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Abstract: The improvement of operational planning in the field of oil 

refinery management is becoming increasingly essential and valid. The 

influential primary factor, among others, is the ever-changing economic 

climate. The industry must continually assess the potential impacts of 

variations in the final product demand, price fluctuations, crude oil 

compositions and even seek out immediate opportunities within the market. 

The Master Production Schedule (MPS) is a planned process within the 

Production Management System that provides a mechanism for active 

collaboration between the marketing and manufacturing processes. 

However, the problem of MPS is a predictable non-deterministic, 

polynomial-time and NP-hard combination optimisation issue. The global 

search for the best solution to the MPS problem involves determination and 

funds that many industries are reluctant to provide. Hence, the alternative 

approach using meta-heuristics could provide desirable and workable 

answers in a realistic computing period. In this paper, a unique hybrid 

Multi-Objective Evolutionary Imperialist Competitive Algorithm 

(MOEICA) is proposed. The algorithm combines the advantages of an 

Imperialist Competitive Algorithm (ICA) and a Genetic Algorithm (GA) to 

optimise a Multi-Objective Master Production Schedule (MOMPS). The 

primary objective is to integrate the ICA with GA operators. The paper will 

also apply the optimised MOMPS to the Kalak Refinery System (KRS) 

operations using the proposed algorithm. The application involves 

determining the available capacity of each production line by estimating the 

parametric values for all failures. In addition, the gross requirements using 

demand forecasting and neural networks are defined. The proposed 

algorithm proved efficient in resolving the issues of the MOMPS model 

within KRS compared to the NSGAII and MOPSO algorithms. The results 

reflect that the novel MOEICA algorithm outperformed NSGAII and 

MOPSO in almost all measurements.  
 

Keywords: Master Production Scheduling, Genetic Algorithm, Imperialist 

Competitive Algorithm, Hybrid Algorithm, Multi-Objective Optimization 
 

Introduction 

Oil refinery production planning is a vital but complex, 

intricate system. Production plan optimisation requires a 

mathematical model to represent the production system 

that can be utilised by the optimisation model. 

An oil refinery is part of an industry that significantly 

contributes to and impacts on the economy of any nation. 

Refinery management is, therefore, diligently committed 

to the ongoing improvement of operational planning. 

With the aprimary factor, among others, being the ever-

changing economic climate. The industry must 

continually assess the potential impacts of variations in 

the final product demand, price fluctuations and crude oil 

compositions or even seek out immediate opportunities 

within the market (Joly et al., 2002). 
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Crude oil comprises a vast number of hydrocarbons, 

which are injected into the base of the crude distillation 

unit. Under the extremely high temperatures within this 

unit, the hydrocarbons, except the heaviest ones, are 

subsequently transformed into gas. At the higher levels 

of the distillation unit typically characterised by lower 

temperatures, the hydrocarbons are converted back to 

the liquid stage in the different areas of the distillation. 

Therefore, the distillation process separates crude oil 

into typically five streams whose components are of 

varied weight (Göthe-Lundgren et al., 2002). 

For a manufacturing company to remain competitive 

in a global market, the customer’s requirements must be 

consistently and promptly met with a high standard of 

products and services. This is challenging for industry 

decision-makers, particularly in current market 

conditions. This scenario is characterised by short 

product life-cycles, varied customised products, irregular 

and unpredictable demand patterns and short customer 

lead times. However, the capacity to attain a competitive 

lead has become more challenging. The difficulty is 

ascribed to the ambiguity of the current market settings. 

The constant, hitch-free communication and efficient 

collaboration of the marketing, sales and manufacturing 

departments is critical to the management and sustenance 

of the customer’s demand using the company’s 

resources. The Master Production Schedule (MPS) is a 

planned process within the Production Management 

System that provides a mechanism for active 

collaboration between the marketing and manufacturing 

processes (Supriyanto and Noche, 2011). 

In most industries around the world, the formation of 

an MPS takes into consideration a range of objectives. 

Typically, these include maximisation of service levels, 

efficient and cost-effective use of resources and 

inventory level minimisation. Unfortunately, the level of 

difficulty and intense effort that entails the creation of a 

master plan significantly increases as the production 

scenario rises. Furthermore, it occurs when resources are 

restricted, which is the case for most industries 

nowadays. It is due to such complexities that most 

enterprises will usually resort to using basic heuristics 

implemented in spreadsheets. This approach aims to 

provide a speedy plan but may compromise efficiency 

and expenditure (Soares and Vieira, 2008).  
In general, the challenges of MPS are associated with 

NP-hard problems. This basically means the existence of 

an algorithm that generates an ideal answer is 

improbable in polynomial time. Essentially, this 

indicates the handling time necessary to resolve such 

hitches will soar rapidly with the increasing enormity of 

the problem. Consequently, the search for an ideal 

answer is challenging. Therefore, evolutionary 

algorithms otherwise termed meta-heuristic algorithms 

are regularly used to attain optimal solutions. Examples 

include; genetic algorithm, simulated annealing and 

Tabu Search among others (Supriyanto and Noche, 

2011). The principal benefits of an evolutionary 

algorithm is that the objective function does not need to 

be differentiable or continuous. Hence, the evaluation of 

gradients is not necessary and as such, can deviate from 

the local minima (Tsoulos, 2009). 

The integration of two or more diverse algorithms 

into a lone hybrid algorithm has been enthused by the 

prospects of attaining higher performance compared to 

the individual component algorithms. The outcome is a 

novel class of algorithms based on the canopy of hybrid 

algorithms. Typically, the hybrid algorithm integrates the 

fortes of the different component algorithms. Hence, the 

resultant algorithm provides collective benefits such as 

generating enhanced answers within a quicker time span. 

Moreover, it efficiently addresses any difficulties with 

enormous sized inputs, particularly regarding the 

problems of NP (Mitras and Sultan, 2013). 

In this paper, a hybrid Multi-Objective 

Evolutionary Algorithm (MOEICA) has been 

proposed to solve a multi-objective MPS problem. 

This algorithm applies the concepts of the Imperialist 

Competitive Algorithm (ICA) and the Genetic 

Algorithm (GA). The colonies within each empire in 

the ICA represent a small population and 

communicate with each other using genetic operators 

and imperialist operators. The optimised MOMPS is 

applied to the Kalak Refinery System (KRS) which is 

located near Erbil City. The KRS is considered one of 

the newest and most modern refineries in Kurdistan-

Iraq, which is operated by the KAR Group. The 

construction of the Kalak Refinery in Erbil began in 

2005, with the refinery capacity reaching 100,000 

Barrels Per Day (BPD) in 2011. The application 

involves determining the available capacity of each 

production line and establishes the gross requirements 

using demand forecasting and neural networks. 

The paper is structured as follows: Section II presents 

a brief revision of the foundation of the MPS and 

MOMPS model of KRS. The proposed algorithm aims to 

resolve the problem, as reflected in Section III. In 

Section IV, the MOMPS is created and proposed for 

KRS. The MOEICA implementation and results of the 

MPS-KRS model are outlined in Section V. The 

comparisons between MOEICA, NSGAII and MOPSO 

are shown in Section VI. The conclusions of this study 

are presented in Section VII.  

Foundation of MPS 

The MPS is a strategic process that combines 

production planning and control with the aim of 

interpreting the critical objectives of a business plan into 
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a predicted report. Hence, it is the starting point from 

which all other schedules at the lower levels originate 

(Higgins and Browne, 1992). Likewise, the MPS is a 

critical crossing point between manufacturing and 

marketing. It is a straight link to customer service and 

ensures efficient usage of production resource 

(Vollmann et al., 1997). The mishandling of MPS is 

termed an essential operational problem, possibly 

resulting in poor customer satisfaction. Therefore, 

Slack et al. (2010) described MPS as a vital schedule for 

planning and controlling the operations of any business. 

According to the American Production and Inventory 

Control Society (APICS) (Proud, 1999), the MPS 

declares what the company expects to manufacture. 

Hence, it is a decision system that emphasizes the 

Material Requirements Planning (MRP). 

It symbolises the company’s production plan based 

on the particular configuration, quantities and dates. 

Although the MSP cannot be termed a sales forecast, it is 

regarded as one of the most vital informational 

constituents of the system. Other significant concerns 

must be accounted for, such as incomplete orders, 

materials availability, current capacity and 

administrative policies and goals, among others. It also 

presents factors such as projected inventory balance, 

Available To Promise (ATP) and capacity used. 

Wu et al. (2002) developed a mathematical model 

and genetic algorithm for MPS that unites many 

methods that fulfil the limitations for making an 

optimised MPS for assembly, processing and 

production lines. Vieira and Ribas (2004) adapted 

simulated annealing to resolve the problem of 

production planning or precisely an MPS problem. The 

study exposed some weaknesses of simulated annealing 

such as overcoming the local optimum (Soares and 

Vieira, 2008) developed a novel genetic algorithm 

structure for resolving MPS problems. The study 

formulated a fitness function aimed at reducing 

inventory levels, maximising service level (unfulfilled 

reduced condition), lessen overtime and inventory 

levels beneath the safety stock. Finally, Vieira et al. 

(2004) associated and applied genetic algorithms and 

simulated annealing to MPS difficulties. 

Mathematical Model of Multi Objective 

MPS for KRS 

This paper is based on the mathematical model 

proposed by (Sadiq et al., 2018). The block diagram and 

simplified model, extracted from the article is shown in 

Fig. 1. A detailed explanation of the mathematical model 

is presented in the paper: 
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Fig. 1: KRS block diagram 
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Subject to: 
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kp

k p

OH if p
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 (4) 

 

  max 0,kp kp kp kpEI MPST BI GR   
 

 (5) 
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In this formulation, each character expresses the 

value as follows. p: Total number of planning periods, 

TH: Total planning horizon, EIkp: Ending inventory level 

generated for product k at period p, RNMkp: 

Requirements not met for product k at period p, BSSkp: 

Quantity below safety inventory level for product k at 

period p, BIkp: Initial inventory level of the product k at 

period p, OHk: Initial available inventory (on-hand), at 

the first scheduling period, GRkp: Gross requirement for 

product k at period p, SSkp: Safety inventory level for 

product k at period p, MPSTkp: Total quantity to be 

manufactured of the product k at period p, n: The number 

of days in each planning period. 

Mathematical Model of Multi Objective 

MPS for Kalak Refinery System 

In this section, the Master Production Schedule (MPS) 

of KRS was created based on the following steps described. 

A. Determine MPS Parameters  

Table 1 shows the details of the MPS parameters 

required to create the MPS problem for the refinery 

plant. The production rates in Table 2 are primary, 

before calculating availability. 

B. Determine Gross Requirements  

The gross forecast for demand is considered the most 

critical input and plays a vital role in the final MPS 

formation process. The neural network model for BP 

consists of a robust performance for fault-tolerant and 

non-linear map capacity along with learning and self-

adaption. It can similarly be adapted to resolve 

difficulties, for example, the non-determinacy conclusion 

of a complex causal relation, classification, recognition, 

judgment among others. It is thus intensely suggested 

that a BP network algorithm is used for the gross 

requirements of MPS in the forecast model. 

For this paper, we selected the weekly demand data for 

particular products. The sample data covered the period 

from 1 January 2013 to 31 December 2017 and comprised a 

sum of 260 observations. The data were divided into 

training, validation and testing sets to ascertain the best 

neural network structure for the experiment. In general, a 

three-layer feed-forward neural network model was used 

in this study, as shown in Fig. 2 and Table 3. 

 

 
 

Fig. 2: The architecture of the artificial neural network model (p, q, 1) 
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Table 2: The production rates (M3/Hour) 

Product Quantity 

Na 55 

Kr /Jf 9 

Di 31 

FO 87 

Gaso 55.6 

LPG 2 

 
Table 3: The best ANN structures and gross requirements 

  Weeks 

  ---------------------------------------------------------------------------------------------------------------------------------------- 

Prod. Str. 1st 2nd 3rd 4th 5th 6th 7th  8th  

Na 4,4,1 1606.83 2131.23 5137.1700 2103.36 2131.23 1497.80 2131.23 1834.29 

Kr 2,6,1 823.24 641.39 641.4000 641.37 641.37 641.37 641.37 641.37 

Di 2,6,1 4515.18 3951.38 4514.3500 4215.19 4512.42 4447.62 4507.16 4499.41 

Fo 2,4,1 14224.66 10899.63 15734.4900 16231.74 14506.88 15160.65 14339.80 14521.74 

JF 2,4,1 759.76 647.53 797.1039 796.63 790.00 790.39 790.83 790.79 

Gaso 4,4,1 5386.78 5974.22 5876.3900 5889.54 5923.58 6008.18 5991.96 5997.70 

LPG 3,4,1 250.14 248.47 248.4700 248.47 248.47 248.47 248.47 248.47 

 
Table 4: The parameter values of failure control 

    MTTF  MTBF 

  Probabilistic  ------------------------ -------------------- 

Fail. Res. Distribution Availability     

STO_1 Ds Normal 90.36% 21.68 7.2 2.3 0.9 

STO_2 GZP Normal 91.11% 21.86 7.2 2.1 0.9 

STO_3 Mix1 Normal 88.39% 21.20 7.0 2.8 1.1 

STO_4 M1 Normal 94.94% 22.78 7.5 1.2 0.5 

STO_5 M2 Normal 85.97% 20.62 6.8 3.4 1.4 

STO_6 Mix2 Normal 92.00% 22.07 7.3 1.9 0.8 

 
Table 5: The available production rates (M3/Hour) 

Product Quantity 

Na 49.70 

Kr /Jf 8.20 

Di 27.40 

FO 82.60 

Gaso 47.80 

LPG 1.84 
 

C. Determine Production Rates 

To determine production rates, the random machine 

failure resulting in a specific probabilistic distribution 

was simulated. The ideal scenario for this simulation is 

to initiate failure in active work units. Six failure 

controls STO_1, STO_2, STO_3, STO_4, STO_5 and 

STO_6 are set to trigger the random failure in work units 

DS, GZP, Mix1, M1, M2 and Mix2, respectively. The 

parameter values of all failure controls are presented in 

Table 4. Table 5 represents the available productions 

rates dependent on the availability ratios. 

D. Create MPS Model 

After substituting parameters values from Table 1, 

Table 2 into the following equations, the three 

objectives for the MPS problem and production units 

an obtained as follows: 
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where: 
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Proposed Algorithm Description 

In this section, the proposed solution procedure is 

presented in detail. Hence, the standard ICA and GA 

must be first expounded, followed by an explanation of 

the hybrid algorithm. 

A. Imperialist Competitive Algorithm (ICA) 

The imperialist Competitive Algorithm (ICA) is a 

novel evolutionary algorithm within the evolutionary 

computation field based on the human socio-political 

evolution. The algorithm is initiated by creating a series of 

random candidate answers for optimisation in the search 

space problem. The randomly generated points are called 

the initial population (nations of the world). Furthermore, 

nations are classified into two sets: colonies and 

imperialists. The imperialist group is more powerful with 

significantly more colonies. However, the functional cost of 

the optimisation problem controls the power of individual 

nations. Based on each nation's prospects, a handful of 
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some first nations (i.e., nations with the least cost function), 

grow into imperialists thereby controlling other nations 

(colonies) to form empires (Atashpaz-Gargari and Lucas, 

2007). The three critical operatives of this algorithm are 

assimilation, competition and revolution. This algorithm 

adopts the operation of assimilation. According to this 

policy, the imperialists try to advance their colonies’ 

economies, cultures and politics. Such strategies 

enhance the colonies’ enthusiasm in the direction of the 

imperialists. Furthermore, assimilation makes each 

empire’s colonies draw closer to the imperialist in 

terms of socio-political features (optimisation search 

space). Revolution instigates abrupt or unplanned 

variations in the position of some nations in the search 

space. During assimilation and revolution, a colony 

could advance its position and the opportunity to control 

an entire empire or replace the imperialist state of the 

present empire (Atashpaz Gargari et al., 2008).  

In rival operations, imperialists often try to amass 

more colonies that draw closer to the imperialists. All 

empires attempt to conquer and possess the colonies that 

belong to other empires. An empire’s power depends on 

the influence of its imperialists and colonies. In the 

stages of each algorithm, the empires can prospectively 

control a single or more colony of the frailest empire, 

based on their power or status. Thus, during the 

competition, the powerful imperialists are strengthened, 

whereas the weak imperialists are dissolved. With time, 

the frailer empires will mislay all their colonies, whereas 

the imperialists wander to the triumphant empires’ 

colonies. Lastly, all weak empires will collapse, resulting 

in a single powerful empire. The colonies are 

unsystematically dispersed between the imperialists. 

Hence, the more powerful imperialists control more 

colonies (Hartmanis, 1982). The algorithm remains until 

the stop condition is fulfilled, such as a single imperialist 

remain. At this phase, the situation of the imperialist and 

its colonies will be unchanged (Atashpaz-Gargari and 

Lucas, 2007; Atashpaz Gargari et al., 2008). 

B. Genetic Algorithms (GAs) 

Genetic algorithms consist of computational models 

developed by (Holland, 1992). Typically, the models are 

based on the concepts of natural or evolutionary biology. 

For a precise problem, the GA codes the candidate 

solution as a distinct chromosome. The method is 

initiated by a preliminary chromosome population that 

denotes the collective initial search points of the solution 

space problem. Next, the genetic operators including the 

selection, crossover and mutation, are imputed to 

generate new chromosomes. Since the operators are 

based on the code of "survival of the fittest, extinction of 

the most unfit", the general quality of the chromosomes 

is expected to progress with growing generation. The 

procedure is reiterated up to the conclusion criteria is 

fulfilled and the highest chromosome of the final age is 

conveyed as the concluding answer (Holland and 

Goldberg, 1989). 

C. Hybrid Proposed Imperialist Competitive 

Algorithm 

A Multi-Objective Evolutionary Imperialist 

Competitive Algorithm (MOEICA) is the proposed 

algorithm used in this paper. The objective is to solve 

multi-objective MPS problems explicitly applied to the 

MPS of KRS. Before presenting the stepwise procedure 

of the proposed algorithm, the input information must be 

described. Likewise, the encoding and creation of a 

solution must be devised. The operators of crossover, 

mutation, assimilation, revolution and competition will 

also be demonstrated. To implement the MPS problem 

of the KRS, using the proposed algorithm, the details of 

the necessary steps are clarified as follows: 

Input Information 

For optimisation of KRS using master scheduling, the 

software considers numerous parameters that exist in the 

actual industrial settings: 

 

 Numerical products depiction 

 Numerical depiction of the duration of each period 

(diverse durations are acceptable) 

 Preliminary (on-hand) inventories (quantity of 

products at the start of the planning horizon) 

 Gross requests, i.e., essential product quantity, per 

period, expected from predicting the customer’s orders 

 Level of safety record per product and period 

 Rate of Production - the quantity of product or 

resource manufactured per unit time 

 Accessible volume per resource per period 

 

The Objective Function 

The master production schedule objective function 

for KRS has three objectives and these objectives are 

defined as: 

Where, the objective function is intended to minimize 

the average of Ending Inventory level (EI), the 

Requirement Not Met (RNM) and the inventory Below 

Safety Stock (BSS). 

Encoding 

 This algorithm begins by generating a set of random 

candidate solutions in the search space of the 

optimization problem. The generated random points are 

termed the initial population and consist of countries. 

The countries in this algorithm are the counterpart 

chromosomes in GA and particles in PSO, which are an 

array of candidate solutions. The algorithm initially 

begins with random countries. 
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The composition and shape of the countries in MPS 

problems are represented by a single vector structure. 

The country represents a set positive number. Each 

number represents the distribution of quantities of a 

given product within a specific period. Figure 3 presents 

the encoding of MPS for the four periods, which show 

the quantity of naphtha to be manufactured in period 1 in 

the first position, with the quantity of kerosene to be 

manufactured in period 1 in the second position and so 

forth. Thus, the initial solution is devised after the 

encoding to generate an initial solution. 

Create Initial Population 

With the right initial solution, the MOEICA 

algorithm achieves better results in less computer time, 

since there is less chance of wasting time by seeking 

solutions that are too far from the optimal. In this 

algorithm, we create an initial population using uniform 

random integer numbers. 

Firstly, we generate a random value of crude oil 

quantity (CRp) for each period (p), from uniform 

distribution U [n*3927, n*4769.619], where n is the 

number of days in the period and [3927, 4769.619] 

represents the minimum and maximum daily amount of 

crude oil that can be extracted. Then randomly 

calculating the quantity of each product in each period, 

according to the crude oil quantity and using the ratios of 

each product in the model. 

The algorithm starts with initial random countries of 

size. In the initial population, we select of the top 

countries, by means of the non-dominance technique, to 

determine the Pareto fronts and crowding distance 

technique (Fig. 4); to calculate the crowding distance 

for each country in each front in the population to be 

the imperialists and the remainder, forming the 

countries, were randomly allocated to different empires 

equally as colonies. 

Searching Through the Solution Space 

For each empire, the Genetic and Imperialist 

Competitive Operators of Crossover, Mutation, 

Assimilation and Revolution are exerted on colonies to 

diversely spread the population of imperialists. 

Crossover. Crossover. In the implementation, the 

arithmetic crossover was used. This type of crossover 

creates a pair of offspring by combining two linear 

crossovers with two-parent country vectors. 

Mutation. The mutation includes two operations, as 

shown in the below equations: adding and subtracting a 

random amount between the quantities of naphtha and 

Treated naphtha (Gasoline and LPG) in the first 

operation. The second operation represents adding and 

subtracting a random amount between the quantities of 

Kr and JF. The purpose of mutation is to maintain the 

diversity of the population in order to prevent too rapid 

convergence of the algorithm.  

 

,

0.85* , 0.04 *

new old new old

p p p p

new old

p p

Na Na k Gaso Gaso

k LPG LPG k

  


 (79) 

 

 

 
Fig. 3: The problem representation of the MPS for four periods 

 

 

 
Fig. 4: Crowding distance 
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Assimilation. the imperialists’ countries began to 

improve their colonies. This step is modelled by moving 

all the colonies toward the imperialist. Through this 

movement, some parts of a colony’s structure will be 

similar to the empire’s structure. The assimilation 

operator can be modelled as: 

 

   

      1 2* * 1,1 * *

new old
x x

round d rand V U d V



   
 (80) 

 

Revolution Operator. In each decade (generation), 

certain numbers of countries undergo a sudden change, 

called a revolution. In our implementation, a random 

period (p) was selected to generate a random value of 

crude oil quantity (CRp) for the period (p) from uniform 

distribution U [n*3927, n*4769.619]. Subsequently, this 

was randomly calculated for the quantity of each product 

in this period, according to the crude oil quantity and 

using ratios of each product in the model. 

Colonies Updating. In respective empires, the 

original population of the colonies are obtained by 

crossover, mutation, assimilating and revolution. These 

must be combined and the non-dominated based 

solutions imputed in the records. Based on the non-

dominator and distant crowding practices, the top 

colonies must be designated with size NC (i), whereas 

the outstanding affiliates must be deleted. When the 

sum of the non-dominator answers is above the size of 

the record, Narch, the distant crowding must be 

computed. In addition, the solutions with more 

significant distant crowding must be selected by size 

Narch whereas the remainder is left out. 

Archive updating. After updating the colonies, the 

non-dominated solutions must be imputed in the records. 

The recorded affiliates are similarly graded based on the 

non-dominating and distant crowding methods. 

Likewise, the answers of the initial front are earmarked, 

while others are left out. 

Merge colonies and non-dominated sorting. After 

Subsequent to the revolution process, the novel 

population is combined. Next, the top colonies are 

designated as the primary population using updated 

archives. In adaptive archives, the selected populace is 

graded and designated by a non-dominant method. 

However, the distant crowding and the top population 

are designated the imperialists, whereas others are 

regarded as colonies. Evidently, higher-ranked nations 

are more influential than the toughest in the lesser ranks. 

More so, the nations with similar positions are likened 

with the metric of distant crowding. 

Exchanging positions of the imperialist and a colony. 

As the colonies transition into imperialists and 

revolutions happens in selected nations, the prospects 

that a few colonies will attain elevated positions 

compared to their corresponding imperialists. In the 

event of this, the colony and its related imperialist will 

interchange places. Hence, the algorithms will proceed 

with the new nation as the imperialist. 

Total Power of an Empire 

 

    . . * .   n i nT C T C imp sum T C colonies of empire   (81) 

 

The total power of an empire is affected mainly by 

the power of the imperialist country. Although, the 

power of the colonies of an empire affects, albeit 

negligible, the total power of the empire. Therefore, the 

equation for the total cost is. 

Where the total is the cost of the nth empire and is a 

positive number which is considered to be less than 1. 

Represents the total cost of the individual (imperialist or 

colony) which can be calculated using the following 

equations: 

 

,1
.

K

n k nk
T C Cost


  (82) 

 
max

,

, max min

k n k

k n

k k

f f
Cost

f f





 (83) 

 

where, fk,n the value of objective function k for empire n. 

is
max

kf ,
min

kf are the maximum and minimum values of 

objective function k in each iteration, respectively. 

Imperialistic Competition 

The most crucial process in ICA is the imperialistic 

competition, in which all empires attempt to take over 

the colonies of other empires. The result being that 

weaker empires gradually lose their colonies to stronger 

ones. This process is modelled by selecting the weakest 

colony of the weakest empire and ceding it to the 

appropriate empire. This case is selected based on the 

competition between all empires. Figure 5 demonstrates 

a schematic of this process. 

As observed in Fig. 5, empire 1 is denoted as the 

feeblest empire, whereby its individual colonies are 

under the process of competition. Hence, the empire 

from 2 to n is vying to possess its colony. At the onset of 

the race, the likelihood of possession is first computed 

by considering the entire influence of the territory. With 

knowledge of the likelihood of each empire’s control, a 

comparable mechanism to the Roulette Wheel is 

adopted. This aims to avail the designated colony with 

an empire based on the probable proportionality. 
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Fig. 5: Imperialistic competition 

 

Eliminating the Powerless Empires 

The powerless empires will flop during the 

competition of the imperialists. Hence, the resulting 

colonies will be dispersed between the other empires. In 

simulating the mechanism of collapse, numerous factors 

are defined to help ascertain the powerless empires. In 

this study, it is assumed that an empire flops when all its 

colonies are mislaid. 

Stopping Criteria 

The competition typically carries on pending when 

there is only one imperialist remaining in the search 

space. Conversely, diverse settings are designated as 

criteria for termination. These include achievement of a 

maximal sum of repetitions or minuscule progress in the 

functional objective. 

The MOEICA Implementation Result of 

MPS -KRS Model 

The outlined objectives are solved using the MOEICA 

algorithm. The achievement level of the objectives and 

crowding distance for some optimal solutions in the 

Pareto front ranked first are shown in Table 6.  

The parameter settings of the MOEICA algorithm 

are described as follows: Crossover rate is 0.7, 

mutation rate is 0.4, assimilation coefficients are set to 

0.01, revolutionary rates are set as 0.05, Nimp is equal 

to 10, population size is 100 and the maximum number 

of iterations is equal to 150 generations without any 

improvement. 

Table 6: Some solutions and their crowding distance from 

pareto front 

     Crowding 

 EI REN BSS distance 

1 9512.1924 108.834870 635.30712 0.0008312 

2 11013.7490 75.132270 291.57729 0.0008206 

3 10559.8470 161.597080 247.40984 0.0002412 

4 11523.5030 74.536700 219.23043 0.0002294 

5 12804.7350 43.128912 155.81811 0.0001239 

6 12287.5840 55.330671 175.27388 0.0001169 

7 10062.5540 88.164676 476.19639 0.0001109 

8 11829.0420 58.090170 225.39470 0.0002294 

9 5392.0798 288.797620 2677.75490 0.0001239 

10 10786.8000 62.267747 361.08370 0.0001169 

 

Comparison between MOEICA, NSGAII 

and MOPSO 

The feasibility of the proposed algorithm to solve the 

multi-objective MPS model of KRS was verified by 

NSGAII and MOPSO. These were also used to solve the 

problem using MATLAB 8.1 programming languages 

executed in the Intel Core 2 Duo 2.20 GHz. The results 

obtained for solving the MPS problem were compared 

with other algorithms. The parameter settings of the 

MOEICA algorithm are as previously described. 

However, the parametric settings of NSGAII and 

MOPSO are described in Table 7. 

In contrast, the three performance metrics were 

used to examine the competence of the suggested 

algorithm. The selected metrics include; Mean Ideal 

Distance (MID), Quality Metric (QM) and Rate of 

Achievement to the objectives. 

Weakest colony in 

weakest empire 

Empire 2 

Empire 1 

Imperialist 1 

The weakest 

empire 

Empire 3 

Empire N 

Imperialist 2 

Imperialist 3 

Imperialist N 

P1 

P3 

PN 
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Table 7: The parameters values of NSGAII and MOPSO 

Algorithm Parameter Value Parameter Value 

NSGAII Npop 100.0 Ngen 150.0 

 Pc 0.7 Pm 0.4 

MOPSO Npop 100.0 Ngen 150.0 

 C1 1.0 C2 2.0 

 W 0.5 Wdamp  

 Alpha 0.1 Beta 2.0 

 Gamma 2.0 Pm 0.1 

 NGrid 5.0 NRep  

 
Table 8: The comparison results of measurement between 

MOEICA, NSGAII and MOPSO 

Algorithm QM MID RAS 

MOEICA 1.00 813466.35 396.66 

NSGAII 0.34 1441226.77 962.50 

MOPSO 0.40 3185308.06 856.98 

 

The outcomes of the three algorithms are represented in 

Table 8, according to the metric values computed for 

individual algorithms in the MOMPS KRS model. The 

results indicate that the optimal solutions of MOEICA 

are better compared to the other algorithms. 

Furthermore, the findings indicate that the superior 

algorithm based on performance is MOEICA as evident 

in the quality metric; QM = 1 (the higher the QM, the 

better the algorithm). The MOEICA algorithm also 

displayed the highest performance in terms of the mean 

ideal distance metric; MID = 813466.35 (lower is better). 

Furthermore, MOEICA exhibited a lower achievement 

rate compared to the simultaneously objective metric of 

MOPSO but higher than NSGAII and the RAS = 396.66 

(lower is better). Moreover, MOEICA exhibited more 

relevant results in the other test problems based on the 

metrics when related to the different algorithms. 

Conclusion 

This paper proposes a hybrid approach called 

MOEICA consisting of the ICA and GA for solving multi-

objective MPS problems. In addition, the performance of 

MOEICA was evaluated using the MOMPS model of 

KRS. The results showed that MOEICA could efficiently 

solve the multi-objective model of KRS based on the 

optimal Pareto points deduced in the study. 

Future Works of this study may consider objective 

functions with actual cost rather than quantity units, such 

as cost of production, cost of inventory and failure to 

meet demand. In addition Installing a Master Production 

Scheduling (MPS) of other refineries in Iraq as Aldora 

refinery and Alqayara refinery taking into consideration 

the issue of design differences in those refineries. 
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