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Abstract: One of the important methods that are widely utilized to resolve 

unconstrained optimization problems is the Conjugate Gradient (CG) 

method. This paper aims to propose a new version of the CG method on the 

basis of Weak Wolfe-Powell (WWP) line search. The assumption is 

bounded below optimization problems with the Lipschitz continuous 

gradient. The new parameter obtains global convergence properties when 

the WWP line search is used. The descent condition is established without 

using any line search. The performance of the proposed CG method is 

tested by obtaining some unconstrained optimization problems from the 

CUTEst library. Testing results show that the proposed version of the CG 

method outperforms CG-DESCENT version 5.3 in terms of CPU time, 

function evaluations, gradient evaluations and number of iterations. 
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Introduction 

The Conjugate Gradient (CG) method is utilized to 

resolve unconstrained optimization problems in the form of: 

 

  , ,nf x x  

 
where : nf    represents the smooth function and 

denotes that the gradient is available. Using the CG 

method does not require a second derivative or its 

approximation as Newtons method or its modifications. 

Thus, this method is computationally inexpensive. The 

CG method is used to obtain a solution for the 

optimization problem: 

 

  min , nf x x  

 

By generating a sequence of points xk+1 (Equation (1), 

start from initial point x0, where xk denotes the current 

iteration and ak > 0 indicates a step length obtained from 

a line search (Equation (2)-(6). 

 

1 ,    1,  2, ...,k k k kx x d k     (1) 

The search direction dk of the CG method is defined 

in Equation (2): 

 

1

                if 1

  if 2

k k

k k k k

d g k

d g d k 

  


   
 (2) 

 
where, gk = g(xk) and βk is the CG formula.  

The exact line search, which is expressed in Equation 

(3), can be used to obtain the step length: 

 

   min ,   0 k kf x d       (3) 

 

However, this type of line search is computationally 

expensive because numerous iterations are required to 

obtain the step length. Moreover, if the initial point is far 

from the optimum and/or the dimension of the problem is 

large, then an even greater number of iterations is required. 

With high-speed processors, sufficient memory and an 

appropriate choice of βk, Equation (3) may be 

computationally acceptable for some functions. The inexact 

line search uses an approximation of the function and a 

reduced search space to find the step length. Therefore, the 

inexact line search is not as computationally expensive as 
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the exact line search. The Strong Wolfe–Powell (SWP) 

line search is the most popular type of inexact line search 

and is calculated in Equation (4)-(6): 

 

    T

k k k k k k kf x d f x g d     (4) 

 

and: 

 

   
T

T

k k k k k kg x d d g d    (5) 

 

where: 
 

0 1.     
 

The WWP line search is given by Equation (4) and (6): 

 
 

T T

k k k k k kg x d d g d     (6) 
 

The SWP line search forces the step length to be near a 

stationary point or the local minimum of the function, as 

the step length in the WWP line search may stratify 

without this advantage. The popular formulas for βk are 

illustrated in Equation (7)-(11) (Fletcher and Reeves, 

1964; Polak and Ribiere, 1969; Fletcher, 1987; Liu and 

Storey, 1991; Dai and Yuan, 1999): 

 
2

2

1

kFR

k

k

g

g




  (7) 

 

 1

2

1

T

k k kPRP

k

k

g g g

g
 




  (8) 

 
2

1 1

kCD

k T

k k

g

d g


 

   (9) 

 

 1

1 1

T

k k kLS

k T

k k

g g g

d g
 

 


   (10) 

 

 

2

1 1

kDY

k T

k k k

g

g g d


 




 (11) 

 

Wei et al. (2006) proposed a new positive CG method, 

which is relatively similar to the original Polak-Ribière-

Polyak (PRP) formula that has a global convergence under 

exact and inexact line search (Equation 12): 

 

1

1

1 2

1

kT

k k k

kWYL

k

k

g
g g g

g

g










 
 
 
   (12) 

Theoretically, when 0PRP

k  , the search direction 

restarts automatically. However, (Powell, 1984) presented 

an example showing that PRP

k  has no global convergence 

properties, whereas FR

k  has a full global convergence 

property and satisfies the descent condition. However, the 
FR

k  formula is not as efficient as PRP

k . Powell examined 

the FR

k  formula and found that this method cycle does 

not reach a solution when xk+1  xk, which implies that 

||gk||/||gk-1||1. Hager and Zahng (2005) proposed a new 

CG parameter with a descent property for any inexact line 

search with
2

7 / 8T

k k kg d g  . This method is globally 

convergent whenever the line search fulfills the Wolfe 

conditions. This formula is presented in Equation (13): 
 

 max , HZ N

k k k    (13) 

 
where: 
 

2

1
2 ,

T

kN

k k k kT T

k k k k

y
y d g

d y d y


 
  
 
 

 
 

 
1

 min ,  
k

k kd g



   and  > 0 is a constant.  

In the numerical experiments, they set  = 0.01. HZ

k  

is called the CG-DESCENT method. Numerous versions 

for the CG-DESCENT code have appeared recently. 

Additional details will be discussed in the section of 

numerical results. In addition, (Hager and Zhang, 2005) 

proposed an approximate WWP line search as in 

Equation (14). 

Let  () = f(xk + dk), then: 
 

       k2 1 0 α 0        (14) 

 
where: 
 

1
min , .

2
 

 
  

 
 

 
Equation (14) is matched to the second Wolfe 

condition (Equation (6)). The first inequality in Equation 

(14) is matched to the first Wolfe condition (Equation 

(4)) when the function is quadratic. The new version of 

this method, called CG-DESCENT 6.3, was proposed in 

(Hager and Zhang, 2013).  

One of important conditions in CG method called 

sufficient descent condition which proposed b Al-Baali 

(1985), which given as follows if there exists a constant 

0c such that: 
 

2

kk
T
k gcdg  , Nk   
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However, the concern regarding memory requirements 

and CPU time to solve unconstrained optimization 

problems has encouraged the development of the CG 

method. Over the years, numerous new formulas of the CG 

method have been proposed. Some of these formulas are 

difficult to use in different application fields, such as neural 

network, engineering and medical science. This restriction 

motivates us to the construct a new version of the CG 

method, which is simple and relatively easy to understand. 

For more information the reader can read the following 

papers Alhawarat and Salleh (2017), Alhawarat et al. 

(2015), Hestenes and Stiefel (1952), Gilbert and Nocedal 

(1992) and Salleh and Alhawarat (2016). 
The rest of this paper is organized in five sections. 

The new version of the CG method (MCG) is illustrated 
in section 2. Section 3 demonstrates the global 
convergence analysis for the new formula. Efficiency 
analysis based on numerical results are discussed and 
evaluated in section 4. We concluded in section 5. 

The Modified Conjugate Gradient (MCG) 

Method 

Alhawarat et al. (2016) presented a new CG formula 
with new restart criteria (Equation (15)): 
 

2

21

12

1

,        if    ,

0,                                    otherwise,

T

k k k k T

k k k kAlhawarat

k
k

g g g
g g g

g












 
 

 



 (15) 

 
where: 
 

1

1

.
k k

k

k

x x

y
 




  

 
In the present study, we modified the formula as 

follows (Equation (16)): 
 

2

21

12

1 1

,  if  

0,                                    otherwise,

T

k k k k T

k k k kAlhawarat
T

k
k k k

g g g
g g g

g m g g










 

 
 

  



 (16) 

 

where || . || represents the Euclidean norm, k is defined by 

1

1

k k

k

k

x x

y
 




  and m >1.  

We note that Equation (16) satisfies the descent property 
without using any line search. In addition, we note that: 
 

2

2

1

0
kAlhawarat FR

k k

k

g

g
 



    (17) 

 
The main steps of the MCG method are illustrated in 

algorithm (1).  

Algorithm (1): MCG 

 Let 10-6, k = 1; d1 = -g1 

 Step 1: Input x1. 

 Step 2: If ||gk||   is satisfied, then stop. 

 Step 3: Compute the search direction dk according to 

(2) with (16). 

 Step 4: Compute the steplength αk using (4) and (20). 

 Step 5: Update xk+1 according to (1). 

 Step 6: Increment k and go to Step 2. 

MCG: Global Convergence Analysis 

The following assumption is required to establish the 

convergence properties of the new formula  Alhawarat

k . 

Assumption 1 

A. The level set  = {x|f(x)f(x1)} is bounded and a 

positive constant W exists such that ||x||  W, x   

B. In some neighborhood T of , f is continuously 

differentiable and the gradient is Lipschitz 

continuous. Then, for all x, yT, there exists a 

constant  L > 0, which presents ||g(x)-g(y)||  L||x-y||. 

This case implies that a positive constant R exists 

such that ||g(u)||  R, u  T 
 

The descent condition is important in the study of the 

CG method; it is given by: 
 

2
,T

k k kg d c g   (18) 

 

where, c(0,1).  

Global Convergence for Alhawwrat

k  with the Modified 

WWP Line Search  

Theorem 1 

Let the sequences {gk} and {dk} be generated using 

Equation (1), (2) and (16), where k is computed by any 

line search; then, the sufficient descent condition holds. 

Proof 

We use the proof by induction. By multiplying 

Equation (2) by ,T

kg we obtain: 

 

 
2

1 1

T T T

k k k k k k k k k kg d g g d g g d         (19) 

 
2

2 1

12

1 1

T

k k k kT T

k k k k k
T

k k k

g g g
g d g g d

g m g d

 



 


  


 (20) 

 
2

2 1

1

1

  

T

k k k kT T

k k k k kT

k k

g g g
g d g g d

m g d

 






    (21) 
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2

2 kT

k k k

g
g d g

m
    (22) 

 

When m>1, we have 0.T

k kg d   

The proof is complete. 

The following lemma is called (Zoutendijk, 1970). 

condition, which is useful for analyzing the global 

convergence property of the CG method. 

Lemma 1 

Suppose Assumption 1 holds. Let any method in 

the form of Equation (1) and (2) and k satisfy the 

WWP line search (Equation (5) and (6)), in which the 

search direction is descent. Then, the following 

condition holds: 
 

 
2

2
0 || ||

T

k k

k k

g d

d





   (23) 

 
In addition, Equation (23) holds for the exact and SWP 

line searches; the proof is presented in (Wei et al., 2006). 

Substituting Equation (18) into Equation (23) yields: 
 

4

2
0

k

k
k

g

d





   (24) 

 

The following theorem shows that A

k  has a global 

convergence property with the SWP line search. To 

establish the convergence analysis for the modified CG 

method (Equation (16)) with the modified WWP 

condition, we need the following theorem. 

Theorem 2 

Let Assumption 1 hold. Consider any form of Equation 

(1) and (2) with Equation (17), in which k is obtained 

from the WWP line search (Equation (4) and (14)). Then, 

Equation (16) satisfies the descent condition. 

Proof 

We use the proof by induction. By multiplying 

Equation (2) by ,T

kg  we obtain Equation (25): 

 

 
2

1 1

T T T

k k k k k k k k k kg d g g d g g d         (25) 

 

By dividing Equation (25) by 2|| ||kg  (using Equation 

(5) and (20)), we obtain: 

 

       

 1 1 1 1

2 2 2

1 1

2 1 0 0

1 1 1 2

k

T T T

k k k k k k

k k k

g d g d g d

g g g

    

    

 

    

      
 (26)

 

From Equation (2), we obtain 
1 1

Tg d  = -||g1||2. 

Suppose that the condition is true until k-1, i.e., 

0,T

i ig d   for i = 1,2,…, k-1. By repeating the process 

for Equation (26), we obtain: 
 

 
1 1

2
0 0

2 1 2 .
|| ||

Tk k
jj k k

j jk

g d

g
 

 

 

        

 

As 0 <  <  < 1-, where   0: 
 

 1

0

1
,

1

k
k

j

j














  

 

Then, for sufficient k: 

 

 1

1

k

c








. 

 

When 
1

min ,
2

 
 

  
 

: 

 

 
 

 

1

0

1 1 2
1 2

1 1 2

k
k

j

j










 
 

 
  

 
Then, for large enough k: 

 

 

 

 
2

1 1 2 1
*

1 1 2 2

1
* 2.

1 || ||

k

k T

k k

k

c

g d
c

g



 





 
 

 


   



 

 

When 0 <  <  < 1, we obtain 
 1

1

k

c








. Then: 

 

2
* 2

|| ||

T

k k

k

g d
c c

g
     (27) 

 
The proof is complete. 

Theorem 3 

Let Assumption 1 hold. Consider any form of Equation 

(1) and (2) with (9), in which 
k  is obtained from the 

modified WWP line search (Equation (4) and (20)) with 0 < 

 < 1-. Where   0. Then, 
 

lim inf 0k
k

g


 . 

Proof 

The theorem is proven by contradiction. Let the 

conclusion be false. Then, a constant  > 0 exists 

(Equation (28): 
 

, 1 kg k    (28) 
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By squaring both sides of Equation (2), Equation (29) 

is obtained: 

 
2 2 2

2

1 12 T

k k k k k k k kd g g d d g      (29) 

 

By dividing Equation (29) by 4|| ||kg , we obtain 

Equation (30): 

 
2 2

2

11

4 2 4 4

1 2 T
k k kk k k

k k k k

d dg d

g g g g

     (30) 

 

By using Equation (5), (30), (16) and (27), we obtain 

 
2 2

1 1 1

4 4 2 2 2

1 1

2

1

4 2

1

2σ1

1 2

T

k k k k

k k k k k

k

k k

d d g d

g g g g g

d c

g g



  

 





  


 

 (31) 

 

Repeating the process for Equation (31) and using the 

relationship 
1 1

1 1

|| || || ||g d
 yield Equation (32): 

 

 

2

4 2
1

1
1 2

k
k

k

i
k i

d
g c

g g




    (32) 

 

From Equation (28), we obtain Equation (33): 

 
4 2

2
(1 2  )

k

k

g

k cd







 (33) 

 

Therefore, 
4

2
0

k

k k

g

d





  . 

This result contradicts Equation (28). Thus, 

 
lim inf 0k

k
g


 . The proof is complete. 

Efficiency Analysis: Numerical Result  

To analyze the efficiency of the new method, some 

test functions are selected from CUTE (Bongartz et al., 

1995), as shown in Table A1 (Appendix A). These 

functions are obtained from the CCPForge website 

(Gould et al., 2018). The selected functions and 

dimensions are similar to that used in (Hager and Zhang, 

2005). Furthermore, the modified CG method is 

compared with CG-DESCENT 5.3 (Hager and Zhang, 

2005). The comparison is based on CPU time, function 

evaluations, number of iterations and gradient 

evaluations. In this study, WWP is modified (presented 

by the modified CG-DESCENT 5.3), where the memory 

equal to zero is used to obtain the result for A

k . The code 

can be downloaded from the webpage of (Hager and 

Zhang, 2018). The CG-DESCENT 5.3 results are 

obtained by running CG-DESCENT 6.3 with memory 

equal to zero. The minimum time of 0.2 second is used 

for all algorithms with memory equal to zero. The host 

computer has an Intel (R) Dual-Core CPU and 2GB of 

DDR2 RAM. Figures 1-4, in which a performance 

measure introduced by (Powell, 1977) is used, show the 

results. This performance measure is presented to 

compare a set of solvers S with a set of problems P. 

Assume that ns solvers and np problems are s and p, 

respectively. The measure tp,s is defined as the 

computation time (e.g., number of iterations or the CPU 

time) required for solver s to solve problem p. To 

produce a baseline for comparison, we scale the 

performance of solver s on problem p by the top 

performance of any solver S on the problem using the 

following fraction: 

 

 
,

,

,min :

p s

p s

p s

t
r

t s S



. 

 

Assume that the parameter rm  rp,s; for all p,s is 

selected and further assumed if and only if solver s does 

not solve problem p. As we would like to obtain an 

overall assessment of the performance of a solver, we 

defined measure Ps(t): 

 

 ,

1
( ) :s p s

p

p t size p r t
n

   . 

 

Thus, Ps(t) is the probability for solver sS that the 

performance ratio rp,s is within a factor tR of the best 

possible ratio. If the function Ps is identified as the 

cumulative distribution function for the performance 

ratio, then the performance measure  : 0,1sP   for a 

solver is non-decreasing and piecewise continuous from 

the right. The value of Ps(1) is the probability that the 

solver obtains the best performance among all solvers. In 

general, a solver with high values of Ps(t), which would 

appear in the upper right corner of the figure, is 

preferable for all figures.  

Figure 1 shows that the modified CG method 

(Alhawarat) out performs CG-DESCENT 5.3 in terms of 

gradient evaluations. Figure 2 illustrates that k strongly 

outperforms CG-DESCENT 5.3 with regard to function 

evaluation. Figures 3 and 4 show that the k formula 

strongly outperforms CG-DESCENT 5.3 in terms of 

CPU time and number of iterations.  
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Fig. 1: Performance measure based on the gradient evaluations 

 

 

 
Fig. 2: Performance measure based on function evaluation 

P
s(

t)
 

e0 e1 e2 e3 e4 e5 e6 e7 

t 

1.0 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

 
0.0 

CG_DESCENT 5.3 
 

ALHAWARAT 

P
s(

t)
 

e0 e1 e2 e3 e4 e5 e6 e7 e8 

t 

1.0 

 
0.8 

 
0.6 

 
0.4 

 
0.2 

CG_DESCENT 5.3 
 

ALHAWARAT 



Ahmad Alhawarat et al. / Journal of Computer Science 2020, 16 (9): 1220.1228 

DOI: 10.3844/jcssp.2020.1220.1228 

 

1226 

 
 

Fig. 3: Performance measure based on CPU time 

 

 
 

Fig. 4: Performance measure based on number of iterations 
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Conclusion 

In this study, a modified version of the CG 

algorithm (Alhawarat) is suggested and its performance 

is investigated. The modified formula is restarted on 

the basis of the value of the Lipchitz constant. The 

modified WWP line search is used to obtain the step 

length. The global convergence is established by using 

WWP. In addition, the descent condition is satisfied 

without using any line search. Our numerical results 

show that the new coefficient produces efficient and 

competitive results compared with other methods, such 

as CG-DESCENT 5.3. As future work, the new version 

of CG (MCG) method will be combined with feed-

forward neural network (Back-Propagation (BP) 

algorithm) to improve the training process and produce 

fast training multilayer algorithm. This will help in 

reducing time needed to train neural network when the 

training samples are massive.  
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Appendix (A) 

Table 1: The test functions 

Test functions Dim Test functions  Dim Test functions  Dim Test functions  Dim 

AKIVA 2  DIXMAANJ 3000  LIARWHD  5000 STRATEC 10 

ALLINITU 4  DIXMAANK 3000  LOGHAIRY  2 TESTQUAD 5000 

ARGLINA 200  DIXMAANL 3000  MANCINO  100 TOINTGOR 50 

ARGLINB 200  DIXON3DQ 10000  MARATOSB  2 TOINTGSS 5000 

ARWHEAD 5000  DJTL 2  MEXHAT  2 TOINTPSP 50 

BARD 3  DQDRTIC 5000  MOREBV 5000 TOINTQOR 50 

BDQRTIC 5000  DQRTIC 5000  MSQRTALS 1024 TQUARTIC 5000 

BEALE 2  EDENSCH 2000  MSQRTBLS 1024 TRIDIA 5000 

BIGGS6 6  EG2 1000  NCB20B 5000 VARDIM 200 

BOX3 3  EIGENALS 2550  NONDIA 5000 VAREIGVL 50 

BOX 10000  EIGENCLS 2652  NONDQUAR 5000 VIBRBEAM 8 

BRKMCC 2  ENGVAL1 5000  OSBORNEA 5 WATSON 12 

BROWNAL 200  ENGVAL2 3  OSBORNEB 11 WOODS 4000 

BROWNBS 2  ERRINROS 50  OSCIPATH 10 YFITU 3 

BROWNDEN 4  EXPFIT 2  PALMER1C 8 ZANGWIL2 2 

BROYDN7D 5000  FLETCBV2 5000  PALMER1D 7 STRATEC 10 

BRYBND 5000  FLETCHCR 1000  PALMER2C 8 TESTQUAD 5000 

CHAINWOO 4000  FMINSRF2 5625  PALMER3C 8 TOINTGOR 50 

CHNROSNB 50  FMINSURF 5625  PALMER4C 8 TOINTGSS 5000 

CLIFF 2  FREUROTH  5000  PALMER5C 6 TOINTPSP 50 

COSINE 10000  GENHUMPS 5000  PALMER6C 8 TOINTQOR 50 

CRAGGLVY 5000  GENROSE 500  PALMER7C 8 TQUARTIC 5000 

CUBE 2  GROWTHLS 3  PALMER8C 8 TRIDIA 5000 

CURLY10 10000  GULF 3  PARKCH 15 VARDIM 200 

CURLY20 10000  HAIRY 2  PENALTY1 1000 VAREIGVL 50 

CURLY30 10000  HATFLDD 3  PENALTY2 200 VIBRBEAM 8 

DECONVU 63  HATFLDE 3  PENALTY3 200 WATSON 12 

DENSCHNA 2  HATFLDFL 3  POWELLSG 5000 WOODS 4000 

DENSCHNB 2  HEART6LS 6  POWER 10000 YFITU 3 

DENSCHNC 2  HEART8LS 8  QUARTC 5000 ZANGWIL2 2 

DENSCHND 3  HELIX 3  ROSENBR 2 STRATEC 10 

DENSCHNE 3  HIELOW 3  S308 2 TESTQUAD 5000 

DENSCHNF 2  HILBERTA 2  SCHMVETT 5000 TOINTGOR 50 

DIXMAANA 3000  HILBERTB 10  SENSORS 100 TOINTGSS 5000 

DIXMAANB 3000  HIMMELBB 2  SINEVAL 2   

DIXMAANC 3000  HIMMELBF  4  SINQUAD 5000   

DIXMAAND 3000  HIMMELBG 2  SISSER 2   

DIXMAANE 3000  HIMMELBH 2  SNAIL 2   

DIXMAANF 3000  HUMPS  2  SPARSINE 5000   

DIXMAANG 3000  JENSMP 2  SPARSQUR 10000   

DIXMAANH 3000  JIMACK 3549  SPMSRTLS 4999   

DIXMAANI 3000  KOWOSB 4  SROSENBR 5000 


