

 © 2019 Atifi Meriem and Marzak Abdelaziz. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Combining Model-Based Testing and Failure Modes and

Effects Analysis for Test Case Prioritization: A Software

Testing Approach

1
Atifi Meriem and

2
Marzak Abdelaziz

1Faculty of Sciences Ben M’sik, University Hassan II,

Avenue Driss El Harti B.P 7955, Sidi Othmane, Casablanca, 20320, Morocco
2Faculty of Sciences Ben M’sik, Laboratory of Information Technology and Modeling,

Avenue Driss El Harti B.P 7955, Sidi Othmane, Casablanca, 20320, Morocco

Article history

Received: 09-01-2019
Revised: 07-02-2019
Accepted: 03-04-2019

Corresponding Author:
Atifi Meriem
Laboratory of Information
Technology and Modeling,
Faculty of Sciences Ben M’sik,
Morocco
Email: meryematif@gmail.com

Abstract: Due to The complexity of modern software projects and the

increasing size of software systems, it becomes difficult to manually

perform tests with limited resources. Also, manual testing cannot assure

that the software is tested using all possible combinations of inputs.

Therefore, automate software testing activities have become primordial in

the Software Development Life Cycle (SDLC). Model-based testing is a

prominent validation technique in software testing that uses models of the

system under test to automatically generate test cases; this generation

leads to a large number of test cases; which cannot exhaustively be

executed, due to time and cost constraints. Moreover, the test-cases

execution order has an influence on the rate at which faults can be

detected. Therefore, it is essential to prioritize test cases in order to

execute the most important with limited time and cost. On the other

hand, The Failure Mode and Effects Analysis (FMEA) considered as

one of the formal techniques to do risk based testing. It offers a

structured methodology to identifying the system failure modes,

analyzing their effects and setting up controls to risk reducing and

improve the quality of systems or products. By applying such a

technique to Model-based testing projects, we can benefit from FMEA

analysis and the automating in same project. Through this paper, we

introduced a new model based testing approach for prioritizing and

ranking test cases according to the requirements and failure modes. In

the suggested approach we used the Failure Mode and Effect Analysis

methodology in model based testing way to automatically generate a set

of pair {test case, priority number} to prioritize test cases. It differs

from existing approaches in that it generates two types of test cases;

requirement-based test cases and failure mode-based test cases. For the

purpose of experimental evaluation and analysis, we will compare the

suggested approach with some well-known prioritization methods and

we will present a case study to illustrate the potential application of the

proposed approach in a future work.

Keywords: Model-Based-Testing, Software Testing, Test Case

Prioritization, Failure Mode and Effect Analysis, Risk Priority Number

Introduction

Software testing is a process of verifying and

validating that a software system works as expected

and meets the technical and business requirements. It is

considered as an important activity to assess software

quality. This activity has always been a time and cost

consuming task. In this context, much research has

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

436

been performed aiming at reducing the time and costs

of software testing. Thus, model based testing is being

profoundly practiced in most of the software industries

to achieve this goal. It represents an attractive solution

to do software testing.
Model based testing is a software testing technique

that relies on models of a system under test and/or its
environment to automatically generate test cases for the
system (Utting et al., 2012). This generation leads to a
large number of test cases; which cannot exhaustively be
executed and the execution order has an influence on the
rate at which faults can be detected (Huang et al., 2017;
Rothermel et al., 1999). Therefore, it is essential to
prioritize test cases in order to execute the most
important with limited time and cost. This prioritization
of test-cases can increase the rate at which critical faults
are detected in the first run.

The main objectives of test case prioritization are to

rank the test cases according to an adequacy criterion

(Rothermel et al., 2001; Elbaum et al., 2001) and to reveal

faults earlier so as to reduce the total cost of testing.

Rothermel et al. (2001) have defined the test case

prioritization problem and described several issues

relevant to its solution. This problem is defined as follows.

Given:

• T: A test suite

• T’ and T’’: Are different variations of the test suite

• PT: The set of permutations of T

• f: A function from PT to the real numbers, which

represents the preference of the tester while testing

Problem

Find T'∈PT such that:

()() () ()T T T f T f T′′ ′′ ′ ′ ′′∀ ≠  ≥  

Different test case prioritization techniques are

proposed. These techniques can be categorized into

seven categories, we find; code-based test case

prioritization, model-based test case prioritization,

requirement-based test case prioritization, risk-based test

case prioritization and model and risk-based test case

prioritization, history-based test case prioritization.

This classification is described and detailed in the

form of table as show in Table 1.

For CBTCP, the source code of the system under

test is used to prioritize the test cases. This category

of techniques involve ranking test cases using the

number of covered statements, the number of covered

lines of code and the number of functions that were

exercised by the test case. Table 2 illustrates some

existing test case prioritization techniques that are

based on the code coverage.

Table 1: Classification of TCP techniques

Classification Technique

Category 1 Code-Based Test Case Prioritization (CBTCP)
Category 2 Model-Based Test Case Prioritization (MBTCP)
Category 3 Requirement-Based Test Case Prioritization (ReBTCP)
Category 4 Risk-Based Test Case Prioritization (RBTCP)
Category 5 Requirement and Risk Based Test Case Prioritization (ReRBTCP)
Category 6 Model and Risk Based Test Case Prioritization (MRBTCP)
Category 7 History-Based Test Case Prioritization (HBTCP)
Category 8 Search-Based Test Case Prioritization (SBTCP)

Table 2: CBTCP techniques

Scope Testing type Techniques

Code-based Regression testing Mishra et al. (2018),
 New testing Chauhan (2018),

Table 3: MBTCP techniques

Scope Testing type Techniques

Model-Based Regression testing Panigrahi and Mall (2010), Korel and Koutsogiannakis (2009),
 Tahat et al. (2017), Mahali and Mohapatra (2018)
 New testing Gökçe et al. (2015), Belli and Gökçe (2010),

Table 4: ReBTCP techniques

Scope Testing type Techniques

Requirement -Based New testing Srikanth and Williams (2002; 2005a),
 Regression testing Kavitha and Sureshkumar (2010), Ashraf et al. (2012)

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

437

For MBTCP, a model that represents system

behavior is used to prioritize test cases. The model

based test case prioritization may improve the early

fault detection as compared to the code-based test

case prioritization (Korel et al., 2008). Table 3

illustrates some existing model based test case

prioritization techniques.

For ReBTCP, requirements information derived

during requirement extraction are used to improve the

effectiveness of test case prioritization. Table 4

illustrates some existing Requirement based test case

prioritization techniques.

For RBTCP, the risk factor is used to improve the

effectiveness of test case prioritization. Table 5

illustrates some existing risk based test case

prioritization techniques.

For ReRBTCP, the risks associated with software

requirements are used for test case prioritization (James,

1999). Table 6 illustrates some existing requirement and

risk based test case prioritization techniques.

For MRBTCP, the risk factor and the models are used

in same times to improve the effectiveness of test case

prioritization. Table 7 illustrates some existing model

and risk based test case prioritization techniques.

Table 5: RBTCP techniques

Scope Testing type Techniques

Risk-Based New testing Wang et al. (2018)

 Hettiarachchi et al. (2016)

Table 6: ReRBTCP techniques

Scope Testing type Techniques

Requirement New testing Srikanth et al. (2016),

and risk based James (1999)

 Srivastva et al. (2008)

 New and Srikanth et al. (2005b)

 Regression testing

Table 7: MRBTCP techniques

Scope Testing type Techniques

Model and New testing Wang et al. (2018),

risk-based Zhang et al. (2018),

 Regression testing Rhmann and Saxena (2017)

Table 8: HBTCP techniques

Scope Testing Type Techniques

History-based Regression testing Huang et al. (2012),

 Kim and Porter (2002),

Table 9: SBTCP techniques

Scope Testing type Techniques

Search-based Regression testing Li et al. (2007),

 Acceptance testing Shin et al. (2018)

Table 8 illustrates some existing history based test

case prioritization techniques.

Table 9 illustrates some existing search based test

case prioritization techniques.

In this paper, we proposed a new model based test

case prioritization approach. We exposed how to

perform test-case prioritization in model based testing

way using failure mode and effect analysis technique.

The proposed approach is both model-based and

failure mode-based. It combines model based testing

and risk based testing to automatically generate test

cases. The main purpose of this approach is to generate

test cases associated with their prioritization to rank

test execution, consequently, higher priority test cases

are executed before lower priority test cases.

The rest of this paper is organized as follows.

Section 2 presents discussion of related works. Section

3, presents the necessary background about model

based testing technique and their process. Section 4,

describes Failure Mode and Effect Analysis (FMEA)

method and its process. In Section 5, the main

contribution of the paper is introduced, it presents the

proposed approach to the test case prioritization

problem in model based testing way. Section 6

discusses the benefits and limitations of the new

approach versus existing approaches. Finally, Section 7

concludes the paper and describes future work.

Related Works

In the literature, several techniques for Test Case

Prioritization have been proposed. However, Huang et al.

(2017), have examined and investigated test cases

prioritization techniques for abstract test cases. They

have categorized the existing techniques into four

categories; a Non-Information-Guided Prioritization

category (NIGP), Interaction Coverage Based

Prioritization category (ICBP), Input-model Mutation

Based Prioritization category (IMBP) and similarity

based prioritization category (SBP). The main finding of

this work is that ICBP category has better testing

effectiveness than other categories.

Sultan et al. (2017), have performed an analytical

review and comparison of different test cases

prioritization techniques. The comparison study have

exposed and compared Fault Severity technique carried

out by Varun Kumar and Kumar (2010), fault

Localization technique proposed by Kavitha and

Sureshkumar (2010), Mutation faults technique effectuate

by Malhotra and Bharadwaj (2012), Ordered Sequence of

Program Elements technique, Average Percentage of

Faults Detected (APFD) technique performed by

Srivastava (2008), Model Checker technique performed

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

438

by Korel and Koutsogiannakis (2009; Korel et al., 2008)

and Search Algorithm technique proposed by Maia et al.

(2010). This comparison is based on key idea,

advantages and limits of each technique.

Mohanty et al. (2011), have realized a survey of test

case prioritization techniques. They have exposed and

analyzed some existing techniques in code based,

requirement based and model based prioritization. They

have exposed methodology and some examples for each

category, for example, for code based test case

prioritization category, they have presented Srivastava’

technique (Srivastava, 2008) which is based on APFD

(Average percentage of Faults detected) value,

Rothermel’ technique (Rothermel et al., 1999), Prashant’

technique (Malangave and Kulkarni, 2008) and Li’

technique (Li et al., 2007). For model based test case

prioritization category, they have presented the

techniques performed by Korel and Koutsogiannakis

(2009; Korel et al., 2008). For requirement based test

case prioritization category, they have presented

Srikanth’ techniques (Srikanth and Williams, 2005;

2002), Acharya’ technique (Acharya and Jena, 2010) and

Wu’ technique (Wu et al., 2001).

On the other hand, in model Based testing area, Belli

and Gökçe (2010), have introduced a new approach that

use Event Sequence Graphs (ESG) and focus on model

based specification and coverage-oriented testing to rank

tests according to their preference degrees. The main

advantage of this approach is that no priori information

is needed about the tests.

Also, Gökçe et al. (2015), carried out a search for

test case prioritization in model-based testing. They

have proposed a new approach that is based on event-

oriented graph models. In the proposed approach, the

prioritization technique is performed by means of

cluster analysis. It provides an effective algorithm for

ordering a given set of test cases with respect to their

degree of preference as perceived by the tester, which

results in a set of priority-sorted test cases. The main

contribution this study is the introduction of 13

attributes that enable generating test cases from a

model hierarchy with several levels as if it is a single-

level model.

In the same context of model based testing,

Panigrahi and Mall (2010), have proposed a new

technique to prioritize test cases for regression testing

of object-oriented programs. They have proposed a

new model named “Extended Object-oriented System

Dependence Graph” (EOSDG) to model object

oriented programs. This model is based on System

Dependence Graph for object-oriented software of

Larsen and Harrold. Panigrahi’s technique involves

constructing EOSDG models for original and

modified programs to represent control and data

dependences as well as static object relations such as

inheritance, aggregation and association. For

prioritization of test cases, Panigrahi and Mall have

constructed a forward slice of EOSDG to identify

directly or indirectly affected model elements and

they have constructed a backward slice to identify the

model elements indirectly tested by a test case. They

have also considered the dependencies among test

cases while maintaining the prioritized test suite. This

approach results in significant increase in the

detection of regression faults arising from object

relations as compared to related approaches.

Model Based Testing (MBT)

Model-based testing is a software testing technique

that relies on models of the behavior of the system

and/or its environment to automatically generate test

cases (Utting et al., 2012; Utting and Legeard, 2007;

Pretschner, 2005). The model of the System Under Test

(SUT) is created mainly by analyzing system

requirements. It defines the expected behavior of the

SUT with respect to a set of inputs and is provided as an

input to a MBT tool to automatically generate a set of

test cases. These test cases are executed and compared

with respect to the expected results to report any

deviation from the expected behavior. In principle, test

cases execution activity can also be automated.

However, MBT is mainly concerned with the automation

of test case generation. This automation decreases the

testing time and helps to achieve increased (and

measured) coverage of possible execution scenarios. In

addition, test models and generated test cases help to

document and analyze the system behavior. Changes in

requirements can be reflected to models for generating

new test cases. Hence, this approach also reduces the

maintenance effort. The model-based testing solution

consists of producing test cases from System Under

Test (SUT) model and/or its environment model by

following process that is composed of five main phases

(Atifi et al., 2017) (Fig. 1):

1. Requirements management

2. Modeling of an abstract test model dedicated to

test of the system

3. Generation of abstract test cases from the test

model

4. Concretization of abstract test cases to concrete

test cases that can be executed on the system

under test

5. Execution of concrete test cases on the system

and the constitution of their verdict

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

439

Fig. 1: Model-based testing general process (Atifi et al., 2017)

Failure Mode and Effects Analysis (FMEA)

FMEA has been used in many fields to analyze and
manage risk. It was used in the late 1950s to study
problems that might arise from malfunctions of military
systems, precisely for the flight control systems. It
appeared as a formal technique in the aerospace and
defense industries. Then it spread to the American
automotive industry in the late 1970s. In 1985, FMEA was
later adopted by the International Electrochemical
Commission. Many authors adapted FMEA to various
areas in industries, such as nuclear power industry,
environmental concerns, software, semi-conductor, web-
based distributed design and healthcare (Ben-Daya, 2009;
Ben-Daya and Raouf, 1996). In general, there are many
types of FMEA, viz; mechanical FMEA, system FMEA,
electrical FMEA, product FMEA, software FMEA,
process FMEA, human-use or misuse FMEA and health
care FMEA. Although the purposes, terminologies and
details of each FMEA type are different, but they share the
same basic concept that follows the following process
(FMEA General process) (Fig. 2):

1. Identify and choose the items to be analyzed

2. Identify the potential failure mode for each item

3. List the effects of each failure mode

4. Rate how severe each effect and categorize the

severity of each failure mode (Assign a severity

ranking for each effect)

5. Identify the root causes of each failure mode

6. Assess the probability of occurrence of each failure

mode (Assign an occurrence ranking for each

failure mode)

7. Identify the controls in place to detect the failure mode

8. Assign a delectability ranking for each failure mode

9. Calculate the risk priority number (RPN) of each

effect: The RPN is calculated as the

multiplication of the probability index, severity

index and delectability index
10. Based on RPN number, identify most critical issues

and determine actions needs to be taken into
consideration

11. Implement controls and recommendations to

eliminate or reduce the high-risk failure modes

User needs,

desires and constraints

Requirements

management process

Business analyst

Requirements

management tools System requirements

Modelization

Test selection criteria
Model for test purposes

Tester analyst Generation

Requirements

traceability matrix

Abstract test cases,

built from the model

Concretization

MBT tools

Concrete test cases,

executable on the system

Automating
Tester

Automation engineer

Tester automation

tools
Automatic tests

(benchmark)
Manual tests

(physical person) Tester

management tools

Execution

Execution results Expected results

Comparisons Verdict

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

440

Fig. 2: FMEA General process

In software testing area, FMEA is considered as one

of the formal techniques to do risk based testing. It offers

a structured methodology to identifying the system

failure modes, analyzing their effects and setting up

controls to improve the quality of systems or products.

FMEA is based on three factors or indexes which are

usually evaluated through easily interpreted expressions,

each factor is correlated to a score vary between a

minimum value and maximum value:

• Severity factor (S) that determining the consequence

or the cost of the failure mode. It defines the

seriousness of consequences of failure effects.

Typically, it is rated on a scale of 1 to 5 or 1 to 10,

corresponding to negligible or no effects to

catastrophic or very high hazardous or effects

• Occurrence factor (O) that defines the likelihood of

occurrence of a failure mode. It examine cause(s) of

each failure mode and how often failure occurs.

Typically, it is rated on a scale of 1 to 5 or 1 to 10, with

highest occurrence corresponding to highest

probability and lowest occurrence to lowest probability

• Detectability factor (D) that indicates the probability

of detecting the failure. It evaluates the likelihood

that a detection method will detect the failure of a

potential failure mode before it occurrence. Also, it

is ranking in a scale of 1 to 5 or 1 to 10 to rank from

lowest to highest detectability

The FMEA factors are used to calculate Risk Priority

Number (RPN) to measure risk and severity of a failure

to prioritize potential failure modes and root causes.

Start event

Identify items to be analyzed

Identify potential failure

modes for each item

List effects of

each failure mode
Identify the root causes

of the each failure mode

Identify the controls in place

to detect the failure mode

Assign a severity ranking

for each failure mode(S)

Assign an occurrence ranking

for each failure mode(O)

Assign a delectability ranking

for each failure mode(D)

Calculate the risk priority

number (RPN = SxOxD)

Evaluate RPN

Recalculate and reevaluate

Actions needed? No End

Yes

Develop, prioritize and implement

preventive and corrective actions

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

441

To express mathematically, the RPN of an artifact xi

can be calculated as follows:

() () () ()i i i i
RPN x S x O x D x= × ×

Proposed Approach

Methodology and General Process

In the proposed MBT approach, the main purpose of

performing FMEA is to include risk notion in the MBT

concept. It is used to identify potential failure modes

for each requirement and to calculate RPN for each

failure mode using Severity (S), Occurrence (O) and

Detection (D) factors. Potential failure mode is defined

as the manner in which the system under test could

potentially fail to meet the requirements intent. To offer

several choices for evaluating failure modes factors, we

chose to follow the usual practice that rates failure

modes factors on a scale of one to 10 where 1 is lowest

and 10 is highest. Table 10 to 12 list the scales used to

measure Severity, Occurrence and detectability factors to

calculate RPN.

The risk levels of all identified failure modes can be

measured by the three characteristics below:

• Frequency of occurrence (probability of occurrence)

• The seriousness of their consequences (Severity)

• Detectability factor

In order to prioritizing the risks we associated with

each risk a weight according to five levels (Fig. 3):

• Level 1 = Category 1 => Weight = 1

• Level 2 = Category 2 => Weight = 2

• Level 3 = Category 3 => Weight = 3

• Level 4 = Category 4 => Weight = 4

• Level 5 = Category 5 => Weight = 5

We can then determine the acceptable combinations

(risk/severity/frequency/detectability).

Table 10: FMEA scale for probability of occurrence (O)

Probability rating Class Meaning

1 None Failure never occurred
2 Very minor Failure unlikely occurred
3 Minor Failure is Relatively low (Rarely occur)
4 Below average Failure occasionally occurred
5 Average Failure infrequently occurred
6 Above average Failure little Occasional
7 High Failure repeated frequently
8 Very high Failure is almost inevitable
9-10 Extremely high (with warning) Failure is inevitable (Always)

Table 11: FMEA scale for severity (S)

Severity rating Class Meaning

1 None Failure with no impact or effect
2 Very Minor Failure with a very low impact

3 Minor Failure with a low impact

4 Below average Failure with less moderate impact on system operations (Tolerable impact)
5 Average Failure with moderate impact on system operations (not tolerable in critical situations)

6 Above Average Failure with very moderate impact on system operations

7 High Failure with high impact on system operations
8 Very high Failure with very high impact on system operations (Reduced performance)

9 Extremely High (with warning) Failure with very critical impact on system operations but with warning in advance.

10 Extremely High (without warning) Failure with very critical impact on system operations and without warning.

Table 12: FMEA scale for Detectability (D)

Detectability rating Class Meaning

1 Certain Failure mode very likely to be detected, it will be detected certainly
2 Very high Very high chance to detect the potential and subsequent failure mode
3 High High chance to detect the potential and subsequent failure mode
4 Above average Above average chance to detect the potential and subsequent failure mode
5 Average Moderate chance to detect the potential and subsequent failure mode
6 Below Average Low chance to detect the potential and subsequent failure mode
7 Remote Remote chance to detect the potential and subsequent failure mode
8 Very Remote Very remote chance to detect the potential and subsequent failure mode
9 Almost Uncertainly There is almost no chance to detect the potential and subsequent failure mode
10 Uncertainly There is no chance to detect the potential and subsequent failure mode

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

442

Fig. 3: Probability-severity-detectability Matrix; A and B: Failure Mode is inevitable (Always); C: Failure Mode is almost

inevitable; D: Failure Mode is repeated frequently; E: Failure Mode is occasionally occurred; F: Failure Mode is infrequently
occurred; G: Failure Mode is little Occasional; H: Failure is relatively low (Rarely occur); I: Failure unlikely occurred; J:
Failure never occurred

In our approach we associated a new factor to

requirements in order to give a prioritization for each

of them. We define it as Requirement Priority Number

(RePN).

To calculate the RePN, there are two possibilities

according to the generation directives:

• If we consider that the requirement with the highest

risk is the highest priority requirement, we can

calculate the RePN using the risks weights. In this

case, RePN represents the average of RPN of failure

modes multiplied by their weights associated to a

requirement. Mathematically, the RePN for a

requirement is calculated as follow:

()

() ()

()
1 1 2 2

(1)

1
*

n

requirement i i

n

i

n

RPN f Weight RPN f Weight

RePN RPN f Weigh

RPN f We

t
n

ight

n

=

∗ + ∗

+ + ∗

=

= ∑

⋯

Where:

fi: Represent a failure mode for a requirement

Weighti: Represent the weight of a failure mode

n: The total number of failure modes for a

requirement

Or:

• If we consider that the requirement that has the
average of the associated risks high is the highest
priority requirement, we calculate the RePN as the
average of RPN of failure modes associated to a
requirement. Mathematically, the RePN for a
requirement is calculated as follow:

()

() () ()
1

1 2

1
Re

...

n

requirement i

i

n

PN RPN f
n

RPN f RPN f RPN f

n

=

=

+ + +

=

∑

With:

fi: Represent a failure mode for a requirement

n: The total number of failure modes for a requirement

General Process

Process Steps

The generic process steps for the new approach are as

follows (Fig. 4):

Step-1

Requirements management process, which is the first

step of model based testing. It consists to collect customer

needs, desires and constraints, manage and then classify

Class for probability of occurrence

 J I H G F E D C B A

None 1 1 1 1 1 1 1 1 1 1 Certain

Very minor 1 1 1 1 1 2 2 2 2 2 Very high

Minor 1 1 1 2 2 2 2 2 2 2 High

Below average 2 2 2 2 2 2 2 3 3 3 Above average

Average 2 2 2 2 2 2 3 3 3 3 Average

Above average 2 2 2 3 3 3 3 3 3 3 Below average

High 4 4 4 4 4 4 4 4 4 4 Remote

Very high 4 4 4 4 4 4 4 4 4 4 Very remote

Extremely high (with warming) 5 5 5 5 5 5 5 5 5 5 Almost uncertainly

Extremely high (without warming) 5 5 5 5 5 5 5 5 5 5 Uncertainly

C
la
ss
 f
o
r
se
v
er
it
y

C
lass fo

r d
etectab

ility

Category 1: failure modes have no impact->> Weight 1

Category 2: acceptable failure modes->> Weight 2

Category 3: failure modes considered tolerable but involve the

application of risk management ->> Weight 3

Category 4: major failure modes, it is necessary to treat them in

priority ->> Weight 4"

"Category 5: critical and unacceptable failure modes, must be

deleted ->> Weight 5"

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

443

them as requirements. This step is potentially the most

important step in any software testing process based on

requirements such as MBT. It involves the collection,

analysis, prioritization, validation, definition and control

of all customer business requirements, it serves to create a

requirement repository that is the basis of communication

between analysts and testers, is define in a structured way

the expected result for the software, in different terms

(functional, technical, security, load and response time…).

Step-2

Identify potential failure modes for each requirement,
i.e. describe ways in which the system might fail to
perform its intended requirement. In this step, Items
considered could be previous lessons learnt/problems or
new issues from brainstorming session.

Step-3

Identify the list effects of each failure mode. For each
requirement, describe the effects of each failure mode
from an internal or external view point. Typically, failure
effects could be Safety issues, non-compliance to
standards, non-functional features, performance issues,
intermittent operations and robustness issues in the system
under test. A “failure mode” could have multiple effects.

Step-4

Severity assessment step, which consists to assess the
seriousness of the effects of each potential failure mode and
then assign a severity ranking for the failure mode. The
severity levels can be based on a 1-10 scale as per the
guideline in Table 2 (FMEA scale for severity (S)) above.

Step-5

Identify the root causes of each failure mode i.e.,
indicate the weakness that causes the potential failure
mode. This step involves constructing a concise, clear
and comprehensive list of all root causes of failure mode.

Step-6

Assign an occurrence ranking for each failure mode
i.e. estimate a likelihood that a specific failure cause will
occur (the probability of occurrence). The probability of
occurrence can be based on a scale from 1to10 as per
guideline in Table 1 (FMEA scale for probability of
occurrence (O)) above:

Step-7

Identify the controls to detect the failure mode of
each requirement i.e., list all existing controls and
procedures (inspection and test) that prevent either the
cause or the failure Mode.

Step-8

Assign a detectability ranking for each failure mode.
This step involves assessing the ability of the current

control method to detect the failure mode or the failure
cause. However we can give a higher value for
detectability ranking for a failure mode that can be
detected only in testing than the one that can be detected
in design itself. Even so, Higher the ability to detect is
lower; the value of detection is higher on a scale of 1-10.
For example, if the current control mechanism is
absolutely certain of detecting the failure mode then the
detection would be 1 and so-on as per the guideline in
the Table 3 (FMEA scale for Detectability (D)) above.

Step-9

Calculate Risk Priority Number (RPN) for each
failure mode as product of severity, occurrence and
detection rankings. This ranking prioritizes failure
modes, namely, the more the RPN number is higher, the
risk of that particular failure mode should be treated first.
At the same time, problems with low RPN still deserve
special attention if the severity ranking is high.

Step-10

Calculate Requirement Priority Number (RePN) for
each requirement as average of RPN of failure modes
associated to a particular requirement. This ranking
prioritizes requirements.

Step-11

The purpose of the modeling step in our approach is to
model the system requirements and their failure modes. It
consists constructing a generic model in testing purpose.
This model represents in the same time the requirements
of the system under test and their failure modes. It is
created by a test analyst using requirements resulting from
the requirements management step and potential failure
modes resulting from the potential failure modes
identification step and annotated by Requirement Priority
Number (RePN) and Risk Priority Number (RPN). The
test model is described in many ways, depending on the
discipline. It can be described by use of diagrams, tables,
text, or other kinds of notations. In future works, we will
present how to create models that represents
requirements and failure modes in testing purpose and
how to annotate these models by RePN and RPN.

Step-12

The generation step that is realized on the basis of a
test generator which takes as input tree elements; the
model designed in the modeling step, the test selection
criteria selected by the test analyst and the generation
directives. The generation directives are new elements in
our approach. Each generation directive is classified into
one of the following categories follows (Fig. 5):

• A directive for requirement (R)

• A directive for failure mode (FM)

• A directive for both requirement and failure mode

(R&FM)

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

444

Fig. 4: General process

Start

User needs, desires and constraints

Requirements management process

List of requirements

Business analyst

Requirements
management tools

Identify potential failure

modes for each requirement

Potential failure modes

for each requirement

Identify the list effects of each

failure mode
Identify the controls to

detect the failure mode

Assign an occurrence ranking

for each failure mode

Identify the root causes

of each failure mode

Assign a severity ranking

for each failure mode

Assign a delectability ranking

for each failure mode

Requirement RPN

traceability matrix
Calculate Risk Priority Number

(RPN) for each failure mode

Calculate Requirement Priority Number

(RePN) for each requirement

Inputs to create a model

for test purposes

Tester analyst

MBT and

FMEA tools
Generation directive

Modelisation

Inputs to generate test cases

Test selection criteria Generic test model based on requirements and their

failure modes and annotated by RePN and RPN

Generation

A set of pair {abstract test case, priority number}

A set of pair {concrete test case, priority number}

Concretization

Automating?

Non Oui

Manual tests Automatic tests Automation engineer Tester

Tests
management

tools

Tests automation

tools
Execution

Expected results Execution results

Comparisons Verdict

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

445

Fig. 5: Test cases, requirements and potential failure modes

A generation directive is a comment with a special

syntax; it can be placed wherever comments are

allowed. The main purpose of generation directives is

to direct automatic test generation if we want to

generate test cases based on the failure modes or to

generate test cases based on the requirements or to

generate test cases based on both the requirements and

the failure modes. The generation step produces the

abstract test cases from the test model and a traceability

matrix that illustrates the link between test cases and

model elements covered by the test cases. The

traceability matrix is named as Requirement RPN

Traceability Matrix (ReRPNTM), it used to track the

relationships between test cases, requirements,

potential failure modes, risk priority numbers and

Requirement priority number. It links each test case

with their requirement, their potential failure modes

and their priority number and each failure mode with

their risk priority number. The outputs of generation

step are; a set of pair {test case, priority number}: The

priority number of each test case is inherited from the

associated requirement if the generation directive is «

requirements » or is inherited from the failure mode if

the generation directive is « failure modes ».

In the future works, we will detail the generation

directives for the automatic test generation and adopt an

existing test generator to take in consideration our inputs

to generate appropriate test cases.

Step-13

Concretization step, which consists to translate the

abstracts test cases to executables test cases in order

to be executed on SUT. It consists in making the link

between the model elements and the system’s concrete

elements and involving specific adapters and manual

intervention that requires the expertise of the test

engineer.

Step-14

Execution step, which can be realized manually or

automatically by using an automation testing tool. In this

phase, the test cases are executed on the system under

test by following the prioritization order generated in the

generation phase. Eventually the obtained results are

then compared with the expected results to give a verdict

for each test case and consequently give a status on the

operation of the system.

Global Algorithm for FMEA and Model-based Test

Case Prioritization

Our proposed GA is shown in Table 13. It is used to

schedule the test cases in test suite T based on their

potential failure modes, such as the failure mode

severity, the failure mode detectability and the failure

mode occurrence.

The Generic algorithm to prioritize test case shown in

Table 14 use the output results of FMEA and model-

based prioritization algorithm to prioritize test cases and

to generate a sorted test suite.

Traceability Matrix

The generated traceability matrix « ReRPNTM »

shown in Table 15, identifies links between

requirements, potential failure modes, risk priority

numbers and Requirement priority number. This matrix

tracks a many-to-many relationship – many requirements

to many failure modes. One requirement can require

multiple failure modes and one failure mode can cover

multiple requirements. Typically, the matrix shows the

requirements across the top as columns and the

associated failure modes down the right side as rows.

Each failure mode is associated to a risk priority number

(RPN) and each requirement is associated to a

requirement priority number (RePN).

Re1 Re2 Ren

FM2

FM1 FMn

FM2

FM1 FMn

FM2

FM1 FMn

TC2Re1 TC2Re2

TC2Ren

TC1Re1 TCnRe1

TC1Re2

TCnRen

TCnRen TC1Ren

TC2FM1

TC1FM1 TCnFM1

TC2FM1

TC1FM1

TCnFM1

TC2FM1

TC1FM1 TCnFM1

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

446

Table 13: FMEA and model-based prioritization algorithm

 Algorithm 1 FMEA and model-based prioritization

Step 1. Construct a set of requirements R = {Xi}, where i = 1...n; i∈N is a requirement index.

Step 2. For i = 1 to n
 {
 Construct a set of potential failure modes FM = {Yj} for the requirement Xi, where j = 1...p; j∈N is a failure mode index.
Step 3. For j = 1 to p
 {
 Assign the severity ranking for the failure mode Y
 Yj ← S
 Assign the detectability ranking for the failure mode Yj
 Yj ← D
 Assign the occurrence ranking for the failure mode Yj
 Yj ← O
 Calculate the Risk Priority Number (RPN) for the failure mode Yj
 RPNYj = S(Yj)* D(Yj)* O(Yj)*
 FM[j] = RPN(Yj)
 }
 Calculate the Requirement Priority Number (RePN) for the failure mode Yj

 ()
1

1
Re

p

Xi

j

PN RPN Yj
n

=

= ∑

Or (based on the generation directives) ()
1

1
Re

p

Xi j

j

PN RPN Yj Weight
n

=

= ∗∑

}
Step 4. Calculate the Requirement RPN Traceability Matrix ReRPNTM.
Step 5. Construct a generic test model that represent in the same time requirements and failure modes TM.
Step 6. Annotate test model elements with "@Re" for requirements and "@FM" for failure modes.
 Step 7. Annotate test model elements with "@RePN" values and "@RPN" values using ReRPNTM matrix.

Table 14: Generic algorithm to prioritize test case.

 Algorithm 2 Generic algorithm to prioritize

Input:
 TM: Generic Test Model
 TSC: Test selection criteria
 GD: Generation Directives = ["Re", "FM ", "R- FM "]
 Tgenerator:
Output:
 STS: A sorted test suite STS = A set of pair (Abstract Test Case, Priority Number) sorted by priority number

 1. If (GD == Re) Then
 Generate TS’ based on Test selection criteria and requirements.
 Sort TS’ based on RePN values.
 STS ← TS’.
 2. Else If (GD == FM) Then
 Generate TS’’ based on Test selection criteria failure modes.
 Sort TS’’ based on RPN values.
 STS ← TS’’.
 3. Else If (GD == R-FM) Then
 Generate TS’’’ based on Test selection criteria, requirements and failure modes.
 Sort TS’’’ based on RePN and RPN values.
 STS ← TS’’’.
TS’, TS’’, TS’’’: Test Suites.

Table 15: Requirement RPN traceability matrix

 Requirement # 1 Requirement # 2 Requirement # 3 Requirement # 4 Requirement # 5 … Requirement # n

Failure Mode # 1 X X X RPN# 1
Failure Mode # 2 X X RPN# 2
Failure Mode # 3 X X X RPN# 3
Failure Mode # 4 X X RPN# 4
Failure Mode # 5 X X RPN# 5
… … … … … … … …
Failure Mode # m X X RPN# m
 RePN # 1 RePN # 2 RePN # 3 RePN # 4 RePN # 5 … RePN # n

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

447

Discussion

From the fact that model-based testing has emerged

as a major research area in academic and industrial, a

large number of publications and new approaches are

produced in this field. Most of the previous publications

give new MBT approaches. For example Graf-Brill and

Hermanns (2017), have proposed an approach that use

model-based testing to test asynchronous communicating

systems. Also, Wang et al. (2017) used model based

testing to validate quorum-based systems implemented

using the Gorums library through a new approach. On the

other hand, some studies give the publications covering

supporting techniques for modelling and test generation

(Gebizli and Sozer, 2017), integration into industrial

practice (Peleska, 2013), taxonomies (Utting et al., 2012),

industrial evaluations (Blom et al., 2016), surveys and

classification. For example Utting et al. (2012) that

have provided taxonomy of model based testing in

which the principal aspects of MBT approaches are

covered. This paper provides a new model based testing

approach to overcome some challenges involved in

model based test case prioritization.

Conclusion

In this paper, we have presented a new testing

approach to perform test-case prioritization in model

based testing way. This makes it possible to efficiently

apply prioritization when generation test-cases in model

based testing. It consists of generating test cases

associated with their priority numbers. In Our approach

we have used Failure Mode and Effect Analysis (FMEA)

method to analyze failure modes associated to the

requirements of the system under test. The generation

method is based on a generic test model that represents

in the same time requirements and their potential failure

modes. This model is annotated with RPNs for potential

failure modes to generate test cases with their priority

numbers based on failure modes and RePNs for

requirements to generate test cases based on

requirements. Also, we have introduced a new element

named generation directives to direct test generation if it

is based on the requirements or failure modes. We

concluded that the proposed approach is capable to

generate prioritized test cases based on requirements

and/or failure modes. As future works, we will extend

how to create models that represent requirements and

failure modes in testing purpose and how to annotate

these models by RePN and RPN. Also, we will detail the

generation directives for the automatic test generation

and we will adopt an existing test generator to take in

consideration our approach’ inputs to generate

appropriate test cases. And then we will make a case

study to illustrate test cases generation by our approach.

Significance Statement

This paper provides a new model based testing

approach to overcome some challenges involved in

model based test case prioritization. We have

developed a new model based testing approach that

use Failure Mode and Effect Analysis (FMEA) to

prioritize test cases during test generation. The

proposed approach aim to generate two types of test

cases: Test cases based on requirements and test cases

based on potential failure modes.

The generated test cases in both types are associated

with their priority number to rank test cases during

execution and increase the rate of fault detection. An

increased rate of fault detection can give an earlier status

of the system under test in order to find and correct bugs

as soon as possible.

Acknowledgment

I would like to express here the very thanks to my

dissertation advisor, Prof. Dr. Marzak Abdelaziz,

University Hassan II, who provided me the opportunity

to do such a research in his laboratory.

Author’s Contributions

ATIFI Meriem: He proposed this approach of

using, he participated in all experiments, coordinated

the data-analysis and contributed to the writing of the

manuscript. He designed the research plan and

organized the study.

MARZAK Abdelaziz: He participated in the design

of the research plan and organized the study. He

coordinated and validated the research.

Ethics

On behalf of my co-author, we inform you that this

article has no ethical issues, we confirm that it is an

original work which hasn’t been published elsewhere.

Each author has personally and actively reads this work

before submission and that in no case will there be an

ethical issues.

References

Acharya, A.A. and S.K. Jena, 2010. Component

interaction graph: A new approach to test

component composition. J. Comput. Sci. Eng.

Ashraf, E., A. Rauf and K. Mahmood, 2012. Value

based regression test case prioritization.

Proceedings of the World Congress on

Engineering and Computer Science, Oct. 24-26,

San Francisco, USA, pp: 24-26.

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

448

Atifi, M., A. Mamouni and A. Marzak, 2017. A

comparative study of software testing techniques.

Proceedings of the International Conference on

Networked Systems, May 17-19, Marrakech, Morocco,

pp: 373-390. DOI: 10.1007/978-3-319-59647-1_27

Belli, F. and N. Gökçe, 2010. Test Prioritization at

Different Modeling Levels. In: Advances in

Software Engineering, Kim, T., H.K. Kim, M.K.

Khan, A. Kiumi and W. Fang et al. (Eds.), Springer,

Berlin, Heidelberg, pp: 130-140.
Ben-Daya, M. and A. Raouf, 1996. A revised failure

mode and effects analysis model. Int. J. Quality
Reliability Manage., 13: 43-47.

 DOI: 10.1108/02656719610108297
Ben-Daya, M., 2009. Failure Mode and Effect Analysis.

In: Handbook of Maintenance Management and

Engineering, Ben-Daya, M., S.O. Duffuaa, A.

Raouf, J. Knezevic and D. Ait-Kadi (Eds.),

Springer, London, UK, pp: 75-90.

Blom, J., B. Jonsson and S.O. Nystrom, 2016. Industrial

evaluation of test suite generation strategies for

model-based testing. Proceedings of the IEEE 9th

International Conference on Software Testing,

Verification and Validation Workshops, Apr. 11-15,

IEEE Xplore Press, Chicago, IL, USA, pp: 209-218.

DOI: 10.1109/ICSTW.2016.42

Chauhan, N., 2018. A Multi-factored Cost- and Code

Coverage-Based Test Case Prioritization Technique

for Object-Oriented Software. In: Software

Engineering: Advances in Intelligent Systems and

Computing, Hoda, M., N. Chauhan, S. Quadri and

P. Srivastava (Eds.), Springer, Singapore, pp: 27-36.

Elbaum, S., A. Malishevsky and G. Rothermel, 2001.

Incorporating varying test costs and fault severities

into test case prioritization. Proceedings of ICSE,

Toronto, pp: 329-338.

 DOI: 10.1109/ICSE.2001.919106

Gebizli, C.S. and H. Sozer, 2017. Automated refinement

of models for model-based testing using exploratory

testing. Software Qual. J., 25: 979-1005.

 DOI: 10.1007/s11219-016-9338-2

Gökçe, N., F. Belli, M. Eminli and B.T. Dincer, 2015.

Model-based test case prioritization using cluster

analysis: A soft-computing approach. Turk. J.

Electr. Eng. Comput. Sci., 23: 623-640.

 DOI: 10.3906/elk-1209-109

Graf-Brill, A. and H. Hermanns, 2017. Model-based testing

for asynchronous systems. Proceedings of the

International Workshop on Formal Methods for

Industrial Critical Systems, (ICS’ 17), Springer, Cham,

pp: 66-82. DOI: 10.1007/978-3-319-67113-0_5

Hettiarachchi, C., H. Do and B. Choi, 2016. Risk-based

test case prioritization using a fuzzy expert system.

Inform. Software Technol., 69: 1-15.

 DOI: 10.1016/j.infsof.2015.08.008

Huang, R., W. Zong, D. Towey, Y. Zhou and J. Chen,

2017. An empirical examination of abstract test case

prioritization techniques. Proceedings of the

IEEE/ACM 39th International Conference on

Software Engineering Companion, May 20-28,

IEEE Xplore Press, Buenos Aires, Argentina, pp:

141-143. DOI: 10.1109/ICSE-C.2017.105

Huang, R., Y. Zhou, W. Zong, D. Towey and J. Chen,

2017. An empirical examination of abstract test

case prioritization techniques. Proceedings of the

IEEE 41st Annual Computer Software and

Applications Conference, May 20-28, IEEE

Xplore Press, Buenos Aires, Argentina, pp: 3-12.

DOI: 10.1109/ICSE-C.2017.105

Huang, Y.C., K.L. Peng and C.Y. Huang, 2012. A

history-based cost-cognizant test case prioritization

technique in regression testing. J. Syst. Software,

85: 626-637. DOI: 10.1016/j.jss.2011.09.063

James, B., 1999. Risk and requirements-based testing.

Computer, 32: 113-114.

 DOI: 10.1109/MC.1999.10066

Kavitha, R. and N. Sureshkumar, 2010. Test case

prioritization for regression testing based on severity

of fault. Int. J. Comput. Sci. Eng., 2: 1462-1466.

Kim, J.M. and A. Porter, 2002. A history-based test

prioritization technique for regression testing in

resource constrained environments. Proceedings of

the 24th International Conference on Software

Engineering, May 19-25, ACM, Orlando, Florida,

pp: 119-129. DOI: 10.1145/581339.581357

Korel, B. and G. Koutsogiannakis, 2009. Experimental

comparsion of code based and model based test

prioritization. Proceedings of the International

Conference on Software Testing, Verification and

Validation Workshops, Apr. 1-4, IEEE Xplore

Press, Denver, CO, USA, pp: 77-84.

 DOI: 10.1109/ICSTW.2009.45
Korel, B., G. Koutsogiannakis and L.H. Tahat, 2008.

Application of system models in regression test suite
prioritization. Proceedings of the 24th IEEE
International Conference Software Maintenance,
Sept. 28-Oct. 4, IEEE Xplore Press, Beijing, China,
pp: 247- 256. DOI: 10.1109/ICSM.2008.4658073

Li, Z., M. Harman and R.M. Hierons, 2007. Search

algorithms for regression test case prioritization.

IEEE Trans. Software Eng., 33: 225-237.

 DOI: 10.1109/TSE.2007.38

Mahali, P. and D.P. Mohapatra, 2018. Model based test

case prioritization using UML behavioural diagrams

and association rule mining. Int. J. Syst. Assurance

Eng. Manage., 9: 1063-1079. DOI: 10.1007/s13198-

018-0736-7
Maia, C.L.B., R.A.F. do Carmo, F.G. de Freitas, G.A.L.

de Campos and J.T. de Souza, 2010. Automated test
case prioritization with reactive GRASP. Adv.
Software Eng. DOI: 10.1155/2010/428521

Atifi Meriem and Marzak Abdelaziz / Journal of Computer Science 2019, 15 (4): 435.449

DOI: 10.3844/jcssp.2019.435.449

449

Malangave, P. and D.B. Kulkarni, 2008. Efficient test

case prioritization in regression testing.
Malhotra, R. and A. Bharadwaj, 2012. Test case

prioritization using genetic algorithm. Int. J.
Comput. Sci. Inform., 2: 63-66.

Mishra, D.B., N. Panda, R. Mishra and A.A. Acharya,
2018. Total fault exposing potential based test case
prioritization using genetic algorithm. Int. J. Inform.
Technol. DOI: 10.1007/s41870-018-0117-0

Mohanty, S., A.A. Acharya and D.P. Mohapatra, 2011.

A survey on model based test case prioritization. Int.

J. Comput. Sci. Inform. Technol., 2: 1042-1047.

Panigrahi, C.R. and R. Mall, 2010. Model-based

regression test case prioritization. ACM SIGSOFT

Software Eng. Notes, 35: 1-7.

 DOI: 10.1145/1874391.1874405
Peleska, J., 2013. Industrial-strength model-based testing-

state of the art and current challenges. Proceedings of
the 8th Workshop on Model-Based Testing, Mar. 17-
17, Rome, Italy, pp: 3-28. DOI: 10.4204/EPTCS.111.1

Pretschner, A., 2005. Chap Model-based testing in
practice. Proceedings of the International
Symposium of Formal Methods Europe, Springer,
Berlin, pp: 537-541.

Rhmann, W. and V. Saxena, 2017. Fuzzy expert system
based test cases prioritization from UML state machine
diagram using risk information. Int. J. Math. Sci.
Comput., 3: 17-27. DOI: 10.5815/ijmsc.2017.01.02

Rothermel, G., R.H. Untch, C. Chu and M.J. Harrold,
1999. Test case prioritization: An empirical study.
Proceedings of the IEEE International Conference on
Software Maintenance, Aug. 30-Sept. 3, IEEE Xplore
Press, Oxford, England, UK, UK, pp: 179-188.

 DOI: 10.1109/ICSM.1999.792604
Rothermel, G., R.H. Untch, C. Chu and M.J. Harrold,

2001. Prioritizing test cases for regression testing.
IEEE Trans. Software Eng., 27: 929-948.

 DOI: 10.1109/32.962562

Shin, S.Y., S. Nejati, M. Sabetzadeh, L.C. Briand and F.

Zimmer, 2018. Test case prioritization for

acceptance testing of cyber physical systems: A

multi-objective search-based approach. Proceedings

of the 27th ACM SIGSOFT International

Symposium on Software Testing and Analysis, Jul.

16-21, ACM, Amsterdam, Netherlands, pp: 49-60.

DOI: 10.1145/3213846.3213852

Srikanth, H. and L. Williams, 2002. Requirements-based

test case prioritization. IEEE Trans. Software Eng.

Srikanth, H. and L. Williams, 2005. Requirements-based

test case prioritization. ACM SIGSOFT Software Eng.

Srikanth, H., L. Williams and J. Osborne, 2005. System

test case prioritization of new and regression test

cases. Proceedings of the International Symposium

on Empirical Software Engineering, Nov. 17-18,
IEEE Xplore Press, Noosa Heads, Qld., Australia,

pp: 10-10. DOI: 10.1109/ISESE.2005.1541815

Srikanth, H., C. Hettiarachchi and H. Do, 2016.

Requirements based test prioritization using risk

factors: An industrial study. Inform. Software

Technol., 69: 71-83.

 DOI: 10.1016/j.infsof.2015.09.002

Srivastava, P.R., 2008. Test case prioritization. J. Theor.

Applied Inform. Technol.

Srivastva, P.R., K. Kumar and G. Raghurama, 2008. Test

case prioritization based on requirements and risk

factors. ACM SIGSOFT Software Eng. Notes, 33:

7-7. DOI: 10.1145/1384139.1384146

Sultan, Z., R. Abbas, S.N. Bhatti and S.A.A. Shah, 2017.

Analytical review on test cases prioritization

techniques: An empirical study. Int. J. Adv. Comput.

Sci. Applic. DOI: 10.14569/IJACSA.2017.080239

Tahat, L., B. Korel, G. Koutsogiannakis and N. Almasri,

2017. State-based models in regression test suite

prioritization. Software Quality J., 25: 703-742.

DOI: 10.1007/s11219-016-9330-x

Utting, M. and B. Legeard, 2007. Practical Model-Based

Testing: A tools Approach. Morgan Kaufmann

Publishers Inc., San Francisco, CA.

Utting, M., A. Pretschner and B. Legeard, 2012. A

taxonomy of model-based testing approaches.

Software Test. Verificat. Reliability, 22: 297-312.

DOI: 10.1002/stvr.456

Varun Kumar, S. and M. Kumar, 2010. Test case

prioritization using fault severity. IJCST.

Wang, R., L.M. Kristensen, H. Meling and V. Stolz, 2017.

Application of model-based testing on a quorum-

based distributed storage. PNSE, 17: 177-196.

Wang, Y., Z. Zhu, B. Yang, F. Guo and H. Yu, 2018.

Using reliability risk analysis to prioritize test cases.

J. Syst. Software, 139: 14-31.

 DOI: 10.1016/j.jss.2018.01.033

Wu, Y., D. Pan and M. Chen, 2001. Techniques for testing

component-based software. Proceedings of the 7th

IEEE International Conference on Engineering of

Complex Computer Systems, pp: 222-232.

Zhang, T., X. Wang, D. Wei and J. Fang, 2018. Test case

prioritization technique based on error probability

and severity of UML models. Int. J. Software Eng.

Knowl. Eng., 28: 831-844.

 DOI: 10.1142/S0218194018500249

