

 
The Algorithm 1 describes the computational approach of EM 

Algorithm 1 Expectation Maximization (EM) 

1: θ ← random values 
2:  while not converge do 
3:  Step E: use γl to calculate l(θ׀θ(t)) 
4:  Step M: replace θ by arg maxθ l(θ׀θ(t)) 
5:  end while 
6:  return θ 
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Another type of learning approach in missing data 

uses gradient methods, which are an alternative to 

learning in cases where BN has continuous variables 

Binder et al. (1997); Buntine (1994). 

Other forms of learning in missing data were developed 

in the literature whether using methods of Monte Carlo or 

even by Gaussian approximation Barber (2012). In addition 

there are mixed approaches, such as that of Johnny that 

proposes a method of learning with focus on data of type 

MCAR and MAR through a BN that represents the 

relationship between these variables Mohan et al. (2013). 

Discriminative Learning of Parameters 

Discriminative learning is characterized when the 

main objective is the increase of accuracy in BN. 

However, discriminative learning has a computational 

complexity greater than generative and is considered an 

NP-hard problem NP-hard Greiner and Zhou (2002). 

In this type of learning the goal is to find parameters that 

maximize the conditional log-likelihood as opposed to 

simply maximizing the likelihood. However there is no 

closed formula to find the best parameters of the network, 

since the conditional likelihood cannot be decomposed 

Friedman et al. (1997). One of the consequences of this is 

discriminative learning to generally use heuristic search 

methods to establish conditional probabilities Su et al. 

(2008). Or hybrid approaches between discriminative 

algorithms and generative as in Raina et al. (2003); Xue and 

Titterington (2010); Kang and Tian (2006). 

Among the surveys in this area, it is possible to quote 

those with a purely discriminatory approach (Greiner and 

Zhou (2002); Greiner and Zhou (2002); Pernkopf and 

Wohlmayr (2009); Pernkopf and Bilmes (2005); Zhang and 

Su (2008); Carvalho et al. (2011); Feelders and Ivanovs 

(2006); Su et al. (2008). 

Online Parameter Learning 

In machine learning, online learning methods are those 

that learn from a set of data available in a sequential or 

interactive way. It is a type of adaptive learning and 

considers that the domain changes with time: The opposite 

of learning by batch, in which all data is available at the 

time of training. 

Some of the algorithms most commonly used in the 

BN context use generative learning, such as in Cohen et 

al. (2001b) that proposes the VotingEM method based 

on the rules defined by Bauer et al. (1997) using 

concepts of maximum likelihood. 

VotingEM 

The Voting EM algorithm in Cohen et al. (2001b) is 

a direct adaptation of the EM (η) to be used online. The 

update rule is given by: 

( )
( )

( )
1

1 1

1

1

, ,
0

,

otherwise

k j

i i t tt t j

ijk ijk i tt j
ijk i t t

t

ijk

p x pa y
if P pa d

p pa y

θ
θ η θ

θ θ

θ

−

− −

−

−

  
  + −  ≠  =   


 (5) 

 

where, dt = (yt, θt−1), T = {0,… t,…} is the current 

temporal unit and 0

ijkθ is populated by random or pre-

trained values. 

The learning rate η shows how much the past is reliable 

considering the data present. When η approaches 1 we 

consider the present data more reliable and the past 

knowledge is gradually discarded. The rate can be fixed for 

all learning or change over time (Section 3.4.2). 

Adaptive VotingEM 

One of the critical points of Voting EM is 

determining the learning rate η, because the parameter 

choice varies according to the application domain. In 

addition, a specific case k

jx with parent configuration 

j

i
pa can be very constant or rarely appear in the database. 

With a fixed ETA the data influence on the CPT is 

always the same for all variables which makes the 

algorithm generic. 

As a way to deal with the problem Cohen et al. 

(2001a) proposes the Adaptive Voting EM. It is based on 

the following principles: 

 

• The learning rate η should be reduced when 

approaching convergence 

• η should be increased when there is a large error 

between the average values of θijk e
t

ijkθ  

• A value η is defined for each j

i
pa  being named ηij 

 

The method is based on traditional VotingEM, but 

the etaij value is updated on each time interaction and it 

uses 3 parameters as input: 

 

• q: parameter that defines how many standard 

deviations of error is acceptable before increasing ηij 

• α: parameter that defines what is considered 

convergence in order to decrease ηij 

• m: parameter that defines in which proportion ηij 

will be increased or decreased 

 

The method variance is calculated by: 
 

( )

( )( )2 2

.0.5 1 0.5
var

2

* 1 1

ijt

ijk

ij

t

ij

δ

η
θ

η

η
+

−
  =  −

− −

 (6) 
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Cohen et al. (2001a) proves that ηij decreases 

proportionally to 1/tn where tn is the number of times that 

Pai = j

i
pa  which leads to an optimal asymptotic 

convergence at some local maximum. 

Our Proposal 

In this work we propose a hybrid method 
(discriminative and generative) that addresses 
incremental or online learning of parameters in 

Bayesian networks through a fuzzy system. This 
method is based on the VotingEM algorithm Cohen et 
al. (2001b) that proposes an incremental version of 
the EM (η) Bauer et al. (1997). 

Figure 1 synthesizes the proposed fuzzy system that 

has two types of input variables: Trend and 

classification error. The output variable is the 

adjustment level m that determines the variation of the 

learning rate ηij. The method is described on Algorithm 2. 

 

Algorithm 2 Our approach for online learning 

1: θ0 ← random or pre-trained values 

2:  ηij ← η' 0 ׀ < η' ≤ 1 (randomly defined) 
3:  t ← 0 
4: @t ← 0 

5: while new samples do 

6: for all Xi in X do 

7: gets the set Pai 

8: for all j

i
pa in Pai do 

9: hypothesis = [] 

10: for all k

i
x in Xi do 

11: update 1t

ijkθ
+  

12: Pcs ← trend on k

i
x  

13: k

i
hx hypothesis (fuzzy system) 

14: append k

i
hx on hypothesis vector 

15: end for 

16: error ← Classification Error 

17: m ← fuzzy result (error, hypothesis) 

18: ηij ← ηij . m 

19: if m > 1 then 

20: tδ ← 0 

21: else 

22: tδ ← 1 

23: end if 

24:  end for 

25:  end for 

26: t ← t +1 

27: end while 

 

 
 

Fig. 1: Proposed fuzzy system 

Adjustment level (m) 

Fuzzy inference 

Mamdani type 

Rules set 

P(Classification error) 

Trend 
θij1 

θijk 
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Definition of Variables 

The following definitions are made: 

 

• Trend: Long-term behavior of the time series that 

can be constant, growth or degrowth. Here, the term 

trend will be adopted in cases of growth or degrowth 

• Convergence: Constant trend behavior-when the 

series focuses around a certain point 

• Precision: Variation degree of a set of measures, in 

this case the variation of θij. A significant accuracy in θij 

demonstrates its convergence 

• Accuracy: Network hit in a classification problem. In 

the discriminative approach it is portrayed by the a 

posteriori conditional probability of the output variable 

• Classification error: Is the complementary measure 

to the conditional probability class_error = 1-P (.|.)  

 

Trend 

In online learning, the data D = {y1,…,yN} is not fully 

available during network training and is made available 

incrementally in time, featuring a temporal series. 

Online learning methods are usually approached in a 

generative way and determine the influence of a evidence yt 

in the CPT set θ that defines BN. The purpose of these 

methods is to reproduce the distribution of data in θ and the 

convergence is achieved by decreasing the influence of yt in 

a consecutive way in 1/t Cohen et al. (2001b). 

The influence of the learning rate is achieved by ηij 

and the proposed method determines its value to each 

interaction of time. Similarly to VotingEM, the ηij rate is 

increased when the error in θij is considered relevant and 

diminished when θij is converging. The difference 

between the VotingEM and the proposed method is in 

the approach and the concept of error and convergence. 

The proposed method is based on the concept of 

tendency: Considering that D is a time series we define qt 

as the CPT set that compose the BN in time t. Determine 

whether a series has a tendency is usually carried out 

through statistical tests at a level of α significance, with 

two assumptions: 

 

0

1

:  The data is independent and identically distributed

:  The data have monotonic tendency in time.

H

H





 

 

In this work are used two tests of the literature to 

determine the trend of the series: Mann-Kendall and 

Cox-Stuart tests. The tests assess whether or not there 

is a tendency by calculating the p-value and 

comparing it with α. 

The trend tests are performed for each θijk, that is, for 

each paij set of Xi. However, since the value of the 

learning rate is defined for ηij the trend should be 

calculated for the whole set θij = {θij1,… θijk ,…} in a 

global way. 

In addition to determining whether or not there is a 

tendency to θij, other issues are raised: 

 
• How to quantify the trend? 
• What would be a statistically significant trend? And 

a statistically non-significant trend? 
• How to use the quantification of the trend as a 

precision measure for θij 
 

In this work, a Fuzzy subsystem proposed using the 

p-values of Mann-Kendall and Cox-Stuart tests in order 

to answer these questions. The use of fuzzy functions to 

represent a statistical test was based on Costa (1999) that 

divides the p-value into three fuzzy sets: Highly 

significant, significant and non-significant (Fig. 2). The 

Trend Fuzzy subsystem is shown in Fig. 3. 

 

 
 

Fig. 2: Fuzzy sets for p-value 
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Fig. 3: Trend fuzzy subsystem for trend detection in θij 

 

 
 

Fig. 4: Fuzzy sets for the adjustment level m 

 

Trend tests are not applied to the entire history of 

θij, but to moving temporal windows. Is defined 

as { }1 1
,..., ,...

T

ij ij ijθ θΘ = as the temporal window such as T

ijΘ . 

A new temporal window 1T

ij

+

Θ  is created whenever the 

ηij value is increased, that is when convergence in the 

series is not detected. 

Classification Error 

The proposed method, in addition to seeking the 

precision in θij seeks to increase accuracy of the network 

considering an output variable Xs. That is, seeks to 

decrease the classification error, calculated by: 
 

( ) ( ) ( )1 1
_ ,

k k

s ij t s t tP class error P x P xθ θ
− −

= | ρ − | τ  (7) 

 

where, Xs is the output node in a classification problem 

that assumes a value k

s
x at time t,

t
ρ  is the set with the 

evidence of Xs at time t and τt are the evidence of the 

input data, such that yt = t tt t
ρ τ ρ τ∪ ∩ = 0/ . When there is 

no missing data we can reduce the Equation 7 to: 

 

( ) ( )1_ 1 ,k

s t t
P class error P x θ

−

= − τ  (8) 

Fuzzy Inference 

The change in the learning rate ηij is made by the 

combination between the error rate of Xs and the 

quantification of the trend in θij. This combination of 

factors is made by a fuzzy system that has a set of input 

variables and an output variable called the adjustment 

level m, such that: 

 

.

ij ij
mη η=  (9) 

 

The inputs in the proposed subsystem are defined by: 

 

• The output variables of the Fuzzy Trend Subsystem 

shown in the Fig. 3 for every θijk in θij in the moving 

window T

ijΘ  

• The error of the output variable Xs in time t 

(Equation 7) 

 

Adjustment level m 

The value of m is obtained by a fuzzy inference system 

of Mandeni type and defined by two fuzzy sets that model 

its behavior by increasing or diminishing ηij (Fig. 4). 
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Preliminary Results 

The initial evaluation of the method performance was 
done by simulating an online environment considering 
the Bayesian network provided by Cohen et al. (2001b). 

The proposed method was compared with two other 
methods of literature: VotingEM and MLE Online. The 
choice of these methods for initial comparison is due to 
its great popularity, efficiency and low computational 
cost Liu and Liao (2008; Zhou, 2015). 

The initial experiments seek to evaluate the method 

in two distinct conditions: 
 
• Condition 1: Considering a totally random BN 
• Condition 2: Considering a pre-trained BN that has 

undergone abrupt changes in its probability distribution 
 

Condition 1 is simulated through 2000 independent 

and equally distributed (i.i.d.) samples generated from 

the CPT. To simulate learning, a random BN is 

created and the samples generated from the original 

BN are sent interactively to learning methods. The 

resulting BN after the simulation of Condition 1 is 

used as input in Condition 2. 

Condition 2 is simulated by the abrupt change in the 

distribution of conditional probability of some values in θij 

at the network obtained at the end of Condition 1. After the 

change, in a similar way to Condition 1, 2000 i.i.d. samples 

were generated from this new BN. The objective of 

Condition 2 is to analyze the capacity of the proposed 

method of adapting to changes in the environment. 

The results evaluation is done considering Condition 1 

and Condition 2. The Bayesian network (BN) used for 

the initial evaluation was proposed by Cohen et al. 

(2001b) and has three nodes: Parent, Child1 and Child 2 

(adopted as gold standard). The CPT set that composes it 

is shown in Table 1. The gold standard BN was used for 

the generation of 2000 samples for Condition 1. 

Condition 2 is simulated by changing three θij values 

in the gold standard BN: one in each Xi node. Similarly 

to condition 1, 2000 samples were generated in the 

altered network. The experiment was performed using 

the parameters defined in Table 2 obtained empirically 

through experimentation. The MLE Online method does 

not require an initial parameterization. 

Figure 1, 5 shows convergence of methods. Figures 5 

(a) (b) and (c) demonstrate convergence in three θijk 

parameters and the following observations are made: 
 
• The proposed method and VotingEM have similar 

convergences in Condition 1 

• The proposed method perceives changes in the 

environment faster (Condition 2) 

• The variability of the proposed method is greater; 

• By not enabling the increase in the rate of learning, 

the MLE Online method does not have a good 

convergence 
 

Figure 6 shows the overall convergence by log-

likelihood of the trained BN at each new sample. The 

proposed method has a faster convergence in Condition 

2 than the other two methods. 

 
Table 1: CPT set for the Bayesian Network proposed by 

Cohen et al. (2001b) 

Parent 
class1 0.5 

class2 0.25 

class3 0.15 

Child1 class1 class2 

class1 0.5 0.5 

class2 0.9 0.1 

class3 0.85 0.15 

Child2 

class1 0.8 0.2 

class2 0.2 0.8 

class3 0.85 0.15 

 
Table 2: Parameters Configuration used during simulation of 

Condition 1 and Condition 2 

Method Parameter Values 

Voting EM η inicial 0.25 

 Q 4.00 

 A 0.10 

 m  1.50 

Our proposal η inicial  0.25 

 max δη   0.02 
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Fig. 5: Convergence of proposed method, voting EM and MLE Online. Figure 5(a) (b) and (c) show the evolution of three 

parameters θijk 

 

 
 

Fig. 6: Evolution of the BN log-likelihood in condition 1 and condition 2 

 

 
 

Fig. 7: Moving averages with 50 sample demonstrating the evolution of the classification error in condition 2
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The discriminative aspect is analyzed by Fig. 7, which 

reinforces the ability to decrease the error probability in the 

proposed method and its rapid convergence to lower errors. 

Figure 1 also demonstrates the abrupt drop in error by using 

the proposed approach reaching stability in sample 400, 

approximately. The VotingEM method only arrives at this 

stability around the sample 600. 

Conclusion 

The initial analysis of the results shows that the 

proposed method achieved a good performance both in the 

convergence ηijk and in the decrease of the probability of the 

classification error when compared to the other methods. 

The proposed approach also simplifies 

parameterization by using only one configuration 

parameter while VotingEM uses three. 

The following observations can be made: 
 

• The proposed method is more sensitive to the 

environment, which results in a greater variability in 

the estimation of θijk 
• MLE Online is not able to increase the learning rate 

during the simulation 
• The proposed method perceives the distribution 

change faster than VotingEM and increases ηijk 
more significantly 

 
The results reinforce the main characteristics of the 

proposed method: Perceive changes of distribution 
rapidly and unite the generative and discriminative 
approaches during learning. For this reason, there is a 
greater variation of probability distributions as a resource 
to decrease the probability of sort error. 
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