

 © 2020 Slamet Sudaryanto Nurhendratno, Sudaryanto and Solichul Huda. This open access article is distributed under a

Creative Commons Attribution (CC-BY) 3.0 license.

Journal of Computer Science

Original Research Paper

Voronoi Partition to Support Data Search in Uncertain

Database with k-Bound Filtering

Slamet Sudaryanto Nurhendratno, Sudaryanto and Solichul Huda

Faculty of Computer Science, Dian Nuswantoro University, Semarang, Indonesia

Article history
Received: 11-09-2020
Revised: 21-12-2020
Accepted: 21-12-2020

Corresponding Author:

Slamet Sudaryanto
Nurhendratno
Faculty of Computer Science,
Dian Nuswantoro University,
Semarang, Indonesia
Email: slametalica301@dsn.dinus.ac.id

Abstract: With the development of mobile technology, one of its main

functions is to have mobile navigation capabilities, this is one of the

Location-Based Services (LBS). Mobile navigation is designed as a mobile

device to be able to monitor access objects from users. Because of the
mobile characteristic, the impact on the points of objects to be found always

occur a not certain change. Efficient query processing is needed on a set of

mobile data due to the movement of users. This movement has an impact

on searching in an uncertain database. For this uncertain database, the

important query method is Probabilistic k-Nearest Neighbor query (PkNN),

which calculates the probability of the set of k objects to be closest to the

given query point. Several studies have been conducted at this time in order

to contribute to the search results in a mobile database and uncertain with

the support of certain algorithms to produce better performance. In this

study, we propose a method called voronoi partitioning to support searching

in uncertain database (Partition threshold k Aggregate Nearest Neighbor
query method-Partition_PANN). In designing the partition of the voronoi

region, it starts by using voronoi local networks to calculate query answers

for small areas around the request point. A query point that meets the

threshold used as a value as a set of threshold queries. So, all of the query

points that meet the thresholds are the basis for forming local network

voronoi partitions. Thus, this method does not require preliminary

calculations also evaluation of distances at each intersection. The purpose

of this research is to improve the performance of queries in an uncertain

database by making the aggregate process and trimming the probability

value as one phase of the search algorithm. In the first stage, objects which

not able to form the answers are filtered by calculating the minimum closed

circle from the dataset of query which prepared for the trimming phase. The
second step called probabilistic candidate selection, its cut significant set of

candidates for inspected as the aggregate function of the nearest neighbor’s

demand. The remaining set is sent for verification which obtains possible

answers at the lower and upper limits so that candidates whose probabilities

are not less than the user-specified threshold are saved in the result set and

returned to the user. We also examine the efficient data structures spatially

which support this method. Our solution can be applied to uncertain data

with an ever-changing probability density function.

Keywords: PkNN, Voronoi Partitions, Aggregate, Uncertain Database

Introduction

The advanced in implementing k-NN queries on

spatial data objects are the implementation of mobile

navigation in mobile devices such as the Global

Positioning System (GPS). The use of global positioning

system technology is one example of superior

technology mobile devices that have the power of

Location-Based Services (LBS) (Xuan et al., 2008). This

technology has the advantage to continuously monitor

the point or object of user, even though the mobile

devices always experiencing movement both statically

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1754

and dynamically. Location-based services and cellular

internet will be able to monitor the movement of object

points due to changes that occur, it is commonly referred

to as split nodes (Zhou et al., 2018). Many approaches

have been developed to design the processing of split
nodes, for example by applying conceptual models such

as multidimensional indexes and query processing, while

the type of approach which is often used for the spatial

query is the k Nearest Neighbor search method (kNN

search) (Kolahdouzan and Shahabi, 2004). The method

of searching for objects in spatial data is continuing

developing until today, the development of the search

method is more on improving or the upgrading of the

algorithm. Typical algorithms from the Nearest

Neighbor (NN) query are at depth of the traversal and

the selection of the best traversal is based on the Root
tree (R tree). To develop methods demanding query

requirements under different conditions, in recent years,

research on NN queries has expanded to kNN queries

(Papadias et al., 2004), group nearest neighbor query

(Sultana et al., 2014), scalable nearest neighbor query

(Meyerhenke et al., 2014), reverse nearest neighbor

query (Sack and Urrutia, 2000), continuous reverse k

nearest neighbors query, aggregate nearest neighbor

query, strong neighborhood pair query, visible nearest

neighbor query, nearest neighbor query on uncertain data

and so on (Elmongui et al., 2013).

Research on the methods that have been implemented

to help in the process of searching for certain spatial data

objects, especially for searches on mobile data that is

uncertain is very rapidly developing and is mostly based

on the k-Nearest Neighbor (kNN) method. To facilitate

the search for the Nearest Neighbor (kNN) with respect

to moving demand points, research in this area focuses

mostly on techniques that utilize pre-calculated network

distances as partial results. One common example of this

technique is the Network Voronoi Diagram (NVD).

Thus, the query with the method k-Nearest Neighbor

(kNN) is one of the most popular types of queries in

location-based search services (Meyerhenke et al.,

2008). The searching process in kNN starts from the user

making a query or query kNN to the service provider for

the object or objects closest to the query point to the

user’s location. With the advances in spatial databases,

kNN queries have been upgraded from Euclidean space

to road network environments, where users can use kNN

queries to find objects based on network distance.

Although the results of the kNN query have resulted in

the closest distance and travel time, the method is still

being developed and improved as in increasing the

closest range so that a new method appears, namely k-

Range Nearest Neighbor (kRNN) The main idea of

kRNN is to find k-nearest objects by pulling each point

on the road segment in the search for the area in search

by users who are always on the move. This user

movement has an impact on searching in an uncertain

database. One important search method in an uncertain

database is the k-Nearest-Neighbor query (PTk-ANN)

probabilistic threshold method, the method calculates the

probability of the set of k objects to be closest to the

given query point. Some methods which developed in

handling aspects of changing nodes or split nodes as the

uncertainty of data are the Voronoi Continous k-Nearest

Neighbor (VCkNN). There are also those who develop a

search method that emphasizes the probability of object

k to be searched as the closest object to a given query

point such as the Probabilistic k-Nearest-Neighbor Query

(k-PNN) method, Probabilistic Voronoi Diagram (PVD),

Probabilistic Moving Nearest Neighbor (P-MNN) and

others. Query methods with various approaches to

uncertain data still have problems in search

performance, namely the involvement of thresholds as

a set of queries. So, it requires access to all data

objects and network nodes, which means it is not

suitable for large data sets in many real-life situations.

The best method available for monitoring kNN results

without initial preparation depends on executing

snapshot requests on network nodes encountered by

the query point. This method results in the repeated

evaluation of distances on the same or similar set of

nodes. So the query method cannot be applied to solve

the KANN query problem on uncertain data directly.

Therefore, we propose to use voronoi partitioned to

support searching in uncertain database.
The voronoi diagram is an important branch of

computational geometry, some important properties,
such as the property of close neighbors, the largest

empty circle property, the control span property, have

attracted much attention by practical production and

scientific research fields. For complex datasets, the

voronoi diagram plays an important role in calculating

the nearest neighboring point, largest empty circle,

convex n point, minimum tree and other problems. The

voronoi diagram and the delaunay triangulation double

graph have also been widely applied to the

reconstruction of geometric models, remote sensing

satellites and others. The voronoi diagrams can
express adjacent lateral relations of spatial data

information and also have the basic character of

vector and data models which uncertain and

constantly changing continuously. Thus, this is an

important part of the study of spatial data objects,

especially in the field of GIS (Li-Ping et al., 2014).

In this study, the authors propose to expand the

object search techniques of the kNN method, such as

Probabilistic Aggregate Nearest Neighbor (PANN)

query. This expansion will support implementations that

have wide application services such as location-based

services. Expansion of the search techniques by
calculating the aggregate distance between the data

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1755

Points (P) and the Query set (Q) from each query result

so that there will be three new functions (aggregate, sum,

max and min) for each point. This aggregate value will

be used as a collection of values in forming partitions in

a particular region in the form of a voronoi diagram,
where the query results for the nearest neighbor

aggregate request depend on these different aggregate

functions. Whereas data points that have the minimum

aggregate distance from the data set Q the query is

returned because they do not qualify as objects in the

search in a particular Voronoi region partition. This is

the background of my proposed search method

(Partition_PANN) in searching for uncertain data by

partitioning objects in certain areas to improve the

performance of searching data in uncertain databases

such as location-based services.

Related Work

Based on the literature that explained by

(Papadias et al., 2004), the first research about ANN

was conducted by (Papadias et al., 2005). There are three

kinds of proposed KNN algorithm related to the

environment and road network, namely Incremental

Euclidean Restriction (IER), Threshold Algorithm (TA) and
Concurrent Expansion (CE). It was explained that the IER

algorithm utilizes the R tree and the A* algorithm. Whereas

the TA and CE algorithms are implemented by applying the

A* algorithm combined with a threshold to solve the

ANN problem. A few years later research related to

ANN was developed by (Zhu et al., 2010) by utilizing

adjacent properties and pre-computational advantages

from the voronoi diagram; the research proposes the

kANN algorithm on the environment and the road network.

In the algorithm described two important phases, namely

the query phase and the trimming phase. The research also
discusses strategies in expanding query points with the aim

of effectively increasing query efficiency (Elmongui et al.,

2013). Even his research also discusses the problem of

spatio-temporal data flow management systems, such as the

Continuous Aggregate Nearest Neighbor (CANN) query

for moving and uncertain objects.

Several uncertain spatial database prototypes have

also been developed nowadays (Spooner et al., 2004).

In the study, two main classes of uncertainty models

were assumed: Tuple uncertainty and attribute

uncertainty. Where the uncertainty of the tuple

recording the probability that the given tuple is part of

a relationship (Park et al., 2015). While attribute

uncertainty can represent inaccurate attribute values

as uncertainty areas and pdfs which restricted in the

region (Clark and Evans, 1955). The result of this

research is the proposal of a formal prototype

database to combine tuple uncertainty and attribute

uncertainty (Tao et al., 2002).

Several studies related to evaluating Probabilistic

Nearest-Neighbor (PNN) query on attribute uncertainty

have also been conducted. PNN, which can be considered

as 1-PNN, returns the probability of a single object to be

closest to the given query point q. Wang et al. (2015)

research, R tree-based indexing solutions for PNN have

been presented. In this study, we developed an indexing

solution (called k-bound filtering) on k-PNN.

Zhang et al. (2010), the probability of qualifying an
object to meet PNN is obtained by changing the

uncertainty of each object into two functions: Pdf and

cdf the object’s distance from the query point. They

show how this conversion can be done for 1 D

uncertainty (intervals) and 2 D uncertainty (circles and

lines). The probability of qualification is then derived by

evaluating the integral expression involving the pdf

distance and cdf of several objects. We show how the k-

PNN calculation can be done using distance pdf and cdf.

Another method for evaluating PNN is proposed in

(Sun et al., 2013), where each object is represented as a
collection of points taken from continuous object pdfs.

Recently, that the probability of an object in the database

(called existential probability) is used to obtain lower

and upper limits and pruning for the nearest neighbor

(Wang et al., 2015). In the study, the author discusses

how to efficiently retrieve data objects that have a

minimum aggregate distance from a set point query.

To increase the evaluation of the probability of

qualification for 1-PNN, have been proposed a 1-PNN

variant that uses the probability threshold as an

answering criterion and has developed an efficient

verification method to obtain lower and upper limits of
object qualification probabilities. These methods are not

easy to use by k-PNN (with k ≥1) for three reasons. First,

the k-PNN evaluation faces an additional problem in

examining a large number of k-part subsets. To deal with

this problem, we developed a new method to reduce the

number of subscriber candidates significantly. Second,

probability bound verification is designed only for 1-

PNN queries. We developed a new lower and upper

bound calculation method for k-PNN queries. Third, the

solution can only be used to handle pdf distances from

candidate objects that are represented as random
histograms (Nurhendratno et al., 2018). On the other hand,

the author’s technique is not limited to pdf (probability

density function) histograms.

As far as our knowledge, there is little work that

answers k-NN uncertain data questions. The main

process of the k-NN algorithm is to submit a request that

ranks the probability that each object is the closest

neighbor to q and returns k object with the highest

probability. Note that the ranking criteria are only based

on the probability of each nearest neighbor object of q.

This is not the probability that all objects returned in the

query answer are the closest neighbor of k-query (kq). In

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1756

other words, the object k returned by (Sun et al., 2015)

might not appear in a world that might be the same. On

the other hand, the query studied in this study is “True” k-

query with the nearest neighbor, where we consider the

probability that the set of objects is k nearest neighbor q.
In the discussion, (Sun et al., 2015) proposes an efficient

index structure, called APLA-tree, to evaluate k-NN

requests. They use the expected distance (under L1-norm)

from the pdf uncertainty object of q as a ranking criterion.

Thus, their k-NN requests are based on expected distances

and have no probability in their answers.

Evaluation and indexing methods for probabilistic

questions attribute uncertainty has been studied. This

includes a range of queries, location-dependent queries,

skyline queries and top-k queries. The issue of

uncertainty has also been considered in the domain of

biometric databases and access control. Recently, the

problem of conditioning and cleaning probabilistic

databases has been studied by many studies

(Sudaryanto et al., 2019).

The methods we mentioned above are all for certain

data, however, large data that is uncertain is processed in

a real application. Examines GNN requests for

uncertain data and proposes spatial pruning methods

and probabilistic pruning methods to trim data points

and improve query efficiency. According to the data

which is uncertain, researches methods for resolving

various requests, nearest neighbor requests and the

most regular neighbor query problems. The above

research is all done to query the uncertain conditions

of the dataset (Chen et al., 2013).

Problem Definition

Spatial databases with attribute uncertainty can be

divided into two groups, namely existential uncertainty

and location uncertainty. Existential uncertainty can

represent a certain point of location, but existence is

uncertain. Location uncertainty where the data point is

certain, but the location is uncertain. All of these

possibilities will always be found within a certain

probability scale.

In this study, we study Probabilistic k-Nearest

Neighbor (k-PNN) Query for databases with attribute

uncertainties. This query returns non-zero
probabilities (called qualification probability) from

each set of k objects to be the closest neighbors of a

certain point q. Given an uncertain D database of n

uncertain objects, where D = {o1,..., on}, k-PNN

queries can be defined as follows.

The algorithm we propose uses the voronoi diagram

as the basic framework. Voronoi diagrams have many

geometrical properties that can greatly improve the

performance of a range search query processing in a

particular partition. Voronoi diagram is the decomposition

of space and fields according to the position of a set of

discrete points (sites). Each site produces Voronoi

Polygon (VP) which involves all points closer to the site

than the others. VP is formed by a set of Voronoi edges

which is a subset of locus points that are the same
distance from two adjacent sites. The intersection of

these edges for a site is called voronoi vertex. The

Voronoi diagram definition is.

Definition

Given a set of discrete objects ℘ = (P1,..., Pn) (n >1)

in the road network, WP (Pi) = {∀hal | dn(hal, Psaya)

dn(hal, Pj)} (i, j ∈in dan i = j). Voronoi diagram for ℘ is:

   
1

n

k

VD VP Pi


 

This definition shows that for each point in the

VP(Pi), the distance to Pi must be smaller than other

generators, then VP(Pi) is called the voronoi polygon

which is related to Pi.

NVD is a special type of voronoi diagram that is built

on a spatial network with composition as a spirit to

partition. Decomposition as the basis of this partition is

based on the connection of nodes or discrete objects

rather than Euclidean distances. In NVD, the voronoi

polygon transforms into a set of road segments called

Network Voronoi Polygon (NVP) and the polygon edge

also shrinks to several midpoints, called border points,

from the road network connection between two

interesting objects.

Figure 1 shows an example of NVD partitions.

Besides interesting objects (P), NVD also includes

several road network intersections (n) and border point

(b). According to the voronoi diagram property, from the

border point to a pair of adjacent objects the same

distance (e.g., Dis(b7, P1) = dis(b7, P3)), then we only

need to use the Dijkstra algorithm in one voronoi

polygon to get the distance from the generator to its

border. The distance between objects can be calculated by

selecting the minimum distance to shared boundary and

multiplying this value (e.g., MIN (dis(P3, P1)) =

2∗dis(b7, P3) = 2∗dis(b7, P1)).

Since all distances from the border point to the

generator or other border points can be calculated

using the Dijkstra algorithm and stored in a database,

when a range query is issued, all the required

distances can be taken from the database rather than

calculated online. So, with the help of NVD, VRS and

VCR can process range queries more efficiently than

traditional range search methods.

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1757

Fig. 1: NVD partitions into the same cell (sub-trees of the same total length except for boundary cells (indicated by cell

number-1); circles on the network indicate boundary points)

Fig. 2: Voronoi partition former threshold

O 1

0.1

O 1

O 6

O 8

O 2
O 3

O 5

O 4

0.2

0.5

K-bound

q

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1758

Fig. 3: Sample k Aggregate Nearest Neighbor (kANN) queries in object spatial databases

Fig. 4: After pruning of node in partitioned spatial database

Voronoi-Partition Design to Support

Searching in Unceratain Database

The k-aggregate probabilistic threshold for closest
neighbor query problems includes three phases. In

section pre processing phase, we propose a grouping

algorithm, to process the partitioning of data from a data

set into a specific data group. Query algorithm by

searching for partitions to minimize the average distance

from minimum closed circles and single-point cluster

requests. At the processing phase we propose an

algorithm for process the effects of the results set by the

dataset variations. In section filtering phase, for the three

types of aggregate functions, we propose related pruning

strategies to cut points that cannot be results and add
qualified points to the candidate set. At last, in section

refinement phase, we propose a phase improvement

algorithm. For data points in the candidate set, calculate the

probability to be a query result and add a set whose

probability is greater than the threshold into the result set.
Figure 2 illustrates if there is a distribution of n points on

a two-dimensional plane, as a collection of point objects
P = {pi, ..., pn} and there are n number of query points Q

= {qi, ..., qn}, then the query results can be calculated

through the aggregate distance between the data point p

and the query set Q. Thus there will be three sums of the

aggregate function, sum, max and min of each point

Pre Processing Phase

At the pre-processing stage illustrated in Fig. 2, the
data is processed from the data acquisition into a dataset.
In the dataset, data normalization is performed then the
Voronoi diagram will be made. From the normalization
of these data, it was done by eliminating data uncertainty
which is not needed in this study. Phase in normalizing
include the process of grouping data into groups, ranging
from insignificant data to data that is significant to the
threshold value. This process repeats itself at each point to

determine centroid polygons, creates polygon voronoi and
generates datasets in voronoi diagrams. The results of
normalization can be continued to the processing phase and
used by the Partition_MinCircle algorithm to search.

Centroid q

mindist(N1, q) = 10

mindist(N2q) = 6

Centroid q

Centroid q

mindist(N2q) = 6

mindist(N1, q) = 10

mindist(N1, q) = 11 mindist(N2q) = 7

best-NN

best-NN

best-NN

5

7

4

2

1

3

5

7

4 2

2
5

7
4

3

3

q1

q2

q3

q3

q1

q2 q1

q2

q3

G H
N1

N1

N1 N2

N2
N2

(a) f = sum (b) f = max (c) f = min

P1

P3

P2
P4

P5

P6

P8

P7

P9

P12

P11
P10

P1

P3

P2
P4

P5

P6

P11

P10

P12
P9 P8

P7

P7

P9 P8

P11

P10

P12

P1
P3

P2
P5

P4

P6

q4 1 q4 q4

q1 q2

q1

q2 q1
q2

q3

8

9

5

6 6

4
q3

2
5

13

13

11
12

(a) f = sum (b) f = max (c) f = min

q3

2

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1759

Processing Phase

The difficulty of ANN is how to group the closest
neighboring points to be partitioned from several demand

points in the case of different aggregate functions. In this

study, we propose the Partition_MinCircle (Q) algorithm to

calculate the minimum closed circle of a group of query

points. By using the center of circle O to represent the

distribution of query points on several partition groups. In

conducting partitioning, the data collected will be clustered

in k data groups. Each k data group and is used to be the

center of the query points on that partition:

Algorithm - Partition_MinCircle

Input: A dataset of point Q = {q1, q2,…qn}

Output: Min_cover circle centers {c1…ck} implicitly

dividing X into k cluster/*center of minimum

covered circle*/

choose initial MinCircle (Q)  /*minimum covered

circle*/

choose initial (O)  /* center of minimum covered

circle*/

choose initial (d)  /* diameter of minimum covered

circle*/

take two-point qi, qj from Q

d  dist(q1, qj)

O  {c1,…ck} dividing Q into k

Make the circle C1 which is centered at O1 and has a
diameter d1

Remove qi, qj from Q

MinCircle (Q)  C1

O  O1

For I = 1 to N do

 find the closest center Ck ϵ C to instance xi

 for each q ϵ Q

 d  dist(qn,O) + d/2

 O  On

 MinCircle(Q)  Ck

 End for

 assign instance xi to set Ck

 for i = 1 to k do

 set ci to be the center of mass of all

points in Ci

 end for

end for

Return O;

End.

In the algorithm model above, the first step is to take

two points from the first Q query dataset and calculate

the diameter distance of each circle C1. Let the O1

shows the center of the circle. Delete qi and qj from the

query data set, the currently minimum closed circle and

its center are assigned to MinCircle (Q) dan O,

respectively. In the while-loop, the algorithm assesses

whether there is an exit q not inside or in the MinCircle

circle (Q). If q does not exist, the MinCircle (Q) is the

minimum closed circle that we calculated. Return O and

algorithm are terminated. If q exists, then run the loop

statement. In the of the loop statement, first of all access
to the qm point which has the longest distance from the

center of circle O that we have calculated. Then calculate

the distance between qm and O then add the current

minimum closed circle radius and this distance is set to

diameter d. Create a Cm circle that is centered on Om

and has a diameter d. The currently minimum closed

circle and its center are set to MinCircle (Q) and O and

this loop ends. Repeat this procedure until the for-loop

cycle conditions are incorrect and then the algorithm is

terminated. Return the center of circle O.

Filtering Phase

The filtering phase is part of the aggregation

implementation by trimming the points in certain criteria.

The pruning strategy is related to trimming the points that

can't be a payoff and adding the points that qualify into the

candidate pool. This step in filtering starts from the

processing phase of calculating the nearest neighboring

points of several demand points in the case of different

aggregate functions. The aggregate step is an effort to

reduce computational complexity in the query process on
ANN. Next is a refinement phase for the data points in the

candidate set, calculating the probabilities to be the query

result and adding the set whose probability is greater than

the threshold to the result set.

Aggregate Function f = Sum

When the aggregate function is summed, data points

k with the minimum total distance to the query data set

are returned. Centroid calculations are performed in the

initialization phase to filter out data points that cannot be
answered. In this sum function, q minimize the function

a dist  
1

,
n

i
q Q qqi


 , for example (x, y) become q

coordinate and (xi, yi) become qi query point coordinate.

Because the partial derivative of the a dist function (q,

Q) concerning the independent variables x and y is zero

at q centroid, we have the following equation for the

basic algorithm as follows:

   

   
2 2

1

,
0

n

i

adist q Q x xi
x

x x xi y yi

 
  

   


   

   
2 21

,
0

n

i

adist q Q y yi
x

y
x xi y yi

 
  


  



By modifying geometric centroid coordinates in order

to get a fast approach:

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1760

   asist q Q adist q Q
x x n whiley y n

ax x

   
   



where, n is the number or number of steps, with the

number of processes repeated until the adist function (q,

Q) is closed to the minimum value. For the same

technique with different initial geometric centroid

coordinates to capture weights, i.e.:

1

1

1
. .

1
. .

n

n i

i

n

n i

j i

x wi xi while
wi

y wi yi
wi







 
 
 
 

 
 
 
 







Aggregate Function f = Max

When the aggregate function is max, the data point k

with the minimum-maximum distance to the query data

set is returned. For max function, centroid (minimalize a

dist function   1, maxn

iq Q qqi corresponds to the

center of the smallest circle containing all the points in

Q. This is also known as the minimum closing loop

problem, where various algorithms get the right answer.
In our implementation, we use a random incremental

algorithm with expected linear time (to several query

points). So, for weighted max, we can use the same

centroid as in the unweighted case.

Aggregate Function f = Min

When the aggregate function is min, k data points

that have a minimum distance to the query dataset are

obtained. The min aggregate function is easier than the

other two, so we use the method as considering centroid
as a query point to get query results. By considering the

min aggregate function, one of the query points can be

chosen as centroid because it points to adist

  1, max 0n

iq Q qqi  . Among the alternatives, we

choose the one that minimizes 1maxn

i qiqj (i.e., query

points with the lowest maximum distance from any point
in Q). The reason for this choice will become clear after

the trimming of the trimming strategy. In a weighted min

scenario, among n possible choices for q, we choose the

query point qi with the maximum weight wi.

Algorithm - Filltering_Min_Candidate

Input: set of query point Q = {q1,q2,…qn}, uncertain

dataset p ={p1,p2,…pn}

Output: node min_candidate circle centers {c1…ck},

Partition_PANN query candidate case of f =
sum, f = main, f = max

Begin;

Sum_candidate  /*initialize the query candidate set*/

Max_candidate  /*initialize the query candidate set*/
Min_candidate  /*initialize the query candidate set*/

H  ø, Can_visit  /*initialize the queu*/

Visit  ø

q  min_circle (Q)/*process the query dtaset*/

r  the location of q in the uncertain Voronoi diagram

if r ϵ SUV(pi)

 Can_visit  pi end its k level generation

points

 P_ANN  pi the single generation points p

 Min_candidate  pi end its k level generation

points

Else

 P_ANN  any of the multiple generations on

point

 Can_visit  generation point set of MUV(Pi, Pj)

where q is located in k level generation points

 Min_candidate  generation point set of

MUV(Pi, Pj) where q is locate in k level

generation points

 Generation point

End if

For each C1 ϵ Can_visit do

 If (count (C, q)  k)

 dist_min(q, Ci)  dist(q, Ci)-ri

 dist_max(q, Ci)  dist(q, Ci)+ri

 else

 prune Ci

 max_candidate  pi

 min_candidate  generation point set of

MUV (Pi, Pj) where q is located in k level

generation points
 end if

 return min_candidate

 return max_candidate

 return sum_candidate

end for

end;

How the voronoi partition algorithm work starts with
initializing the candidate and assigning several variables

and setting Min_Candidate values and calls the initial

algorithm to get the center of the circle q from the

minimum closed circle. Next is to determine the center

point of the query q, to get an uncertain location in the

Voronoi diagram. If point q is in SUV (pi), add a single

generation point and k level of the adjacent generation

point into the partition through the candidate set value

Min_Candidate. If the q point is in the MUV partition

(pi, pj), add some generation points and k generation

point levels that are adjacent to the candidate set

Min_Candidate. Min_Candidate filter algorithm ends
with Min_Candidate as a candidate set, this process is

repeated until there are no more search candidates.

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1761

For each aggregate function, in the refinement

phase, we first initialize the results set by

Partition_PANN_Result. Process the query data set

according to the candidate filtering algorithm and

obtain the q center from the query dataset. Candidates
assigned by Partition_PANN_Candidate from kANN

are obtained by the appropriate algorithm in the

filtering phase. For data points in the candidate set,

count all s sets composed of data points k and

calculate probabilities probable (s) of them as a result

set. Compare the probability with the user-specified T

threshold and return the result {s, prob (s)} which the

probability is greater than the threshold.

Refinement Phase

In the refinement phase, data points that cannot be

query results based on the previous two phases will be

truncated and get a candidate pair on the appropriate

partition. After that, in the refinement phase, the

probability of the data set k data points in the candidate

set will be calculated and compare the probabilities with

the user-defined Threshold (T). Finally, the location

verification will be obtained in order to get results that

are consistent with the determination of objects in the

partition. After verification, the object is stored in set S

and requires further processing, which has the proper
qualification probability calculation. The main idea is to

treat the probability of an object as the sum of the

probability of qualifications in the partition. By using

probability bonding information in each partition, the

probability of an answer can be gradually calculated.

This process is repeated for the next partition until we

can decide whether S should be included in the answer.

As shown in our experiment, "incremental improvement"

usually faster than the probability of computing directly

doing numerical integration on partitions faster than at

[0, fk], which has a larger integration area.

Experimental Result

In this part of the experiment, we evaluate the

effectiveness of the proposed Partition_PANN algorithm

in this study. The uncertain data set (P) comes from a

simulation data set and the Q query data set is randomly

generated. This uncertain diagram will be indexed in the

VR-Tree form. In the initial stages voronoi diagrams that

are not certain will be built first. In conducting this

experiment, the algorithm will evaluate the time of the

query, the cost of I/O and the trimming ratio of three

things. The experimental results are obtained from the

average query results by executing 50 times.

In evaluating the effect of query time processing based

on the size of the data points in the case of aggregate and

max number functions. The abscissa represents the size of

the data point and the ordinate represents the query time

(Nurhendratno et al., 2018). It is shown from the numbers

that keep the other query conditions unchanged, the query

time of the three algorithms all increase with a gradual

increase in data point size. Because more distance needs to

be calculated when the size of the data point is large
(Nurhendratno and Sudaryanto, 2017). The number of data

points in the candidate set and the complexity of the

calculation of the probability value also increases and leads

to an increased inquiry time.

The computer used in this experiment is a computer

with CPU Pentium I5 2.7 GHz, Windows 7, 4 GB

memory and MySQL as a database server. The dataset in

this experiment was synthesized using software produced

by the spatial data generator. A dataset consisting of 6,000

objects are used. The capability in VR-tree is set in 3 K size

per leaf node and the maximum capability of VR-tree node
is 50 entries. For disk caching which related to memory

buffers, the LRU algorithm is used. The memory buffer

only stores pages related to the VR-tree root initially and

can load up to 64 pages.

Experiment

In this study, we compare the algorithm that the

author developed, namely Partition_PANN with the

PTkANN algorithm and PANN algorithm, this algorithm

utilizes the main idea (Papadias et al, 2005). Call the
algorithm repeatedly in (Papadias et al., 2005) for k

times to execute the PTkANN query. In this experiment, the

measured time cost is the average cost of 100 queries with

the same dataset but with different query points generated

randomly. Our results are summarized in Table 1.

Table 1 shows that the query processing time of the

Partition_PANN algorithm is less than the other two

approaches. It is easy to see that query processing time is

from Partition_PANN algorithm grows very slowly,

especially when n<4.000 which unlike the other two

approaches increases sharply as n, the size of the dataset,

increases from Table 1. The experimental results show
that the Partition_PANN algorithm for the 1 NN query

outperforms the previous method in runtime. This

advantage stands out, especially in large datasets. This

advantage comes from the excellent VR-tree data structure

is used which makes the role of Voronoi diagrams brought

to the full processing time in 1 NN requests.

Experiment

For each k value, we perform 100 kNN queries with

different query points but on the same randomly selected

dataset consisting of 6,000 objects, using

Partition_PANN, PANN and PTkANN, each with k

varying from 2 to 200. We present an average execution

time of 100 runs of the kNN query for each k value and

each algorithm, as shown in Table 2.

From Table 2, it is easy to see that the PTkANN and

PANN times are between 2,01 and 2,2 times as much as

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1762

the Partition_PANN algorithm. We can see that the

execution time of Partition_PANN algorithm grows very

slowly when k increases, k<20.

From the experiment it can be seen that the

performance of the Partition_PANN algorithm will be
better and simpler because k increases when k>40.

However, the performance is much faster than the other

two methods. This phenomenon arises because the

candidate size specified by AG1 (p) U,..., UAGi (p)

which is used to search for (i + 1) - the nearest neighbor

grows rapidly for a greater value of I, where p is the

closest neighbor from the request point. The

experimental results show that the Partition_PANN

algorithm outperforms the previous method in

processing time, especially for values smaller than k

concerning the size of the dataset.
From Table 3, the pruning effect on f = sum that the

execution time of the Partition_PANN algorithm is always

better for than other two approaches. We can also see that

the difference in execution time of Partition_PANN,

PTkANN and PANN becomes wider as the size of the

dataset increases (from 4 k to 1,024 k). The experimental

results show that the Partition_PANN algorithm performs

better than the previous method in execution time.

Experiment

We compare the performance of Partition_PANN

with two other methods that can be applied in the case

that the pruning path f = sum is a line segment. Therefore

the pruning path which considered is limited to line

segments in our experiment. In this experiment, using an

average of 6% for each Query Area (QA), the length of the

query line segment, we performed 40 queries with different

query line segments on the same randomly selected dataset

consisting of 100 nodes.

From Table 4, the effect of pruning on f = max is that

the execution time of the Partition_PANN Algorithm is
always better the other two approaches. We can also see

that the difference in the execution time of

Partition_PANN, PTkANN and PANN becomes wider

as the dataset size increases (from 4k to 1,024k). The

experimental results show that the Partition_PANN

algorithm has better performance than the previous

method in execution time.

Experiment

We compare the performance of Partition_PANN

with two other methods that can be applied in the case

that the pruning path f = max is a line segment.

Therefore the pruning path which considered is limited

to line segments in our experiment. In this experiment,

using an average of 6% for each Query Area (AQ), the

length of the query line segment, we performed 40 queries

with different query line segments on the same randomly

selected dataset consisting of 100 nodes.

From Table 5, the effect of pruning on f = min that the

execution time of the Partition_PANN algorithm is always

better than the other two approaches. We can also see that

the difference in execution time of Partition_PANN,

PTkANN and PANN becomes wider as the size of the

dataset increases (from 4 k to 1,024 k). The experimental

results show that the Partition_PANN algorithm performs

better than the previous method in execution time.

Table 1: The execution time of Partition_PANN versus PTkANN and PANN for different data size

Time(sec) 1.000 2.000 3.000 4.000 5.000 6.000

PTkANN 0,0091 0,0109 0,0201 0,0211 0,0262 0,0298
PANN 0,0062 0,0081 0,0090 0,0103 0,0156 0,0177
Partition_PANN 0,0035 0,0039 0,0043 0,0080 0,0088 0,0098

Table 2: The execution time of Partition_PANN versus PTkANN and PANN for different k point

Time(sec) 4 k point 10 k point 20 k point 40 k point 80 k point 100 k point

PTkANN 0,0097 0,0111 0,0151 0,0201 0,0232 0,0268
PANN 0,0086 0,0104 0,0133 0,0160 0,0206 0,0254
Partition_PANN 0,0040 0,0051 0,0063 0,0103 0,0167 0,0191

Table 3: CPU cost by fixing AQ to 6% of the data space and the number k of retrieved ANNs (f = sum)

Time(sec) 4 k 16 k 64 k 256 k 1.024 k

PTkANN 0,0139 0,0411 0,0610 0,0921 0,1210
PANN 0,0096 0,0181 0,0195 0,0600 0,0969
Partition_PANN 0,0044 0,0049 0,0054 0,0080 0,0108

Table 4: PU cost by fixing AQ to 6% of the data space and the number k of retrieved ANNs (f = max)

Time(sec) 4 k 16 k 64 k 256 k 1.024 k

PTkANN 0,0189 0,0461 0,0677 0,0952 0,1265
PANN 0,0109 0,0192 0,0231 0,0620 0,0981

Partition_PANN 0,0051 0,0068 0,0075 0,0080 0,0113

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1763

Table 5: CPU cost by fixing AQ to 6% of the data space and the number k of retrieved ANNs (f = min)

Time(sec) 4 k 16 k 64 k 256 k 1.024 k

PTkANN 0,0119 0,0128 0,0151 0,0192 0,0215
PANN 0,0088 0,0101 0,0135 0,0168 0,0196
Partition_PANN 0,0038 0,0044 0,0051 0,0078 0,0101

Experiment

We compare the performance of Partition_PANN

with two other methods that can be applied in the case

that the pruning path f = min is a line segment. Therefore

the pruning path which considered is limited to line

segments in our experiment. In this experiment, using an

average of 6% for each Query Area (AQ), the length of the

query line segment, we performed 40 queries with different

query line segments on the same randomly selected dataset

consisting of 100 nodes.

Conclusion

In this study, we research extensively about queries

with the basic algorithm kNN and ANN using the

Voronoi diagram. Because of the unpopular use of data

in many searching applications, uncertainty management

has become an important topic in the database

community, so we are developing a new data structure.

We began to study a useful basic query, i.e., k-NN Query

(T-k-PNN) probability threshold for database

uncertainty. Different from the right database, evaluating

T-k-PNN requires probability information and doing
expensive numerical integration. In this study, we

propose a probabilistic calculation of the aggregate k

algorithm of TkANN neighbor demand based on the

voronoi partition. In the process of querying the nearest

neighbor demand, this algorithm includes three phases.

First, proceed the query dataset by calculating the

minimum closed circle. Then, use the appropriate

pruning strategy to process the dataset and get the

candidate set. Therefore, we propose various pruning

techniques by considering distance and probability

constraints and grouping nodes in certain Voronoi
partition groups. As a result, the method we named as

Partition_PANN, the result of the experiment is

compared with the 2 methods of PTkANN and PANN

shown by our experimental results, with the k-bound

filtering technique, many objects that do not meet the

requirements can be trimmed. The number of k-subsets

can be partially reduced significantly by the

Partition_PANN algorithm. We can demonstrate

efficient calculations for the lower and upper probability

limits with the help of partition information. We will

learn how this technique can be extended to support

other queries, for example, reverse-neighbor queries.
Based on experiments with a limited dataset, we have

proved the efficiency of the algorithm which we propose

in this study. In the future, we intend to examine the

verification problem by expanding the query area to

obstructed spaces in an uncertain database.

Acknowledgement

This research received full support and funding

sponsorship from the Ministry of Research and

Technology-Higher Education of the Republic of

Indonesia. Planning, operational coordination and

supervision are carried out by LL-DIKTI Region VI of

Central Java. The authors express their gratitude for their

attention and guidance.

Funding Information

The authors should acknowledge the funders of this

manuscript and provide all necessary funding information.

Author’s Contributions

Slamet Sudaryanto Nurhendratno: Is involved in

the concept of developing a search method, testing and

analyzing results.

Sudaryanto: Was involved in programming and

comparison of results between other methods.

Ethics

Authors will be responsible for the ethics and

originality of the work that has been published.

References

Chen, P., Gu, J., Lin, X., & Tan, R. (2013). Group

Nearest Neighbor Queries over Uncertain Data in

Location Based Services. International Journal of

Hybrid Information Technology, 6(2), 117-128.

Clark, P. J., & Evans, F. C. (1954). Distance to nearest

neighbor as a measure of spatial relationships in

populations. Ecology, 35(4), 445-453.

Elmongui, H. G., Mokbel, M. F., & Aref, W. G. (2013).

Continuous aggregate nearest neighbor queries.

GeoInformatica, 17(1), 63-95.

Kolahdouzan, M., & Shahabi, C. (2004). Continuous k-

nearest neighbor queries in spatial network
databases. Proc. of STDBM.

Li-Ping, Z., Ji-qIao, Z., & Song, L. (2014). Research on

methods of construction of Voronoi diagram and

nearest neighbor query in constrained regions.

Computer Science, 41(9), 220-224.

Slamet Sudaryanto Nurhendratno et al. / Journal of Computer Science 2020, 16 (12): 1753.1764

DOI: 10.3844/jcssp.2020.1753.1764

1764

Meyerhenke, H., Monien, B., & Sauerwald, T. (2008,

April). A new diffusion-based multilevel algorithm

for computing graph partitions of very high quality.

In 2008 IEEE International Symposium on Parallel

and Distributed Processing (pp. 1-13). IEEE.
Meyerhenke, H., Sanders, P., & Schulz, C. (2014,

June). Partitioning complex networks via size-

constrained clustering. In International

Symposium on Experimental Algorithms (pp.

351-363). Springer, Cham.

Nurhendratno, S. S., & Budiman, F. (2017). Design

model integration and syncronization between

surveillance units to support data warehouse

epidemiology. Journal of Theoretical & Applied

Information Technology, 95(3).

Nurhendratno, S. S., Sudaryanto, Budiman, F., &
Setyowati, M. (2018). Query Optimization on

Distributed Database Dengue Fever by

Minimizing Attribute Involvement. J. Comput.

Sci., 14(4), 466-476.

Papadias, D., Shen, Q., Tao, Y., & Mouratidis, K. (2004,

April). Group nearest neighbor queries. In

Proceedings. 20th International Conference on Data

Engineering (pp. 301-312). IEEE.

Papadias, D., Tao, Y., Mouratidis, K., & Hui, C. K.

(2005). Aggregate nearest neighbor queries in

spatial databases. ACM Transactions on Database

Systems (TODS), 30(2), 529-576.
Park, J. H., Chung, C. W., & Kang, U. (2015). Reverse

nearest neighbor search with a non-spatial aspect.

Information Systems, 54, 92-112.

Sack, J. R., & Urrutia, J. (Eds.). (1999). Handbook of

computational geometry. Elsevier.

Spooner, P. G., Lunt, I. D., & Briggs, S. V. (2004). Spatial

analysis of anthropogenic disturbance regimes and

roadside shrubs in a fragmented agricultural landscape.

Applied Vegetation Science, 7(1), 61-70.

Sudaryanto, S., Fikri, B., & Maryani, S. (2019). Query

optimization on distributed health database dbd
for supporting data center with materialized view

and minimizing attribute involvement. Journal of

Theoretical and Applied Information Technology,

97(11).

Sultana, N., Hashem, T., & Kulik, L. (2014, November).

Group nearest neighbor queries in the presence of

obstacles. In Proceedings of the 22nd ACM

SIGSPATIAL International Conference on Advances

in Geographic Information Systems (pp. 481-484).

Sun, W. W., Chen, C. N., Zhu, L., Gao, Y. J., Jing, Y.

N., & Li, Q. (2015). On efficient aggregate nearest

neighbor query processing in road networks. Journal of

computer science and technology, 30(4), 781-798.

Tao, Y., Papadias, D., & Shen, Q. (2002, January).

Continuous nearest neighbor search. In VLDB'02:

Proceedings of the 28th International Conference

on Very Large Databases (pp. 287-298). Morgan

Kaufmann.

Wang, W., Xu, J., Xu, M., Zheng, N., & Ge, E. (2015,

November). Probabilistic Group Nearest Neighbors

query based on Voronoi diagram. In Proceedings of

the 1st International ACM SIGSPATIAL Workshop

on Smart Cities and Urban Analytics (pp. 36-41).

Xuan, K., Zhao, G., Taniar, D., & Srinivasan, B. (2008,

December). Continuous range search query

processing in mobile navigation. In 2008 14th IEEE

International Conference on Parallel and Distributed

Systems (pp. 361-368). IEEE.

Zhang, Y., Lin, X., Zhu, G., Zhang, W., & Lin, Q. (2010,

March). Efficient rank based knn query processing

over uncertain data. In 2010 IEEE 26th International

Conference on Data Engineering (ICDE 2010) (pp.

28-39). IEEE.

Zhou, Y., Du, J., Yang, Y., & Shi, W. (2018).

Location Nearest Neighbor Query Method Based

on Voronoi Map. Journal of Beijing University of

Technology, (2), 11.

Zhu, L., Jing, Y., Sun, W., Mao, D., & Liu, P. (2010,

November). Voronoi-based aggregate nearest

neighbor query processing in road networks. In

Proceedings of the 18th SIGSPATIAL International

Conference on Advances in Geographic Information

Systems (pp. 518-521).

