

 © 2019 Mohamed Lachgar, Khalid Lamhaddab, Abdelmounaim Abdali, and Khalid Elbaamrani. This open access article is

distributed under a Creative Commons Attribution (CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Pragmatic Approach to Modeling and Generating Mobile

Cross-Platform Applications

1
Mohamed Lachgar,

2
Khalid Lamhaddab,

1
Abdelmounaim Abdali and

2
Khalid Elbaamrani

1LAMAI Laboratory, FSTG, Cadi Ayyad University, Marrakesh, Morocco
2TIM Laboratory, ENSA, Cadi Ayyad University, Marrakesh, Morocco

Article history

Received: 20-09-2018

Revised: 24-11-2018

Accepted: 27-03-2019

Corresponding Author:

Mohamed Lachgar

LAMAI Laboratory, FSTG,

Cadi Ayyad University,

Marrakesh, Morocco
Email: lachgar.m@gmail.com

Abstract: As a result of the ubiquity of smartphones, the number of mobile
applications is extensively growing. In order to build native apps that reach
all devices, developers should deal with many different operating systems,
SDKs, development tools and programming languages, which implies
serious effects on cost, time and success of the mobile project. In this study,
the main objective is to propose a pragmatic approach for modeling and
generating native cross-platform mobile applications, respecting a multi-
layer architecture. The proposed approach is an MDA based technique
which combines UML formals and DSL. The paper is illustrated with the
modeling of a typical CRUD based app.

Keywords: MDA, DSL, UML, Mobile Applications, Code Generator,
Native Code

Introduction

The mobile application development industry knows
recently an uprising growth, due to the intensive use of
mobile apps, where the bulk of them operate under
Android, iOS and Windows Phone operating systems.
However, the development of applications designed for
mobile platforms requires more concerns, such as code
efficiency, interaction with peripherals, as well as the
speed of market invasion.

As a company, if we wish to create a mobile
application; an important issue would be to be present on
the various leading platforms of the market. However,
what strategy should we adopt? Is it necessary to
develop a specific application for each platform? And at
what cost? Is it possible to develop an application and
deploy it on multiple platforms? The answer to these
questions is presented in (Lachgar and Abdali, 2017a).
This paper offers a framework allowing companies to
make up one’s mind on the approach to be adopted, to
develop a multi-platform mobile application, the authors
in (Lachgar and Abdali, 2017b) showed that the native
approach has several advantages over other approaches.
Further, as the name implies, native apps are built using
platform-specific SDKs and development tools provided
by the platform vendors. The advantages of native
mobile apps, of course, are (Jobe, 2013):

• Complete access to the device hardware and APIs

available on each platform
• Seamless integration with native operating system
• Updates are formal through app stores

On the other hand, the native applications are very
expensive to implement, being limited to a particular
mobile platform, they require a collection of in-depth
knowledge and varied programming languages to be put in
place. The Model-Driven Architecture (MDA) approach
aims to provide an easy and effective practical solution to
this problem, by developing a cross-platform application. In
addition, the MDA approach has proven itself to be
successful for enterprise application development and can
contribute considerably in mobile applications
development. The MDA approach can help us ensure the
sustainability of the know-how and increase the
productivity while responding to the problems of
fragmentation of the platforms. The Model-Driven
Architecture (MDA) approach (Paige et al., 2016) brings
significant advances in the control of the development of
computer applications and peculiarly it enables productivity
gains, increased reliability, significant improvement in
sustainability and better agility in the face of changes.

The present work suggests a new approach to mobile
application design, by defining a platform independent of
the model and adopting the MDA approach to generate
the different layers of a mobile application (presentation
layer, application layer, business layer And data access
layer) following a set of transformations and projections.

This paper is organized as follows: The first
section presents the model engineering and the
layered architecture, the second part presents some
related works. The adopted approach is described in
the third section. The fourth section shows the
applicability of the proposed approach through a case

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

417

study. The fifth section exhibits some limitations of
the work. The final section concludes the paper and
opens the gates for new perspectives.

Background

Model Driven Engineering

The Model-Driven Engineering (MDE) is a modern
software engineering approach that proposes to elevate
models to the rank of first-class concept (Paige et al.,
2016). It is a generative form of engineering,
characterized by a rigorous process, whereby everything
is generated from a model, which shifts the models from
contemplative to productive.

The results gathered over the last few years had
shown the advantages of the MDE compared to the
traditional approach of development, in terms of quality
and productivity (El Hamlaoui, 2015):

• Quality: An overall reduction of 1 to 4 times; as

well as reduction of the number of anomalies yields
an improvement of 3 times during maintenance
phase. The overall cost of quality has also cut down
due to reduced inspection and testing times

• Productivity: A productivity improvement of 2 to 8
times in terms of lines of source code

Model Driven Architecture (MDA)

The MDA approach has been proposed by Object
Management Group (OMG) in 2001. This is a peculiar
view of model driven development (Hailpern and Tarr,
2006). This latter, unlike the MDA, does not abide by
the OMG standards and it is a flexible paradigm for
defining development processes that considers models
and transformations as key artifacts of this process.
According to (Kapos et al., 2014) it is simply the notion
that it is possible to construct the model of a system, in
order to be able to transform it automatically or semi-
automatically into a real thing. The Model Driven
Development (MDD) artifacts are used to specify,
simulate, verify, test and generate the final system.

Unlike the MDD, the MDE goes beyond development
activities and encompasses other tasks based on a software
engineering process (e.g., model-based evolution) (Cabot,
2015). The basic idea of MDA, using OMG standards, is
that the functionalities of the system to be developed are
initially defined in a Computational Independent Model
(CIM) that is used to create a model Platform Independent
Model (PIM). The latter, supported by a Platform
Description Model (PDM), allows the (semi-) automatic
generation by transformation of one or a set of Platform
Specific Models (PSM) (Fig. 1 for more details). The roles
of each of these models are:

• CIM: Model independent of any computer system

that uses a vocabulary familiar to the project’s
owner. It allows having a vision of what is expected
of the system, without neither going into the details
of its structure, nor going into its implementation.
The technical independence of this model allows to
keep its interest over time. It is modified only if the
knowledge or business needs a change

• PIM: Model which describes the business logic and
operation of bodies and services. It is a model that
does not contain information about technologies that
will be used to deploy the application

• PDM: Model that describes the software
architecture of the execution platform. It contains
information for transforming models to a specific
platform. The BluAge Forward (BLU AGE, 2010)
and AndroMDA (Franky et al., 2016) tools define
this model as a replaceable generation cartridge
based on the runtime platform. This cartridge, called
BluAge Bluage Shared Plug-ins (BSPs), is available
for the most commonly used frameworks such as:
Struts, Spring, hibernate, .Net, Java, etc.

• PSM: Model depending on the technical platform
specified by the architect. It basically serves as the
basis for generating executable code to the target
technical platform(s). There are several levels of
PSM. The first one comes from the transformation of
a PIM, while the others are obtained by successive
transformations till the generation of code in a
specific language (e.g., Java, Swift, C#, etc.)

Fig. 1: Example of using models in forward engineering

Android PDM

Android PSM Android code
M2M

M2T
CIM PIM

M2M

M2M

M2T

IOS PSM IOS code

IOS PDM

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

418

Architecture of a Multi-Platform Mobile

Application

The principle key of building a cross-platform
application is to create an architecture that maximizes
code sharing across platforms and allows code reuse.
The principles of object-oriented programming help
us to build a well-structured application, these
principles include:

• Encapsulation: It ensures that classes and even

architectural layers exhibit only a minimal
Application Programming Interface (API) that
performs their alleged functions and hides the
details of implementation (Armstrong, 2006):

• At the class level, this means that objects
behave like ”black boxes” and that the
consumer code does not need to know how they
perform their tasks

• At the architectural level, this implies the
implementation of a model as a facade that
encourages a simplified API, that orchestrates
more complex interactions, in the name of
code in more abstract layers. This means that
the User Interface (UI) code should only be
responsible for displaying screens and
accepting user inputs; and never interacts
directly with the database. Similarly, the data
access code should only read and write to the
database, but never interact directly with
buttons or text fields

• Separation of responsibilities: It ensures that each
component (At the level of architecture and class)
has a clear and well-defined objective. Each
component must perform only its defined tasks and
expose this functionality through an API accessible
to other classes (layers) that must use it

• Polymorphism: Programming to an interface (or
abstract class) that supports multiple
implementations, means that the base code can be
written and shared across platforms while
interacting with platform-specific functionality
(Armstrong, 2006)

The natural result is a modeled application based

on abstract entities with distinct logical layers.
Separation of layers makes applications easier to be
understood, test and maintain. It is recommended that
the code for each layer be physically separated (in
directories or even separate projects for very
important applications) and logically separated (using
name-spaces or packages).

Typical Layers of a Mobile Application

The most common architecture pattern is the layered
architecture pattern, otherwise known as the n-tier
architecture pattern (Richards and Ford, 2018). In this
paper and in the case study, the authors refer to the
following six layered application (Fig. 2): Description of
the different layers:

• Data Layer: Non-volatile data persistence, likely

to be a SQLite database, but can be implemented
with XML or JSON files or other appropriate
mechanism

• Data Access Layer: It provides simplified access
to data stored in the data layer. It represents a
centralized location for all calls into the database
and thus; makes it easier to port the application to
other database. It contains everything related to
persistence:

• Object Relational Mapping (ORM): Which
contains all information and mapping
techniques regarding to the database system

• Data Access Object (DAOs): Entities which
model how the data is managed, generally they
define all the Create, Update, Delete (CRUD)
actions, etc.

• Business Logic Layer: Is defined as any logical
application that is concerned with the retrieval,
processing, transformation and management of
application data; application of business rules and
policies; and ensuring data consistency and
validity. To maximize reuse opportunities,
business logic components should not contain any
behavior or logical application that is specific to a
use case or user story

• Service Access Layer: Used to access services in
the cloud: from complex Web services (REST,
SOAP, etc.) to simple retrieval of data and images
from remote servers. It encapsulates network
behavior and provides a simple API to be consumed
by the application and the UI layers

• Application Layer: Typically platform-specific
code (usually not shared across platforms) or
application-specific code (usually not reusable). A
good test to determine whether the code should be
placed in the application layer, with respect to the
user interface layer would be either (a) to determine
whether the class has actual display controls, or (b)
or it can be shared among multiple screens or
devices (for example, iPhone and iPad)

• User Interface Layer (UI): The user-facing layer
contains screens, widgets and controllers that
manage them

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

419

Fig. 2: Layered architecture for a mobile application

This architecture has many advantages compared to

the traditional way used to set up computer applications,
among these we state:

• Improved Scalability: Due to the distributed

deployment of application servers, scalability of the
system is enhanced since a separate connection from
each client is not required whereas connections from
few application servers are sufficient (Richards and
Ford, 2018)

• Enhanced Re-usage: A similar logic can be
sustained in many clients or applications

• Improved Data Integrity: Data corruption through
client applications can be eliminated as the data
passed in the middle tier for database updates, which
ensures its validity

• Enhanced Security: Through the implementation
of several layers, enhances the data security on a
service-by-service basis

• Reduced Distribution: The layered architecture
enables to update only the application servers, not
all distributed clients in case of a modification in the
business logic

• Hidden Database Structure: The actual structure
of the database often remains hidden from requester
enabling any change of the database to be
transparent

• The maintenance of the data is independent of the
medium physical storage

• Simplified Process maintenance: Team members
work on the data access layer, another can work on
the business layer or on the GUI without disrupting
the work of others

• Facility of managing processing from the
presentation layer

• Optimal Teamwork (Richards and Ford, 2018)
• Relative straightforwardness of moving from one

graphic environment to another

Nonetheless, an application may not necessarily
contain all layers. For example, the service access layer
would not exist in an application that does not access
network resources. A very simple application can merge
the data layer and the data access layer, since operations
are extremely basic.

Common Design Models in Mobile Development

Models are a proven way to capture recurring
solutions to common problems. There are few key
models that are useful to understand the building mobile
applications, which are maintainable and understandable:

• Model, View, Controller (MVC): A common and

often misunderstood model, MVC is most often used

User

Graphic user interface

Business objects
Business logic

layer
Service access

Data access layer Web service (SOAP, REST, WCF, etc.)

SQLite Oracle MySQL DB2

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

420

when creating user interfaces and allows a separation
between the actual screen definition - the user interface
- View), the engine that manages the interaction
(Controller) and the data that fill it (Model). The model
is actually a completely optional part and so the core of
understanding of this model lies in the view and the
controller (Plakalovic and Simic, 2010)

• Business Facade: Provides a simplified entry point for
complex jobs. For example, in a project tracking
application, you can have a Project Manager class with
methods such as findAll(), findById(id), create(project)
and so on... The Project Manager class provides a
front-end to the internal operation of saving/retrieving
project objects (Jiang and Mu, 2011)

• Singleton: The Singleton model provides a mean
allowing a single instance of a particular object to
exist (Stencel and Wegrzynowicz, 2008). For
example, when using SQLite in mobile applications,
you only want one instance of the database. Using
the Singleton model is a simple way to ensure this

• Abstract factory: A model for reusing code across
applications. Shared code can be written to an
abstract interface or class and platform specific
concrete implementations are written and
transmitted when the code is used (Sarcar, 2016).

• Data Access Object pattern (DAO): Ensures the
link between the business layer and the persistent
layer to centralize the mapping mechanisms
between the storage system and the business
objects (Castillo et al., 2013)

• Async: The Async pattern is used when a long task
has to be executed regardless of the user interface or
the current process. In its simplest form, the Async
model simply describes that long-time tasks must be
run in another thread (or similar thread abstraction,
such as a task), while the current thread continues
processing and listening response process in the
background, then updates the user interface when
the data and/or status is returned (Kang et al., 2016)

• Reactive programming: Is a programming
paradigm oriented around data flows and the
propagation of change. This means that it should be
possible to express static or dynamic data flows with
ease in the programming languages used and that the
underlying execution model will automatically
propagate changes through the data flow
(Salvaneschi and Mezini, 2014)

Related Works

Several research projects have been carried out in
order to speed up the development of native mobile
multi-platform applications, some work focuses on the
generation of a specific code to certain blocks of
application (sensor code, CRUD code, GUI code, BLE

code, etc.) Others focus on generating an application that
combines all the features and components of a mobile
application. In this perspective, the authors in (Veisi and
Stroulia, 2017) have defined a general architecture for
Android applications running on physical BLE devices.
Then, using JetBrains MPS, they developed a modeling
language that describes the components of an application
working with these devices and finally they have
developed a framework that allows Android developers
to generate code for their application in a simple and
efficient way. The code generated by AHL is fully
functional and requires no modification. This means that
developers should not learn how to implement or modify
these components, because their use does not require
knowledge of how they work.

The authors in (Benouda et al., 2016a; 2016b)
proposed an approach based on model engineering, that
aims to generate graphical user interfaces of Android
applications. To do this the authors used the class
diagram to define the PIM, the QVT
(Query/View/Transformation) to realize various
transformations on the PSM-Android and Acceleo for
code generation. This work aims to accelerate and
facilitate the development of Android applications. It
takes into account the generation of graphical interfaces,
without considering access to resources, embedded
sensors, more complicated graphical interfaces and event
handlers, etc. An MDA approach has been implemented
in (Sabraoui et al., 2013), with the aim of modeling and
generating the graphical interfaces of the mobile
platforms. This approach consists of four main steps:

• Modeling the graphical interface in UML, using an

object diagram
• Transformation of the diagrams obtained to a simple

XMI schema using the JDOM API
• Transformation of the new XMI model to the target

platform-specific model
• Generation of the graphical interface on the basis of

the MDA approach, by projecting in Templates
implemented with Xpand

This method has the advantage of automatically

generating the graphical interfaces for several mobile
platforms from a UML model. Nevertheless, developers
in this approach cannot design the user interface in a
simpler and user-friendly way, especially in the case
where the application requires multiple screens.
Moreover, the use of the object diagram for modeling the
graphical user interface takes a long time. The approach
presented is limited to the generation of user graphical
interfaces fails to consider the native functionalities
offered by smartphones (e.g., GPS, camera, sensors,
etc.), also does not allow the generation of applications
according to the principle of separation layer.

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

421

Furthermore, the authors in (Heitkotter et al., 2013)
proposed the MD2 Framework, which is based on a
DSL adapted to the field of mobile applications. This
tool allows developing applications by describing the
application model using the DSL and then a set of
transformations are carried out to generate the native
source code specific to the target platform.
Applications created with MD2 follow the MVC
model. The MD2 allows:

• Define data types and access operations
• Define CRUDs for updating data
• Implement user interface with a variety of

components
• Define input validators on the data
• Access to native features such as GPS

The limitations of this solution are as follows:

• It is still a prototype
• Focuses on a single category of mobile applications:

business-oriented applications
• Focuses on generating mobile applications that do

not support reuse of existing source code
• Focuses on code generation for tablets
• The authors did not describe the basic meta-model
• With the DSL we cannot generate a complete

mobile application, as well as an application that
respects the programming in layer

The majority of the approaches presented below are

used to generate data-driven mobile applications. Also,
some allow producing applications that respect the MVC
pattern; others offer mechanisms to connect to local
databases. However, the generation of complete mobile
applications that follow good software engineering
practices, such as separating software layers is not

supported, also the design of complicated interfaces is
not supported neither. In the current work, the authors
combined between the UML language and the DSL to
improve the quality of the applications generated, by
respecting good software practices taking into account
all the functionalities of a mobile application.

The Proposed Approach

The proposed approach revolves around using a
pragmatic modeling technique which combining UML
diagrams and exploiting a dedicated DSL language. From
the UML diagrams, in particular the class diagram, we can
generate business classes, the classes allowing access to
the data, the classes allow to define the basic operations
for a SQLite data base, such as the creation of the tables
and the deleting tables. Concerning the dedicated
language, it will serve us to model the graphical user
interfaces consequently the generation of the presentation
layer and the logical layer, also using a dedicated language
we will be able to generate the service access layer.

Generation of DAL, BOL and DL Layers

In order to generate the following layers: Data
Access and Business Logic layers, the authors will
mainly use UML meta-models represented as a class
diagrams. Indeed, using a model of classes annotated by
some stereotypes that are specific to the PSM model, the
authors will be able to generate BO business objects and
data access object DAO according to each PSM (e.g.
java, C, C++, C#, Objective C, Swift, etc.).

Moreover, we can generate the build script in order to
create the SQL Lite data base. With the class diagram, it’s
possible to generate the traditional graphical interfaces of
updating and querying the data, using the previously
generated CRUDs. The architecture for the generation of
the DAL, BOL and DL layers is presented in the Fig. 3.

Fig. 3: Architecture for the generation of DAL, BOL and DL layers

Business Object

Layer (BOL) + GUI

Glass diagram
Data Access

Layer (DAL)

Data Layer (DL)

Transformation

engine

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

422

To realize the different transformations, the language
ATL was used. In fact, this language of hybrid
transformation is both declarative and imperative, which
makes it more expressive and gives it the possibility to
express any kind of transformations. As for ATL
performance in most cases it runs faster than QVT
(Adopted in some works such as (Benouda et al., 2016a;
2016b) due to two main reasons; the first: It is easier to
reduce the matching with the WHERE clause in the rules;
the second one: Due to the fact that ATL is compiled and
executed on a virtual machine. ATL makes it possible to
carry out transformations between the source and target
models, by means of a set of correspondence or mapping
rules written in this language. In ATL, we can create
modules to perform model-to-model transformations.
However, for model-to-text transformations the Xtend
language is used, which allows to project the data into
templates from an XMI instance of PIM Bean or PIM
DATABASE result of the model-to-model
transformations carried out with the ATL. A snippet of
code to load an XMI file is shown in the Fig. 4.

The Fig. 5 illustrates the different stages of the
proposed approach for the generation of the DAL, BOL
and DL layers:

(a) Modeling an Application Using a Class Diagram
(b) Transform to an instance of the PIM Bean

(c) Projection in templates for generating business
classes and standard graphical interfaces from an
instance of PIM Bean

(d) Transforming an instance of PIM Bean to an
instance of PIM DataBase

(e) Projection in Templates for Generating Data Access
Classes, Database from an instance of PIM
DataBase

Generating GUI, BLL and SAL Layers

In order to generate the following layers: UI and
Application layers, the authors have used a certain meta-
model based on DSL Language (a detailed description in
(Lachgar and Abdali, 2017a)). This meta-model lists all the
essential components for designing a mobile application,
such as graphic components (e.g., button, text box, lists,
containers, menus, etc.), navigation between screens, sensor
specification which will be used in the application (e.g.,
Compass, Accelerometer, Orientation, Light sensor, etc.)
and the specification of the native functions requested in an
application (e.g., Camera, SMS, Telephony, Storage, Alert,
Vibration, Geolocation, Contacts, etc.). Moreover, the
proposed metamodel supports also other key features like
Networking services.

The architecture for generating the GUI, BLL and
SAL layers is shown in Fig. 6.

Fig. 4: Generating code with Xtend from a non-text model

Fig. 5: Different steps for the generation of DAL, BOL and DL layers

UML class
diagram

PIM beam

M2M with
ATL

M2M with
Xtend

Beams and
GUI

.java and .xml

.swift and .xib

.cs and .xaml

.php (services)

M2M with
ATL

.java

.swift

.cs

.php (services)
 M2T

with Xtend
DAO
classes

PIM DataBase

Class generator {

 def static void main (string[] args) {

 new generator().generate("model.xmi")

 }

 def dispatch generate(List<Beans> beans)'''

 …

}

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

423

To realize the different transformations in this second
step, the Xtext language was used for the creation of
DSL, the Xtend 2 language and the generation of the
different layers. The code generation with Xtend2 is
faster than by Xpand (Adopted in some works such as
(Heitkotter et al., 2013)), because the templates in
Xtend2 are compiled in advance and not interpreted as in
Xpand. Xtext is the pillar of the creation of an external
textual DSL, it is a solution of Eclipse Modeling Project
for the implementation of textual DSLs and their
associated editors. Xtext is the considered solution to
allow the formalization of the mathematical logic of the
executable models, as well as the input of the logical
expressions associated to the definition of a conditional
sequence. In the case of Xtext, the meta-model of the
data structure is inferred from the syntax description of

the DSL; it is therefore easier to change a language,
since the implications on the data structure are
immediate. Xtend 2 offers a flexible and modular
specification of the generated code through the
management of imports and aspects. Besides, the
generation rules for each model entity support the
polymorphic dispatch. This is an extension of the visitor
design template allowing an object to visit the function
suited to its type. In the case of the polymorphic dispatch
and unlike the visitor, no intrusive artifact is needed in
the model code to achieve this behavior. It is the visited
methods themselves that define the type of object they
support. This is particularly useful in a compiler where
an intermediate representation is often described by an
abstract syntax tree, whose nodes are specializations of a
single abstract definition.

Fig. 6: Architecture for the generation of GUI, BLL and SAL layers

Fig. 7: Extract from the UML Meta-model of a class diagram

Graphic User
Interface (GUI)

Business Logic
Layer (BLL) Mobile DSL

Service Access
Layer (SAL)

Transformation
engine

Model

name: EString

isComposition: EBoolean = false

isAgregation: EBoolean = false

isGeneralization: EBoolean = false

ModelElement

name: EString

Classifier

PrimitiveDataType

Association Attribute

[0..*] source

[0..*] target

Class [0..1] return Type
[0..*] parameters

Operation

name: EString [0..*] operations [0..*] attributes

[0..1] type

[0.,*]modelElements

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

424

Fig. 8: Target meta-model for generating business layer (PIM Bean)

Transformation and Generation of Business

Classes, Data Access Classes, Database and

CRUD Interfaces

Source Meta-Model

The class diagram presents a way to model an
application in a business point of view. This diagram
describes the relationships between the different objects that
interact with each other to build a particular information
system. Thus, the authors used the UML meta-model as a
source for a platform-independent model to present the
different business classes (Beans) of a mobile application
via model-to-model transformations. Once the new
template is created model-to-text transformations are
applied to generate Java business classes for Android, C#
for Windows Phone and Swift for iOS. An extract of UML
meta-model used is presented in the Fig. 7.

Target Meta-Model for Generation the Business

Layer

For the business layer, the authors were based on the
meta-model, detailed below as targets. And using the
ATL language the authors have carried out the various

model-to-model transformations from the UML meta-
model to the suggested PIM Bean meta-model. Then,
Model-to-Text transformations are implemented to
generate the native code for the business layer and
presentation layer (CRUD interfaces).

The target meta-model is shown in the Fig. 8:

(a) The model-to-model transformation rules are

presented below:

• For each UML model instance, a PIM Package
instance must be created

– Their names must match. The package
name contains the full path information.
The path separation is a point (.)

• For each instance of UML class, a PIM Bean
instance must be created

– Their names must match
– The package reference must match
– Bean modifiers must be public

• For each instance of UML attribute, a PIM
Field instance must be created

Method

name: EString

body: EString

returnType: EString

name: EString

visibility: EString

type: EString

Filed

[0..*] fileds

[0..*] methods

Bean

name: EString

visibility: EString
name: EString

PackageBeans

[0..*] beans

[0..1] packageBean
[0..1] target [0..1] source

Association

Package

name: EString

association: EBoolean = false

extend: EBoolean = false

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

425

– Their names must match
– Their types must match
– Modifiers must be private if the class is not

a base class and protected if the class is a
base class (encapsulation principle)

• For each UML Operation instance, a PIM
Method instance must be created

– Their names must match
– Their types must match
– Modifiers must match

• For each UML Association instance, a PIM
Association instance must be created

– Their names must match
– If the association is a generalization, we

affect the Boolean value true to the extend
property. If the association is an
aggregation or a composition we affect the
Boolean value true to the association
property

(b) The model-to-text transformation rules are presented
below :

• For Android:

– For each PackageBean PIM instance, a
folder tree will be generated in the main
package, the separation between each
folder is identified by the “.” In the
package name

– For each PIM Bean instance, a JAVA class
must be created

• Their names must match
• Package names must match
• Modifiers must match
• Fields must match
• For each field two methods must be

generated (Setters and getters), with a
public modifier

• This class must contain two
constructors, one to initialize all the
fields and one without parameters

• The methods must match and generate
in the class

– For each PIM Association:

• If the value of extend = true, it means
that the source class inherits (extends)
from the target class. Thus, the
manufacturer of the derivatives must
call the base class constructor

• If the value of association = true, it
means that the target class is included

in the source class (declare a target lass
object in the source class and apply the
rules as in case of fields)

• For Windows Phone:

– For each PackageBean PIM instance, a
folder tree will be generated in the main
package, the separation between each
folder is identified by the “.” In the
package name

– For each PIM Bean instance, a C# class
must be created

• Their names must match
• The names of packages and

namespaces must match
• Modifiers must match
• Fields must match
• For each field the getters and setters

must be generated
• This class must contain two

constructors, one to initialize all the
fields and one without parameters

• The methods must match and generate
in the class

– For each PIM Association:

• If the value of extend = true, it means
that the source class inherits (:) from
the target class. Thus, the manufacturer
of the derivatives must call the base
class constructor

• If the value of association = true, it
means that the target class is included
in the source class (declare a target
class object in the source class and
apply the rules as in case of fields)

• For iOS:

– For each PackageBean PIM instance, a
Swift module is associated

– For each Bean PIM instance, a Swift class
must be created

• Their names must match
• The names of the modules takes the

last word after the “.” In the PIM
PackageBean name

• Modifiers must match
• Fields must match
• For each field the getters and setters

must be generated
• The class must contain the init ()

method without parameters and the init

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

426

(parameters) method to initialize the
arious fields

• The methods must match and generate
in the class

– For each PIM Association:

• If the value of extend = true, it means
that the source class inherits (:) from the
target class. Thus, the init () method of
the derived class must call the init ()
method of the base class (super)

• If the value of association = true, it
means that the target class is included
in the source class (declare a target
class object in the source class and
apply the rules as in the case of fields)

Target Meta-Models for the Generation of the Data

Layer and the Data Access Layer

For database generation the authors applied
modelto-model transformations from the PIM Bean
metamodel to the relational PIM DataBase meta-
model presented in Fig. 9.

The various transformations rules applied are
described below:

• For each PIM Bean instance, a table must be created

– Their names must match
– The primary key for each table must be an

INTEGER, auto-increment named id “TABLE
NAME”

– Primitive type attributes are transformed into
columns, their names must match and their
types will be (INTEGER, TEXT or REAL).
Each primitive type must be converted into one
of these three types

– For object types are transformed into foreign
keys, their types and the type of the
corresponding attribute converted to one of the
types: INTEGER, TEXT or REAL

In the case of an inheritance association, the primary

key of the child class should not be auto-increment and
will also play the role of a foreign key that reference to
the corresponding parent table.

(a) Generation of Classes and Interfaces

For the generation of the data access layer and the
data layer, the authors were based on the previously
obtained DataBase PIM. The model proposed target
template is shown in the Fig. 10. The MySQLiteHelper
class is used to define the database name, the database
version and the database creation queries. As well as,
requests for the deletion of tables of the database in case
of update (Fig. 10 for more details).

Fig. 9: PIM DataBase

Fig. 10: Meta-model: Creating and updating the database

Table
Column EType

name: EString
[0..*] columns name: EString

type: EType = INTEGER

INTEGER

TEXT

REAL

[0..*] keyOf [0..*] key

CrudProjectPackage

- name: String

MySQLiteHelper

- DATABASE VERSION: int{readOnly}

- DATABASE NAME: String{readOnly}
UtilPackage

- name: String
+ MySQLitHelper (context: Context)
+ createDataBase (dataBase: SQLiteDatabase): void

+ upgradeDataBase (dataBase: SQLiteDatabase, oldVersion: int, neewVersion: int): void

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

427

Fig. 11: Meta-model: Creation of service classes (DAO)

The projection rules are defined as follows:

• In the MySQLiteHelper class:

– The following constants are defined:

• The name of the database is identical to the
name of the project

• The version of the database is identical to
the version of the application

• A request for the creation of each table
named : CREATE_TABLE_«table.name»

– In the createDataBase() method, we execute the
creation requests previously defined

– In the upgradeDataBase() method, we delete the
database if the new version is increased
compared to the old version, then we call the
createDataBase() method to recreate the database

For the generation of DAO classes, the authors propose

the target meta-model that is based on the pattern “data
access object pattern” presented in the Fig. 11.

Description:

• The generic interface (IDao) defines the standard

operations to be performed on a model object
• The concrete class (DaoImp) that implements the

IDao interface is responsible for obtaining data from
a data source that can be a database/xml file or any
other storage mechanism

The projection rules are defined as follows:

• For each PIM Bean instance, a dao class will be

created
– The name of the dao class is generated as

follows: «Bean.name»Service.
– This class contains the constants declaration:

• The name of the associated table
• The fields of the table
• A table that stores the fields of the table
• Method definitions (CRUD) generated

using specific templates for each platform

• Exchange of data between SQL database server and
mobile application

– General principle:

• The application builds HTTP requests (type
GET or POST) URL =
http://serveur/script? Parameters
parameters = select conditions, e.g.: id = 1

• The client application (Mobile) sends this
request to the SQL server and waits for the
response

• The server script executes the query and
then returns the result encoded in JSON to
the application

• The mobile application decodes the result
and displays it

MySQLiteHelper

- DATABASE VERSION: int{readOnly}

- DATABASE NAME: String{readOnly}

+ MySQLiteHelper (context: Context)

+ createDataBase (dataBase: SQLiteDatbase): void

+ upgradeDataBase (dataBase: SQLiteDatabase, oldVersion: int, newVwesion: int): void

CrudProjectPackege

Daolmpl Bean

1

helper
- name: String

1..*
<<use>>

- name: String - name: String

1

DaoPackege

- name: String IDao <T>

+ create (o: T): boolean
+ undate (o: T): boolean

+ delete (o: T): boolean

+ findByld (id: int): T
+ findAll(): List <T>

1

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

428

• Each CRUD method will be associated
with a specific server-side script

• The server-side application is generated
from PIM Bean model, this application
respects a layered architecture (in PHP 5)
and the data exchange is done with JSON

• Generation of CRUD GUIs associated with different
Beans:

– For each PIM Bean instance, three graphical
user interfaces are generated:

• Add-up-Interface: This interface uses the
create() method of the data access layer. After
the adding the user will be redirected to a
second interface to display the list of data

• Listing-data-Interface: This interfaces uses
the findAll() method of the data access
layer. After selecting an object from the
list, two actions are presented to the user:
Either he can remove the selected object by
using in a chained way the following
methods; findById and delete. Or he will
be moved forward to the update view

• Update-interface: This interface makes it
possible to modify the result object of the
selection from the list by calling the
findById() and update () methods and
after the change the user will be
redirected to the data list

• The navigation between the different
interfaces in Android is generated in a
menu main file redirecting to the different
list screens associated with each bean. In
the case of iOS by defining additional
connections (called outlets and actions)
between the views in the storyboard and
the view controller source code files, etc.

• Some correspondences between the different target
languages:

– Typology and declarations of variables,
In the Table 1, some matches between the
different target languages in terms of topology
and declarations of variables are given

– Protocols,
In Table 2, the correspondence between the
different target languages in terms of protocols
is illustrated

– Classes and Genericity
In Table 3, few matches between the different
target languages in terms of object-oriented
programming concepts (e.g., classes,
constructors, inheritance, etc.) are presented

– Conditions, loops and functions,
In Table 4, some matches between the different
target languages in terms of basic programming
concepts (e.g., Conditions, loops, etc.) are given

Table 1: Syntax of variable declaration and types according to the three mobile platform language

 Swift C# Java

Boolean Bool bool Boolean

Constant let const final

Declaration var var (no equivalent)

Float Float, Double float, double float, double

Integer Int int int

String String (value) String (reference) String (reference)

Table 2: Syntax of protocols according to the three mobile platform language

 Swift C# Java

Protocol Protocol Interface Interface

Implements : : implements

Table 3: Syntax of classes and genericity according to the three mobile platform language

 Swift C# Java

Constructor Init Constructor Constructor

Class Class Class Class

Inheritance : : extends

Access private, public private, public, protected, internal private, public, protected, default

Self Self this this

Object AnyObject, Any Object Object

Parent : : super

Generics type generic types generic types generic types

Generics function generic functions generic functions generic functions

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

429

Table 4: Syntax of conditions, loops and functions according to the three mobile platform language

 Swift C# Java

Iterating Over Array for item in arr { for each (var item in arr) { for (type item: arr) {

 / / do something / / do something / / do something

 } } }

Is Array Empty? if arr.isEmpty { if (arr.Length = = 0) { if (arr.length == 0) {

 / / array is empty / / array is empty / / array is empty

 } } }

For Loops for var i = 0; i <= 5; ++ i { for (var i = 1; i <= 5; i ++) { for (int i = 1; i <= 5; i ++) {

 / / do something with i / / do something with i / / do something with i

 } }

For Loops for var i = 0; i <= 5; ++ i { for (var i = 1; i <= 5; i ++) { for (int i = 1; i <= 5; i ++) {

 / / do something with i / / do something with i / / do something with i

 } } }

Conditional statements if i > 6 { if (i > 6) { if (i > 6) {

 / / do something / / do something / / do something

 } else if i > 3 && i <= 6 { } else if (i > 3 && i <= 6) { } else if (i > 3 && i <= 6) {

 / / do something / / do something / / do something

 } else { } else { } else {

 / / do something / / do something / / do something

 } } }

Switch statement var word = "A" var word = "A"; String word = "A";

 switch word { switch (word) { switch (word) {

 case "A": case "A": case "A":

 / / do something / / do something / / do some thing

 case "B" : break; break;

 / / do something case "B" : case "B":

 default: / / do something / / do some thing

 / / do something break; break;

 } default: default:

 / / do something / / do some thing

 break; break;

 } }

Functions func sayHello (name: String) -> String { string sayHello (string name) { String sayHello (string name) {

 / / do something / / do something / / do something

 } } }

Transformation and Generation of Custom

Graphical Interfaces, Treatment Classes and

Classes Access to Services

Source Meta-Model

The meta-model published in (Lachgar and Abdali,
2017b) allows to create basic models allowing the
generation:

• Graphical user interfaces
• Configuration files containing:

– Information about the project (domain, icon,
version, author, etc.)

– The declaration of activities
– The specification of permissions
– The specification of embedded sensors
– etc.

• Navigation between different screens
• Navigation menus
• Classes of data processing with events on graphic

components

• Access to different native APIs
• Access to embedded sensors

In this part, the authors contribute to an extension
of their meta-model by adding the possibility of
modeling the basic screens (e.g., LoginScreen,
MapScreen, MediaScreen, etc.), to generalize the
styles applied on the screens, to offer a mechanism to
model access to previously defined web services. The
added classes are marked in green. The source meta-
model is shown in the Fig. 12.

Case Study: Product Management

In order to prove their approach, the authors have
developed a case study through which they tried to
focus on the business part of the mobile application.
The goal is to have a complete android prototype for a
product management app. The following class
diagram describes the business classes of this
application (Fig. 13 for more details).

The structure of the generated app under Android
Studio is illustrated in Fig. 14.

M
o
h
am

ed
 L
ach

g
ar e

t a
l. / Jo

u
rn
al o

f C
o
m
p
u
ter S

cien
ce 2

0
1
9
, 1
5
 (3

): 4
1
6
.4
3
4

D
O
I: 1

0
.3
8
4
4
/jcssp

.2
0
1
9
.4
1
6
.4
3
4

4
3
0

F
ig
. 1
2
: E

x
ten

sio
n
 o
f D

S
L
 M

o
b
ile M

eta-m
o
d
el

<<enumeration>>

Sensor

Accelerometer

Compass

Orientation

Gravity

Pressure

Gyroscope

Proximity

Temperature

Magnetometer

AmbientTemperature

LinearAccelerometer

Light

<<enumeration>>

Event

onTouch

onClick

keyUp

keyDown

…

<<enumeration>>

Res

Camera

PIM

Network

ExternalStorage

Sms

FileSystem

Bluetooth

Geolocation

Telephony

Microphone

…

ListBoxItem

- value: String

- event: Event

- target: String

Items 1..*

RadioButton

WidgetGroup

RadioGroup

- checked: boolean

Item

1..*

ListBox

Spinner

widgets

0..*

Button

Widget

Input

- type: InputType

- text: String

- icon: String

- target: String

CheckBox

GridLayout

Label

Submenu

Controller

ScrollView

- checked: Boolean

- title: String

- icon: String

- target: String

subMenues

Media

View

views

views

0..*

- id: int

- width: String

- height: String

- style: String

- above: String

- marginTop: String

- matginBottom: String

- marginLeft: String

- marginRight: String

- toRightOf: String

- toLeftOf: String

- below: String

- orientation: String

- event: Event

…

Layout

LinearLayout

- column: String

- alignment: Value

…

RelativeLayout

Video

Menu

0..1

views

0..*

MapScreen

TakePictureScreen

WebService

- url: String

- methodName: String

- action: String

- nameSpace: String

1..*

screens menu

0..*

services

style

1

Screen

- title: String

- orientation: String

…

Application

- root: String

- title: String

- version: String

- author: String

- icon: String

- backgroundImage: String

items

DataBase

- version: int

- name: String

dataBases

0..*

sensors

0..*

0..*

resources

LoginScreen

Style

Items

1..*

- name

- name: String

- value: String

Resource

Sensors

<<enumeration>>

Statue

<<enumeration>>

Value

<<enumeration>>

InputType

- value: Res

- value: Sensor

- delay: String

- accuracy: Statue

- output: int

HIGHT

LOW

MEDIUM

UNRELIABLE

center

left

right

stretch

…

date

time

number

text

password

email

multiline

…

0..*

0..1

extends

0..*

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

431

Fig. 13: Simplified Class Diagram ”Product Management”.

Fig. 14: Architecture of the Android application generated under Android Studio

The navigation diagram describes in a concise way

the navigation between all the application’s screens (for
more details, Fig. 15). Therefore, the generated
navigation menu allows for a more fluid navigation
between screens.

The generated UI part specific to the Android
platform is described in Fig. 16.

A navigation menu is generated, it allows switching
between activities in a more fluid way. The generated GUIs
targeting the Android platform are presented in Fig. 16.

Business Objects Layer

Data Access Layer

Business Logic Layer

Graphic User

package ma.lamai.app [prod]

Product

Category - products

- id: int
- title: String
- description: String
- price: double
- status: String

- creationData: date

1..* 1
- id: int

- title: String

app

manifests

AndroidManifest.xml

Java

app,lamai.ma.prod

beans

Category

Product

dao

IDao

service

CategoryAdapter

ProductService

until

CategoryAdapter

ProductService

MySQLiteHelper

AddCategory

AddProduct

ListCategory

ListProduct

MainActivity

UpdateCategory

UpdateProduct

app,lamai.ma.prod

(androidTest)

 rest

drawable

layout

activity_add_catagory.xml

activity_add_product.xml

activity_list_catagory.xml

activity_list_product.xml

activity_main.xml

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

432

Fig. 15: Diagram of navigation between the screens of the ”Product Management” application

Fig. 16: Some screens of the application “Product management”

add delete

validate

update

List Category

Add Category

Update

Category
List Category

Main

add

List Product

Add Product

validate

List Product

delete

update
Update Product

The main screen List of categories Add category

Navigation menu Editing and deleting Edit category

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

433

Table 5: Comparison between the proposed approach and the traditional approach

 According to the proposed approach According to the traditional approach

Number of files in the project 23 files 23 files

Duration 10 min 30 min

Number of files edited by the developer 0 files 23 files

In this case study, the CRUD methods and interfaces

of a simple product management application were
generated. The manipulated data is stored in an
embedded SQLite database. The table compares the
proposed approach to the traditional approach. The
results presented below are collected during the
examination of end of training, on mobile web
programming, at the Institute Specialized in Information
Technologies and Offshoring of Marrakesh, Morocco
(for more details, Table 5).

Limitations

The suggested code generator still suffer from some
limitations and shortcomings. Namely, it just takes into
account the generation of mobile business applications,
the generation of CRUDs and the simple associated
graphical interfaces, without taking into account
applications with existing code and with more
complicated graphical interfaces (e.g. games, etc.).

However, it will be improved by integrating other
UML diagrams, such as the sequence diagram and the
activity diagram as source models. Further, the definition
of other transformation rules, in order to produce
genuine mobile applications can be made.

Conclusion and Future Work

In this paper an approach for the generation of
multiplatform mobile applications with respect to a
multilayer architecture is presented. For that, a
combination of UML modeling with the dedicated
Mobile DSL language is considered. This new
approach allows the generation of business classes, data
access classes, service access classes, configuration
files, web services for standard CRUD functions, etc. A
case study is carried out in order to validate this
approach and the CRUD functionality for a simple
Android application is generated. As a perspective, we
look forward to implement the code generator to
generate applications for other mobile platforms (e.g.,
iOS, Windows phone, etc.).

The future directions of this work is to extend the
proposed approach to better model the dynamic and
business view of a mobile application. In other words,
how to model business logic in an efficient way,
especially if the business rules involve several business
entities and requires several calls to complex services.
Here the Object Constraint Language (OCL) can be
used, which provides constraint and object query
expressions on any Meta-model.

Future works will also focus on other aspects such as:

• Implementing Flexible Data Model: Relational

database are still a good choice, if an app requires
strong data consistency. But, when these requirements
can be relaxed, NoSQL databases such as CoucheBase,
FireBase or Realm offer much greater flexibility

• Data sync: It is important to have the ability to
control how the system syncs. This includes
replication strategy, conditional replication and
replication filtering

• Secure data at rest and in motion: Authentication
should be flexible and allow the use of standard,
public and custom authentication providers

Acknowledgment

We thank the reviewers for their careful reading of
the paper, their insightful comments and suggestions
that greatly improved the manuscript.

Author’s Contributions

Mohamed Lachgar and Khalid Lamhaddab:
Contribute in writing and formatting of the manuscript and
the analysis, development and testing of the application.

Abdelmounaim Abdali and Khalid Elbaamrani:
Advise research project and design the research plan and
contributed to the paper writing.

Ethics

This article is original and contains unpublished
material. The authors confirm that are no conflict of
interest involved.

References

Armstrong, D.J., 2006. The quarks of object-oriented
development. Commun. ACM, 49: 123-128.

 DOI: 10.1145/1113034.1113040
Benouda, H., M. Azizi, R. Esbai and M. Moussaoui, 2016a.

Code generation approach for mobile application using
acceleo. Int. Rev. Comput. Software, 11: 160-166.
DOI: 10.15866/irecos.v11i2.8480

Benouda, H., M. Azizi, R. Esbai and M. Moussaoui,
2016b. MDA Approach to Automate Code
Generation for Mobile Applications. In: Mobile and
Wireless Technologies, Kim, K., N.
Wattanapongsakorn and N. Joukov (Eds.), Springer,
Singapore, pp: 241-250

Mohamed Lachgar et al. / Journal of Computer Science 2019, 15 (3): 416.434

DOI: 10.3844/jcssp.2019.416.434

434

BLU AGE, 2010. Blu age-agile model transformation.
Netfective Technology SA.

Cabot, J., 2015. Clarifying concepts: Mbe Vs mde Vs
mdd Vs mda. Post at MOdeling LAnguages,

Castillo, A., G. de Clunie and K. Rodríguez, 2013. A
system for mobile learning: A need in a moving
world. Proc.-Soc. Behav. Sci., 83: 819-824.

 DOI: 10.1016/j.sbspro.2013.06.154
El Hamlaoui, M., 2015. Mise en correspondance et

gestion de la coh´erence de mod`eles h´et´erog`enes
´evolutifs. PhD Thesis, Universit´e Toulouse le
Mirail-Toulouse II.

Franky, M.C., J.A. Pavlich-Mariscal, M.C. Acero, A.
Zambrano and J.C. Olarte et al., 2016. Ismlmde: A
practical experience of implementing a model driven
environment in a software development
organization. Int. J. Web Inform. Syst., 12: 533-556.
DOI: 10.1108/IJWIS-04-2016-0025

Hailpern, B. and P. Tarr, 2006. Model-driven
development: The good, the bad and the ugly. IBM
Syst. J., 45: 451-461. DOI: 10.1147/sj.453.0451

Heitkotter, H., T.A. Majchrzak and H. Kuchen, 2013.
Cross-platform model-driven development of
mobile applications with md2. Proceedings of the
28th Annual ACM Symposium on Applied
Computing, Mar. 18-22, ACM, Coimbra, Portugal,
pp: 526-533. DOI: 10.1145/2480362.2480464

Jiang, S. and H. Mu, 2011. Design patterns in object
oriented analysis and design. Proceedings of the
IEEE 2nd International Conference on Software
Engineering and Service Science, Jul. 15-17, IEEE
Xplore Press, Beijing, China, pp: 326-329.

 DOI: 10.1109/ICSESS.2011.5982229
Jobe, W., 2013. Native apps vs. mobile web apps. Int. J.

Interactive Mobile Technol., 7: 27-32.
 DOI: 10.1016/j.jss.2015.08.047
Kang, Y., Y. Zhou, H. Xu and M.R. Lyu, 2016.

Diagdroid: Android performance diagnosis via
anatomizing asynchronous executions. Proceedings
of the 24th ACM SIGSOFT International
Symposium on Foundations of Software
Engineering, Nov. 13-18, ACM, Seattle, WA, USA,
pp: 410-421. DOI: 10.1145/2950290.2950316

Kapos, G.D., V. Dalakas, A. Tsadimas, M. Nikolaidou
and D. Anagnostopoulos, 2014. Model-based
system engineering using sysml: Deriving
executable simulation models with QVT.
Proceedings of the IEEE International Systems
Conference, Mar 31-Apr. 3, IEEE Xplore Press,
Ottawa, ON, Canada, pp: 531-538.

 DOI: 10.1109/SysCon.2014.6819307

Lachgar, M. and A. Abdali, 2017a. Decision framework
for mobile development methods. Int. J. Adv.
Comput. Sci. Applic., 8: 110-118.

Lachgar, M. and A. Abdali, 2017b. Modeling and
generating native code for cross-platform mobile
applications using DSL. Intell. Autom. Soft
Comput., 23: 445-458.

 DOI: 10.1080/10798587.2016.1239392
Paige, R.F., N. Matragkas and L.M. Rose, 2016. Evolving

models in model-driven engineering: State-of-the-art
and future challenges. J. Syst. Software, 111: 272-280.
DOI: 10.1016/j.jss.2015.08.047

Plakalovic, D. and D. Simic, 2010. Applying MVC and
PAC patterns in mobile applications. arXiv preprint
arXiv:1001.3489

Richards, M. and N. Ford, 2018. Fundamental software
architecture patterns. O’Reilly Media, Incorporated.

Sabraoui, A., M. El Koutbi and I. Khriss, 2013. A MDA-
based model-driven approach to generate GUI for
mobile applications. Int. Rev. Comput. Software J.,
8: 845-852.

Salvaneschi, G. and M. Mezini, 2014. Towards Reactive
Programming for Object-Oriented Applications. In:
Transactions on Aspect-Oriented Software
Development XI, Chiba, S., É. Tanter, E. Bodden, S.
Maoz and J. Kienzle (Eds.), Springer, pp: 227-261

Sarcar, V., 2016. Abstract Factory Patterns. In: Java
Design Patterns, Sarcar, V. (Ed.), Apress, Berkeley,
CA., ISBN-10: 1484218027, pp: 109-114

Stencel, K. and P. Wegrzynowicz, 2008.
Implementation variants of the singleton design
pattern. Proceedings of the OTM Confederated
International Workshops and Posters on the Move
to Meaningful Internet Systems, Nov. 09-14,
Springer, Monterrey, Mexico, pp: 396-406.

 DOI: 10.1007/978-3-540-88875-8_61
Veisi, P. and E. Stroulia, 2017. AHL: Model-driven

engineering of android applications with BLE
peripherals. Proceedings of the International
Conference on E-Technologies, (CET’ 17),
Springer, pp: 56-74.

