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Abstract: The role of technology and the use of software in the 

educational process are growing in recent times. The use of software is 

essential especially if the analytical method available is too complicated 

for the students. In this study, we used the Maple software to deal with 

two physics problems, in the first problem we consider an electrical 

circuit containing a resistor and two diodes powered by a sinusoidal 

voltage generator and in the second problem we consider an electrical 

circuit containing a resistor and a diode powered by a saw tooth voltage 

generator. For each problem we use Maple software to determine the 

exact analytical solutions for the current flowing in the different branches 

of the electronic circuit, we derive analytical expressions for the terminal 

voltages of all the elements of the circuit, we calculate the dynamic 

resistances diodes of the circuit and we animate graphic representations to 

study the influence of certain parameters on the current and the voltages 

at the terminals of all the elements of the circuit. The analytical solutions 

proposed are all expressed as functions of the Lambert W function. 

 

Keywords: The PN Junction Diode, Dynamical Resistances the Diodes, 

Lambert W Function, Maple Software, Saw Tooth Excitation Voltage 

 

Introduction 

Maple is a proprietary computer algebra software 

allowing to manipulate mathematical expressions 

symbolically and thus to make exact calculations. Maple 

is a computer environment for advanced mathematics 

including tools for algebra, referential equations, 

mathematical analysis, discrete mathematics, graphical 

and numerical calculation, etc.  

The transcendent equation of current intensity 

through a diode driven by a voltage source through a 

serial resistor is usually solved by accepting 

approximations. Fjeldly et al. (1991) exploited an 

approximate analytical resolution technique combined a 

test function with a series of expansion. This method 

leads to a precise solution without requiring a lot of 

computing time. 

The authors (Pimbley et al., 1992) used Newton's 

method provides an accurate solution for negative 

values of normalized tension, but the precision of the 

solution is less acceptable for very large values of the 

normalized tension. Moreover, this method induced a 

lot of computing time. 

In the work published by (Banwell and Jayakumar, 

2000), the authors used the LambertW function to 

express the exact analytical solution for the normalized 

form of the generalized diode equation. The researcher in 

(Vargas-Drechsler, 2005) derived the same exact 

analytical solution using the computer algebra software 

Maple (Eberhart, 2009). 

In this application worksheet, we consider two 

problems:  

 

 In the first problem, we consider an electrical 

circuit containing a resistor and two diodes 

powered by a sinusoidal voltage generator “Fig. 1”, 

we use Maple software to determine exact 
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analytical solutions for the current flows through 

the different branches of the electronic circuit. 

Then we derive analytical expressions for the 

voltages at the terminals of all the elements of the 

circuit and we represent them graphically using the 

Maple software. Finally, we calculate the 

dynamical resistances the diodes in the circuit. The 

proposed analytical solutions are all expressed as 

functions of the Lambert W function 

 In the second problem: Maple is used to determine 

exact analytical solution for the current flows 

through the Electrical circuit containing a resistor 

and diode powered by a saw tooth voltage generator 

presented in Fig. 2 and to study the influence of four 

parameters involved 

 

First Problem 

Exact analytical solution in electronic circuit 

containing a resistor and two diodes powered by a 

sinusoidal voltage generator (Fig. 1). 

Materials and Methods 

In this section, we introduce the used materials an 

methods: LambertW function (Dence, 2013), Kirchhoff’s 

current law, Kirchhoff’s voltage law, saturation current, 

dynamical resistance, Maple software. 

LambertW Function  

The function Lambert W is the reciprocal of the 

function f(x) = xex. Since the equation x.exp(x) = y has an 

infinite number of solutions for a non-zero complex 

value. The function Lambert W admits an infinite 

number of branches in the complex plane and only two 

of these branches are real: 

 

i) The first branch, also called the main branch, 

vanishes at 0, it is noted LambertW0 and is defined 

from [-1/e, +] verses [-1, +] 

ii) The second branch is noted LambertW-1 and is 

defined from [-1/e, 0] verses [-, -1]  

 

 
 

Fig. 1: Electronic circuit containing a resistor and two diodes 

 

  

 
Fig. 2: Graph of Lambert W function 

A 
R 

B 

V 

C 

I1 D1 D2 

I2 

I 

f(x) = xex 

-4 -2 0 2 4 6 

4 

 
2 

 
0 

 
-2 

 
-4 

Lambert W0 

Lambert W-1 



M’hamed El Aydi et al. / Journal of Computer Science 2020, 16 (12): 1669.1683 

DOI: 10.3844/jcssp.2020.1669.1683 

 

1671 

Kirchhoff’s Current Law 

Kirchhoff’s Current Law (KCL) states that the 

algebraic sum of currents entering a node (or a closed 

boundary) is zero. 

Kirchhoff’s Voltage Law (KVL) states that the algebraic 

sum of all voltages around a closed path (or loop is zero.). 

The current through the diode is: 
 

 I = Is(exp(qV/(eta.kB.T)-1)1 

 Dynamic resistance2 r is, r = dV/dI 

 Ohm's law3 is: V = RI 

 Maple problem solving handbook (Eberhart, 2009) 
 

Modeling the Problem using Maple Software 

Nomenclature 

R: Resistance 

D1: Diode, Is1 its saturation current 

D2: Diode, Is2 its saturation current 

I = IR: Current through the resistance 

I1: Current through the diode D1 

I2: Current through the diode D2 

q: Electron charge 

eta: Ideality factor of the diodes 

kB: Boltzmann constant 

T: The absolute temperature 

V: Sinusoidal voltage source 

VAB: Voltage across the resistance 

VBC: Voltage across the diodes 

Rd1: Dynamical resistance of the diode D1 

Rd2: Dynamical resistance of the diode D2 

P: Period of V 
. .

q
a

eta kB T
  

 
Note that the calculations, Equation solving, Graphic 

representations and Animations will be done using the 

Maple software. 

The Current Flowing Through the Resistor 

>restart: 
 

Using Kirchhoff’s current law: 
 
> eq1 := IR = I1 + I2; 

eq1 := IR = I1 + I2 
 

Using Ohm's law: 
 

> eq2 := VAB = RIR; 

eq2 := VAB = R IR 
 

Using the current through the diode D1: 

                                                           
1https://www.pveducation.org/pvcdrom/pn-junctions/diode-equation 
2http://fourier.eng.hmc.edu/e84/lectures/ch4/node2.html 
3https://en.wikipedia.org/wiki/Ohm%27s_law 

> eq3 := I1 = Is1(exp(aVBC)-1); 

eq3 := I1 = Is1 (ea VBC-1) 
 

Using the current through the diode D2: 
 

> eq4 := I2 = Is2(exp(aVBC)-1); 

eq4 := I2 = Is2 (ea VBC-1) 
 

Using Kirchhoff’s voltage law: 
 
> eq5 := V = VAB + VBC; 

eq5 := V = VAB + VBC 

> eq6 := VBC = solve(eq5, VBC); 

eq6 := VBC = -VAB + V 

> eq7 := subs(eq2, eq6); 

eq7 := VBC = -IRR + V 

> eq8 := subs(eq7, eq3); 

eq8 := I1 = Is1 (ea(-IRR + V)-1) 

> eq9 := subs(eq7, eq4); 

eq9 := I2 = Is2 (ea(-IRR + V)-1)  

> eq10 := subs(eq9, eq1); 

eq10 := IR = I1 = Is2 (ea(-IRR + V)-1) 

> eq11 := subs(eq8, eq10); 

eq11:= IR = Is1 (ea(-IRR + V)-1) + Is2 (ea(-IRR + V)-1) 

> IR := solve (eq11, IR);  

IR: =
  1 21 2 1 2 Is Ra Is Ra VaIs Ra Is Ra LambertW Ra Is Is e

Ra

   
  

The Current Flow i Through a PN Junction is 

Related to the Voltage v at its Terminals by the 

Relation 

> eq12 := i = Is*(exp(a*v)-1); 
eq12 := i = Is(eav-1) 
> v := solve(eq12, v) 

ln

:

Is i

Is
v

a

 
 
   

Dynamical Resistance of the Diode D 

> Rd := diff(v,i);  

 

1
:Rd

Is i a



 

 
Thus: 

 

 

1
1:

1 1
Rd

Is I a



 and 

 

1
2 :

2 2
Rd

Is I a



 

Graphs of Current Flows and Voltages of 

the Circuit against Time  

> restart: 

> withplots: 
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> V := tVm*sin(omege*t); a := 
. .

q

eta kB T
  

V := tVm sin(t) 

:
. .

q
a

kBT
  

> IR := t 
1

a R
 LambertW(a(R(Is1 + 

Is2)exp(a(R(Is1 + Is2) + V(t)))) - (Is1 + Is2); 

IR := t  
       1 2

1 2
a R Is Is V t

LambertW aR Is Is e

aR

 


-Is1-Is2 

> VAB := tRIR(t); 

VAB := tR IR(t) 

> VBC := tV(t)-RIR(t); 

VBC := tV(t)-R IR(t) 

 

The numerical values used are such that: 

 

 > R := 10; Is1 := 10**(-8); Is2 := 410**(-9); q := 

1.60219*10**(-19); 

R := 10 

Is1 := 
1

100000000
  

Is2 := 
1

250000000
 

q := 1.602190000 1019 

> eta := 1.8; kB := 1.38062*10**(-23); T := 300; 

omega :=2*Pi*60; Vm := 3 ; 

 := 1.8  

kB := 1.380620000 1023 

T := 300 

 := 120  

Vm := 3 
> I1: = tIs1(exp(aVBC(t))-1): 
 I2 := tIs2(exp(aVBC(t))-1): 

> Rd1 := 
  

1

1 1Is I t a 
 : Rd2 := 

  
1

2 2Is I t a 
: 

Graphical Representation of the Voltage Across the 

Resistance and Voltage Across the Diodes 

> plot([VAB(t), VBC(t)], t = 0..
2* Pi

omega
, color = [black, 

blue]); 

Graphical Representation of the Current Flowing 

through the Resistor, the Diode1, the Diode2 and 

I1(t) + I2(t) 

> plot([IR(t), I1(t), I2(t), I1(t) + I2(t)], t = 0..
2* Pi

omega
, 

color = [black, red, blue, brown]); 

Graphical Representation of I1(t) and I2(t) 

> plot([I1(t), I2(t)], t =
2*

..
Pi Pi

omega omega
, color = [red, blue]); 

Graphical Representation Dynamic Resistances of 

Diodes D1 and D2 

> plot ([Rd1(t), Rd2(t)], t = 0..
4* Pi

omega
, color = [black, 

blue]); 

 

 
 

Fig. 3: Graphical representation of the VAB and VBC in the interval of time [0, P] 
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Fig. 4: Graphical representation of IR(t), I1(t), I2(t) and I1(t) + I2(t) in the interval of time [0, P] 

 

 
 

Fig. 5: Graphical representation of I1(t) and I2(t) in the interval of time [P/2, P] 

 

 
 

Fig. 6: Graphical representation Rd1 and Rd2 in the interval of time [0, 2P] 

 

Second Problem  

We considered the electrical circuit containing a 

resistor and a diode powered by a saw tooth voltage 

generator Fig. 7, we want to determine the analytical 

expressions for the voltages at the terminals of all 

elements in the circuit and we are interested in studying 

the influence of the saturation current, the temperature 

and the ideality factor. 

  
 
Fig. 7: Electrical circuit containing a resistor and diode 

powered by a saw tooth voltage generator 
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Modeling the Problem using Maple Software 

Nomenclature 

R: Resistance 

D: Diode, Is its saturation current 

IR: Current through the resistance equal to the current 

through the diode 

q: Electron charge 

eta: Ideality factor of the diode 

kB: Boltzmann constant 

T: Is the absolute temperature 

V: Voltage source 

VAB: Voltage across the resistance 

VBC: Voltage across the diode 

Rd: Dynamical résistance of the diode 
. .

q
a

eta kB T
  

 

The calculations, Equation solving, Graphic 

representations and Animations will be done using the 

Maple software. 

The current flowing through the resistor: 

 

> restart: 

Using Ohm's law: 

> eq1 := VAB = RIR; 

eq1 := VAB = R IR  

 

Using the current through the diode D: 

 

> eq2 := IR = Is(exp(aVBC)-1); 

eq2 := IR = Is (ea VBC-1) 

 

Using Kirchhoff’s voltage law: 

 

> eq3 := V 

eq3 := V = VAB + VBC; 

eq3 := V = VAB + VBC 

> eq4 := subs(eq1, eq3) ; 

eq4 := V = IR R + VBC  

> eq5 := VBC = solve(eq4, VBC); 

eq5 := VBC = -IR R + V  

> eq6 := subs(eq5, eq2); 

eq6 := IR = Is (ea(-IR R + V)-1) 

> eq7 := i = Is(exp(av)-1); 

eq7 := i = Is (ea v-1) 

> v := solve(eq7, v); 

v := 

ln
Is i

Is

a

 
 
   

> Rd := diff(v,i) 

Rd := 
 

1

Is i a
 

> IR := solve(eq6, IR); 

IR := - 
 Is Ra VaIs Ra LambertW Is R ae

Ra


 

> IR := simplify(IR); 

IR := - 
  a Is R V

Is Ra LambertW Is Rae

Ra




 

> IR := expend(IR); 

IR := - 
  a Is R V

LambertW Is Rae
Is

Ra



  

 

So the current flowing through the resistor is: 

 

IR := - 
  a Is R V

LambertW Is Rae
Is

Ra



  

 

In this problem, we consider a sawtooth generator 

circuit, the mathematical expression of its voltage is 

given by: 

 

 
1

: ; 0. ; 0..580
2

V t Vm t P t P Pisthe period Vm
 

     
 

 

 

Graphs of Current Flows and Voltages in the circuit 

as a function of time: 

 

> restart: with(plots): 

> V := tVm* 
2

P
t
 
 

 
; 

V := tVm
1

2
t P
 
 

 
 

> a := 
. .

q

eta kB T
; 

a := 
. .

q

kB T
 

> A := t
1

*a R

 
 
 

*(LambertW(a*R*Is*exp(a*(V(t)+ 

R*Is))))-Is ; 

A : = t

   a V t RIs
LambertW aRIse

Is
aR



  

> IR := tA(t); 

IR := tA(t) 

> VAB := t RIR(t); 

VAB := t R IR(t) 

> VBC := t V(t)-VAB(t); 

VBC := t V(t)-VAB(t) 

 

The numerical values used are such that: 
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R := 10: T := 300: Is := 10(-9): q := 1.60219*10**(-19): kB 

:= 1.38062*10**(-23): eta := 1.8: Vm := 400: P := 0.01: 

> IR(t); VAB(t); VBC(t); Rd(t) := 
  

1

( )Is IR t a 
; 

0.004653223400 LambertW (2.149047905 107 

e8596.191620t-42.98095789)- 
1

1000000000
 

0.04653223400 LambertW(2.149047905 107e8596.191620t-

42.98095789)- 
1

100000000
 

400t-1.999999990-0.04653223400 

LambertW(2.1490479057e8596.191620t-4298095789) 

Rd := t 
  

1

Is IR t a
 

 

The following figures are obtaining. 

Graphical Representation of the Dynamic 

Resistance 

 

> plot(Rd(t), t = 0..P); 

 

Graphical representation of voltages at the terminals 

of the generator, the resistance and the diode: 

 

> plot([V(t), VAB(t)], t = 0..P, color = [black, blue, green]) 

 

Graphical Representation of Current Flowing 

through the Resistance Over Time [0, P/2] 

 

> plot(IR(t), t = 0.. 
2

P
);  

 

 
 

Fig. 8: Graphical representation of the dynamic resistance of the diode in the interval of time [0, P] 
 

  
 

Fig. 9: Graphical representation of voltages at the terminals of the generator, the resistance and the diode in the interval of time [0; 0,01] 
 

 
 

Fig. 10: Graphical representation of current flowing through the resistance over time [0, P/2] 
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Fig. 11: Graphical representation of current flowing through resistance over time [P /2, P] 

 

Graphical Representation of Current Flowing 

through Resistance Over Time [P/2, P]. 

 

> plot(IR(t), t = 
2

P
..P); 

 

Influence of the Loading Resistance, 

Saturation Current, Temperature and 

Ideality Factor: 

Influence of the Loading Resistance 

Here, we present the influence of the loading 

resistance on V(t); VAB(t) and VBC(t). 

> restart: 

> with(plots): 

> V := tVm* 
2

P
t
 
 

 
: a := 

. .

q

eta kB T
: 

> A := t 1

*a R

 
 
 

*(LambertW(a*R*Is*exp(a*(V(t) + 

R*Is))))-Is: 

> IR := tA(t): 

> VAB := tRIR(t): 

> VBC := tV(t)-VAB(t): 

> Rd(t) := 
  

1

Is IR t a 
: 

> T := 300: q := 1.60219*10**(-19): Is := 10(-9): kB := 

1.38062*10**(-23): 

> eta := 1.8: Vm := 400: P := 0.01: 

 

In the following figure, we present an animation of 

the voltages V(t), VAB(t), VBC(t) for R = 0.1..100 

>#animate({V(t), VAB(t), VBC(t))}, t = 0..0.017, 

R = 0.1..100; 

> animate(V(t), t = 0..P, R = 0.1..100, color = red): F := %: 

>animate(VAB(t), t = 0..P, R = 0.1..100, color = green): 

G := %: 

> animate(VBC(t), t = 0..P, R = 0.1..100, color = blue): 

H := %: 

> display({F, G, H}) ; 

 

Influence of the Loading Resistance on the IR 

 

> animate(IR(t), t = 0..P, R = 0.1..100, color = BLACK); 

 

Influence of the Loading Resistance on the Rd 

 

> animate(Rd(t), t = 0..P, R = 0.1..100, color = BLACK) 

 

Influence of the Saturation Current 
 

> restart: with(plots): 

> V := tVm* 
2

P
t
 
 

 
: a := 

. .

q

eta kB T
: 

> A := t 
1

*a R

 
 
 

*(LambertW(a*R*Is*exp(a*(V(t) + 

R*Is))))-Is: 

> IR := tA(t): 

> VAB := tRIR(t): 

> VBC := tV(t)-VAB(t): 

> Rd(t) := 
  

1

Is IR t a 
: 

> R := 8: T := 300: q := 1.60219*10**(-19): 
> kB := 1.38062*10**(-23): 
> eta := 1.8: Vm := 400: P := 0.01: 

 
In the following figure, we present an animation of the 

voltages V(t), VAB(t), VBC(t) for Is = 10^(-9)..10^(-1) 
#animate({V(t), VAB(t), VBC(t)}, t = 0..P, Is = 10^(-
9)..10^(-1)); 
> animate(V(t), t = 0..P, Is = 10^(-9)..10^(-6), color = 
red): F := %: 
> animate (VAB(t), t = 0..P, Is = 10^(-9)..10^(-6), color = 
green): G := %: 
> animate (VBC(t), t = 0..P, Is = 10^(-9)..10^(-6), color 
= blue): H :=%: 
> display({F, G, H}); 
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Fig. 12: Influence of the loading resistance on V(t), VAB(t) and VBC(t) 
 

 
 

Fig. 13: Influence of the loading resistance on the IR 
 

 
 

Fig. 14: Influence of the loading resistance on the Rd 
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Fig. 15: Influence of the saturation current on V(t), VAB(t) and VBC(t) 

 

 
 

Fig. 16: Influence of the saturation current on the IR 

 

 
 

Fig. 17: Influence of the saturation current on the Rd 

 

Influence of the Saturation Current on the IR 
 
> animate(IR(t), t = 0..P, Is = 10^(-9)..10^(-6), color = 
BLACK); 
 

Influence of the Saturation Current on the Rd 
 
> animate(Rd(t), t = 0..P, Is = 10^(-9)..10^(-6), color = 
BLACK) 

Influence of Temperature 

Influence of Temperature on V(t); VAB(t); VBC(t) 

 

> restart: with(plots): 

> V := tVm*
2

P
t
 
 

 
: a := 

. .

q
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A := t 
1

*a R

 
 
 

*(LambertW(a*R*Is*exp(a*(V(t) + 

R*Is))))-Is:  

> IR := tA(t): 

> VAB := tRIR(t): 

> VBC := tV(t)-VAB(t): 

> Rd(t) := 
  

1

Is IR t a 
: 

> R := 10: q := 1.60219*10**(-19): 

> Is := 10(-9): kB := 1.38062*10**(-23):  

> eta := 1.8: Vm := 400; P := 0.01: 

 

  
 

Fig. 18 : Influence of temperature on V(t); VAB(t); VBC 
 

 
 

Fig. 19: Influence of the temperature T on the IR current 
 

 
 

Fig. 20: Influence of the temperature T on the dynamic resistance 
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In the following figure, we present an animation of 

the voltages V(t), VAB(t), VBC(t) for T = 300..400)  

> #animate({V(t), VAB(t), VBC(t))}, t = 0..P, T = 

300..400); 

> animate(V(t), t = 0..P, T = 300..400, color = red): F := %: 

>animate(VAB(t), t = 0..P, T = 300..400, color = green): 

G := % 

> animate(VBC(t), t = 0..P, T = 300..400, color = blue): 

H := %: 

> display({E, G, H}); 

 

Influence of the Temperature T on the IR Current 

 

> animate(IR(t), t = 0..P, T = 300..400, color = BLACK); 

 

Influence of the Temperature T on the Dynamic 

Resistance 

 

> animate(Rd(t), t = 0..P, T = 300..400, color = BLACK) 
 

Influence of Ideality Factor 

Influence of Ideality Factor on V(t); VAB(t) and 

VBC(t)  
 
> restart: 

> with(plots): 

> V := tVm*
2

P
t
 
 

 
: a := 

. .

q

eta kB T
: 

> A := t 
1

*a R

 
 
 

*(LambertW(a*R*Is*exp(a*(V(t) + 

R*Is))))-Is: 

> IR := tA(t): 

> VAB := tRIR(t): 

> VBC := tV(t)-VAB(t): 

> Rd(t) := 
  

1

Is IR t a 
: 

> R := 8: T := 300: q := 1.60219*10**(-19): kB := 

1.38062*10**(-23): 

> Is := 10(-9): Vm := 400: P := 0.01: 

 
 

Fig. 21: Animation of V(t); VAB(t) and VBC(t) for t in [0, P] and the ideality factor varies between 0.8 and 2 
  

 
 

Fig. 22: Animation of IR(t) for t in [0, P] and the ideality factor varies between 0.8 and 2 
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Fig. 23: Animation the dynamic resistance for t in [0, 0.002] and the ideality factor varies between 0.8 and 2 
 
Table 1: The influence of load resistance, saturation current, temperature and ideality factor 

When R: Increases IS: Increases T: Increases η: Increases  

VAB Grow Grow Decreases Decreases 

VBC Decreases Decreases Grow Grow 

IR Decreases Grow Decreases Decreases 

Rd Invariable Decreases Decreases Decreases 

 

In the following figure, we present an animation of 

the voltages V(t), VAB(t), VBC(t) for eta = 0.8..2. 

> #animate({V(t), VAB(t), VBC(t)}, t = 0..P,eta = 0.8..2); 

> animate(V(t), t= 0..P,eta = 0.8..2, color = red): F := %:; 

> animate(VAB(t), t = 0..P, eta = 0.8..2, color = green): 

G := %: 

> animate(VBC(t), t = 0..P, eta = 0.8..2, color = blue): H 

:=%: 

> display ({F, G, H}); 

 

Influence of: Ideality Factor on IR(t)  

 

> animate(IR(t), t = 0..P, eta = 0.8..2, color = BLACK); 

 

Influence of Ideality Factor on Dynamic Resistance 

 

> animate(Rd(t), t = 0..P, eta = 0.8..2, color = BLACK); 

 

and the ideality factor varies between 0.8 and 2. 

Results Discussion of the First Problem 

 The current flowing through the resistor: 

IR := t 1

a R
LambertW(aR(Is1 + 

Is2)exp(a(R(Is1 + Is2) +V(t)))) - (Is1 + Is2) 

 Voltage across the resistance R: 

VAB := tRIR(t); 

 Voltage across the diodes: 

VBC := tV(t)-RIR(t); 

 The current flowing through the diodes D1 and D2: 

I1 := tIs1(exp(aVBC(t))-1) 

I2 := tIs2(exp(aVBC(t))-1) 

 Dynamical resistance of the diodes D1 and D2: 

Rd1 := 
  

1

1 1Is I t a 
 

Rd2 := 
  

1

2 2Is I t a 
 

 
Graphs of current flows and voltages in the circuit as 

a function of time: 
Figure 3 shows that: 

 
 Voltage VAB is positive on [0, P/2], zero on [P/2, P] 

and it reaches a maximum for t = P/4 
 Voltage VBC is positive on [0, P/2], negative on 

[P/2, P] and it reaches a minimum for t = 3P/4 
 

Figure 4 shows that: 
 
 the intensities of the currents IR, I1 and I2 are 

positive on [0, P/2] and they reach their maximums 
at the same time t = P/4 

 the intensities of the IR currents, I1 and I2 are zero 
on [P/2, P], this is the role played by the diodes 

 
Figure 5 shows that: 

 
 The intensities of the current I1 and I2 are negative and 

almost null [P/2, P], because the diodes are not ideal 
 

Figure 6 shows that: 
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 The dynamic resistances Rd1 and Rd2 are almost 
zero on [0, P] except on a small interval of time 

 Over this small time interval, we notice that Rd1 and 

Rd2 are positive and they reach their maximums at 

the same time 

 Rd2 is greater than Rd1 because Is2 is less than Is1 

 

Results Discussion of the Second Problem 

 The current flowing through the resistor IR: 

A := t 
1

*a R

 
 
 

*(Lambert W(a*R*Is*exp(a*(V(t) + 

R*Is))))-Is 

IR := t A(t); 

 Voltage across the resistance R: 

VAB := t RIR(t); 

 Voltage across the diode: 

VBC := tV(t)-RIR(t); 

 Dynamical resistance of the diode D: 

 Rd(t) := 
  

1

1Is IR t a 
: 

 

The graphical representations allowed us to 

manipulate commands of the Maple software and to 

deduce the following results: 

Figure 8 shows that: 

 
 The dynamic resistance of the diode decreases 

very quickly in the time interval] 0,0.001] then it 
remains zero 

 

Figure 9 shows: 

 
 The voltage across the generator is a straight segment 
 For 0 < t <t0, (0.006 < t0 <0.007), the voltage VBC 

coincides with V and that VAB is zero 
 

Figure 10 and 11 shows: 

 
 For 0 <t <P/2, the IR current in the resistor is zero. the 

current IR increases and i is positive for P/2 <t <P 
 

The influence of load resistance, saturation current, 

temperature and ideality factor: 
 
 The results of Fig. 12 to 23 are summarized in the 

following Table 1 
 

General Discussion 

The use of the Maple software allowed us to solve 

transcendent equations, to analytically express the solutions 

according to the LAMBERT W functions, to represent the 

solutions graphically and to make animations. 

Important question: Why don't we teach the 

LAMBERT W function and the Maple software at the 

secondary school? 

Conclusion 

We used the Maple software in several directions: 

 

 Modeling and problem solving, determination of 

exact analytical solutions of the expressions of 

current and voltage in the electronic circuit, 

Visualization of their evolutions as a function of 

time and illustration of the influence of certain 

parameters on the current and the voltages 

 This work is of interest to researchers in mathematics, 

physicists and teachers of mathematics or physics 

 The user of this article can make the following 

changes: 

i) Change the amplitude value Vm sinusoidal 

signal and watch the changes in graphs and 

animations 

ii) Change the physical parameters for example the 

temperature and look for the effect produced on 

the graphs and the animations 

iii) Substitute one signal for another and look at the 

influence on graphs and animations 
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