

 © 2020 Sabah Al-Fedaghi and Esraa Haidar. This open access article is distributed under a Creative Commons Attribution

(CC-BY) 3.0 license.

 Journal of Computer Science

Original Research Paper

Thinging-Based Conceptual Modeling: Case Study of a

Tendering System

Sabah Al-Fedaghi and Esraa Haidar

Department of Computer Engineering, Kuwait University, Kuwait City, Kuwait

Article history

Received: 08-01-2020

Revised: 20-03-2020

Accepted: 14-04-2020

Corresponding Author:

Sabah Al-Fedaghi

Department of Computer

Engineering, Kuwait

University, Kuwait City,

Kuwait
Email: Sabah.alfedaghi@ku.edu.kw

Abstract: In computer science, models are made explicit to provide

formality and a precise understanding of small, contingent “universes”

(e.g., an organization), as constructed from stakeholder requirements.

Conceptual modeling is a fundamental discipline in this context whose

main concerns are identifying, analyzing and describing the critical

concepts of a universe of discourse. In the information systems field, one of

the reasons why projects fail is an inability to capture requirements in a way

that can be technically used to configure a system. This problem of

requirements specification is considered to have “deficiencies in theory”.

We apply a recently developed model called the Thinging Machine (TM)

model which uniformly integrates static and dynamic modeling features to

this problem of requirements specification. The object-Oriented (OO)

approach to modeling, as applied in Unified Modeling Language, is by far

the most applied and accepted standard in software engineering;

nevertheless, new notions in the field may enhance and facilitate a

supplementary understanding of the OO model itself. We aim to contribute

to the field of conceptual modeling by introducing the TM model’s

philosophical foundation of requirements analysis. The TM model has only

five generic processes of things (e.g., objects), in which genericity indicates

generality, as in the generic Aristotelian concepts based on abstraction. We

show the TM model’s viability by applying it to a real business system.

Keywords: Abstract Machine, Conceptual Modeling, Diagrammatic

Representation, Generic Process, Requirement Engineering, System

Modeling

Introduction

Modeling is used to understand and shape the world

and is a foundational technique, in that “There is hardly a

domain of inquiry without models” (Frigg and Nguyen,

2017), e.g., the solar system as well as atoms, cells and

electricity. As a representation of the selected part or

aspect of the world being investigated, a model can

explain the nature of its subject matter (Frigg and

Nguyen, 2017). Although modeling has been employed

for ages in virtually all disciplines, the form of models

has been fairly recently made explicit in computer

science, where it is utilized to “provide formality and a

precise understanding of what is a well-formed model to

the communication between humans and machines”

(Hölldobler et al., 2017).
We focus on conceptual modeling, specifically on the

Object-Oriented (OO) approach as applied in the Unified

Modeling Language (UML, with special attention to the

notion of class/object). OO modeling is by far the most

applied and accepted standard in software engineering.

Nevertheless, new developments in the field may enhance

and facilitate a supplementary understanding of the OO

model itself. Our main concern is with deficiencies in

requirement analysis theory within software engineering.

This eventually leads us to our main goal of proposing a

new conceptual modeling technique with a single

construct, called thimac (thing/machine), which unifies

the static and dynamic features of things (e.g., objects).

We show the viability of the thimac notion by applying it

to a real business system.

Conceptual Modeling

According to Guizzardi and Halpin (2008),

“Conceptual modeling (CM-including information or

data modeling) is a fundamental discipline to several

communities in computer science. Its main objective is

concerned with identifying, analyzing and describing the

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

453

essential concepts and constraints of a universe of

discourse with the help of a (diagrammatic) modeling

language that is based on a set of basic modeling

concepts.” CM has an enormous impact on information

system artifacts because conceptual models determine

the acceptability and usability of the product to be built

(Lauesen and Vinter, 2001). It is the most important part

of requirements engineering and the first phase toward

designing an information system (Hossain and Schwitter,

2018). In this context, the focus is on small, contingent

“universes” constructed from stakeholder requirements

(Singh, 2011). This application of modeling suggests

how key ideas from the philosophy may be fruitfully

adapted and thereby help to improve research and

practice (Singh, 2011). While the debate on philosophy

may or may not be seen as essential, engagement in

philosophy cannot be avoided since a “good part of the

answer to the question ‘why philosophy?’ is that the

alternative to philosophy is not no philosophy but bad

philosophy” (Recker, 2005).

CM as a theoretical enterprise has underlying

philosophical schemes. In our case, we focus on the

problem of representation, which deals with the problem

of ontology: Kinds of objects in a model, including their

static and dynamic features. Here, we view ontology

modeling as a form of CM. Ontology concerns the kinds

of objects and constructs that are sufficient for describing

reality. For example, the BWW (Bunge-Wand-Weber)

ontology (Bunge, 1977) has been applied in conceptual

modeling as a reference point in specifying reality

constructs (Wand and Weber, 2002). In this framework,

“The universe of discourse comprises immutable objects

and object structures that exist as empirical entities. A

conceptual model is, in this perception, understood as an

objective perspective through which observers can

perceive unbiased reality” (Recker, 2005).

CM produces a technology-independent specification
that precisely describes the domain entities for
communication, learning and problem-solving. This
conceptual specification is transformed into a logical
design specification by considering a number of design
issues (Guizzardi and Halpin, 2008). A conceptual
model is a medium with which to foster communication
with prospective users and provides a basis for system
implementation (Frank, 1999). It is a commonly
accepted approach to overcoming communication
problems (Wand and Weber, 1993). Furthermore,
conceptual models help analysts understand a domain,
provide input into the design process and document the
requirements (Recker, 2005). Examples of languages in
this context include UML and Entity-Relationship (ER)
notation (Chen, 1976).

Accordingly, as described by Recker (2005), there

has been a “flooding” of CM approaches. “The area of

CM is, however, coined by a juxtaposition of different

terms and concepts” (Recker, 2005).

Problem: Deficiencies in Theory of Requirements

In the information systems area, one of the reasons

why projects fail is miscommunication leading to an

inability to explicitly specifying the requirements in a

way that can be technically used to configure a system

such as a process model (Ribbert et al., 2004). This

problem of requirements specification is considered to

have “deficiencies in theory” (see sources in Ribbert et

al., 2004). Difficulties related to work in this area are

centered on several wide issues as described by Ribbert

et al. (2004), which include:

 How to model the “existence of a real world” in

terms of ontology of “what is” and “how it is”; and

 Issues concerning the relationship between objects

and subjects, in terms of whether things in the real

world can in principle be objectively recognized

(correctly)

The problem of deficiencies in theory partially results

from the fact that English is typically utilized as a means

of identifying concepts (e.g., classes or objects) and

building a model. Models are developed by experts

who need to be members of a language community

(Ribbert et al., 2004). However, the model serves as a

basis for non-experts within the system domain to

understand the different facets of the domain. Thus, it

is suggested that models representing experts’

knowledge need to be provided to users and developers

as non-experts. The models must abstract from certain

aspects, such as technical (e.g., software) or

organizational details. In discussing this issue, the

following observations are modifications of ideas in

Ribbert et al. (2004):

 Models must be expressed in a unified language that

can be understood by the targeted users (participants

in internal processes or developers), suitable from an

expert’s perspective and usable from a user’s

perspective

 Models must have high abstraction to represent all

aspects of the entire system

 Complexity is reduced by providing multiple levels

of sophistication in descriptions for the same model

Philosophical Modeling Approach to Solutions

One of the foundational philosophical schemes of OO

modeling is the Greek philosophy of form and matter.

The notions of OO modeling have been abstracted

into key ingredients of systems analysis with the key

notion of object. Objects, in software, are viewed just

as nuts, bolts and beams are in construction design

(de Champeaux et al., 1993). According to Grässle et al.

(2005), the basis of the OO approach is “as good as

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

454

possible” of a representation of something that exists in

the real world. A fundamental notion in this context is

the class. A class defines an object’s properties and

methods, called an instance of the class. A class is a

Platonic notion and a template for objects in which

forms serve as patterns for real-world things.

UML has emerged as a language for conceptual

modeling, specifically for “communicating between

users and developers in understanding and eliciting

requirements and also for documenting the outcome of

analysis” (Lu and Parsons, 2005). The class diagram

is the most fundamental UML diagram (Szlenk, 2006)

and is “a central modeling technique that runs through

nearly all object-oriented methods” (Stotts, 2007).

Class diagrams provide an overview of systems and

are utilized for purposes such as understanding

requirements and describing the target system’s

design in detail. It is the best-known view of the OO

approach and often the only diagram that is

constructed (Grässle et al., 2005). The class diagram

is useful throughout the entire software development

process, from early domain analysis stages to later

maintenance stages (Washizaki et al., 2010). A great

deal of research on OO design has explored how to

identify classes and their relations and class diagram

layouts have been examined from different

perspectives, such as visibility, juxtaposability and

aesthetics (Eichelberger, 2003).

To identify classes, Osis and Asnina (2010)

developed a graph transformation from “topological

functioning modeling” to a conceptual class to enable

“the definition between domain concepts and their

relations to be established.” Stotts (2007) claims that

“the lines between the [conceptual, specification and

implementation] perspectives [when using use class

diagrams] are not sharp and most modelers do not take

care to get their perspective sorted out when they are

drawing.” Generally, “the biggest danger with class

diagrams is that you can get bogged down in

implementation details far too early.” To combat this, the

conceptual perspective is adopted (Stotts, 2007).

According to a university document (DCS, 2010),

It is only fair to point out that not all experts support

the UML effort and it comes under regular and harsh

criticism, some of it fair. For example, one criticism is

that there is not good enough integration between the

different components of the UML (e.g., between use case

and class modeling). (Italics added.)

We apply a recently developed model called the

Thinging Machine (TM) model, which uniformly

integrates static and dynamic features, to the

theoretically deficient problem of requirements

specification. We aim to contribute to the philosophical

basis of conceptual modeling by providing the

ontological foundation of the TM model. This model is

unique in terms of the following:

1. It incorporates a complete ontological unity between

things (e.g., objects) and processes (called

machines). The detail of this unity is defined

through the intrinsic structure, in terms of a network

of what are called thimacs (thing/machine), which

provide an alternative conceptualization to classes

and subclasses

2. It is built upon five generic operations that are

applied to things (e.g., objects)

3. It integrates a system’s static and dynamic features

by superimposing events (and hence time) over the

same diagrammatic static representation to specify

the system’s behavior

The next section provides a more elaborate

description of the TM model, which has been applied to

several real systems, such as phone communication

(Al-Fedaghi and Aldamkhi 2019), physical security

(Al-Fedaghi and Alsumait, 2019), vehicle tracking

(Al-Fedaghi and Al-Fadhli, 2019), computational

thinking (Al-Fedaghi and Alkhaldi, 2019) and

information leakage (Al-Fedaghi and Behnehani, 2018).

To illustrate TM modeling and provide a contrasting

instance to the OO approach, Sections III and IV apply

TM to identifying UML classes. To demonstrate modeling

in TM, Section V presents an actual government

organization. More information about the TM model can

be found in Al-Fedaghi (2019a; 2019b; 2019c).

Introduction to Thinging Machines

We start our discussion of the TM model with the

notion of things, which originated with the German

philosopher Heidegger (1975). According to Heidegger

(1975), a thing is self-sustained, self-supporting or

independent-something that stands on its own. For

example, a tree is a thing through which sunlight, water,

carbon dioxide, minerals in the soil and so on flow.

Through a series of processes, the tree-thing transforms

those flows of matter into various sorts of cells (Bryant,

2012). Heidegger (1975) encourages further research on

“generic processes” applied to things. We now focus on

five of these processes and claim that they are sufficient

for modeling purposes.

Notion of “Thing” in the TM Model

We postulate that only five generic processes of

things exist: Things can be created, processed, released,

transferred and received. For instance, suppose that t is a

thing. To describe the generic processes that can be

applied to t in a given system, S (whose definition will be

discussed later), the following argument presents an

informal justification for these five processes:

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

455

 Thing t either comes from outside of S (transferred

in) or is internally generated (created)

 When t is transferred from outside of S, it is either

rejected or received as one of the system’s things.

 Thing t in S may be transferred outside of S

 The thing may be put into the released state until a

channel is open for transferring it outside

 During its residency in S, t may be processed

(changed)

These five generic processes form an abstract

machine called a TM. The TM approach is most

meaningfully communicated in a diagrammatic way, as

shown in Fig. 1, where the elementary processes are

called the stages of a TM. The TM in Fig. 1 is a type of

abstract machine that handles things. The flow (solid

arrows in Fig. 1) among the five stages signifies

conceptual movement from one machine to another or

among the stages of a machine. The TM stages can be

described as follows:

Arrived: A thing reaches a new machine.

Accepted: A thing is permitted to enter the machine.

If arriving things are always accepted, then arrive and

accept can be combined into the received stage. For

simplification, the examples in this paper assume the

received stage.

Processed (changed): A thing undergoes some

kind of transformation that changes it without creating

a new thing.

Released: A thing is marked as ready to be

transferred outside of the machine.

Transferred: A thing is transported to somewhere

outside of the machine, or from somewhere outside of

the machine.

Created: A new thing is born (created) within a

machine. This is the starting point of a thing in a

system. The term create comes from creativity with

respect to a system (i.e., constructed things from

already created things, or emergent things that appear

in a system from somewhere). In the TM model,

creation encompasses existence.

Additionally, the TM model includes memory and

triggering relations (represented as dashed arrows) among

the processes’ stages (machines), as illustrated later.

The genericity of processes indicates generality as in

the generic Aristotelian concepts based on abstraction.

TM classifies processes into five types that are applied to

all entities that have common subject-oriented and OO

aspects, as will be clarified later. Genericity implies that a

generic process cannot be reduced to the other four

generic processes. Creating a new thing cannot be the

result of changing (processing) an old thing. No matter

how a thing is released, no new thing is produced.

Transferring does not reform a thing into a new thing and

receiving a thing implies that it was created previously.

Thimac: A Thing is a Machine and a Machine is a

Thing

A TM thing is defined as what can be created,

processed, released, transferred and/or received.

Simultaneously, in this modeling approach, a thing is

also a five-dimensional structure referred to as an

(abstract) machine. From a different perspective,

machines are things that are “operated on”; that is, they

are created, processed, released, transferred and

received. Machines are intertwined with the world

through the inseparable coherence integrated in these

two poles of an entity’s being: Being a thing that flows

through machines and being a machine that handles

things. According to our thesis, these are equally

irreducible modes of being.

Therefore, we can view the Heideggerian tree as a

thimac (a word formed from the first three letters in

thing and machine) through its network of subthimacs:

Flow of sunlight, water, carbon dioxide, minerals in the

soil, etc. Through the five generic stages, the machine

transforms those flows of matter—the other machines

that pass through it—into various sorts of cells (Bryant,

2012). This tree exits without multiplicity, regionicity

(actual space) or other so-called secondary categories.

Additionally, the TM description of the tree incorporates

time, to dress the static model with instances of events

(examples will be given later).

Fig. 1: Thinging machine

Create

Process

Release

Accept

Output Input

Arrive Receive

Transfer

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

456

The TM model is used for modeling specific

systems, not for representing “reality” per sé. The

example of the tree is discussed to emphasize that some

subthimacs are relevant in the undergoing modeling

and that the grand thimac (system; e.g., the

Heideggerian tree) combines all subthimacs without

excluding any of them. The entire TM diagram is a

grand thimac that forms an architectural whole or

totality. The static TM description is where things are

projected into “conceptual being”. A TM model’s

organization remains invariant, while the dynamic TM

model is constantly transforming. Organization consists

of an assembly of subthimacs related by flows and

triggering. The flow reflects input/output interactions

and triggering is a non-input/non-output contact.

The system’s unity (system/grand thimac) is

maintained by the TM structure of flow, the five generic

stages and triggering. It is supplied by multiple flows of

things that are created in many thimacs. This implies

unity through intrinsic structure, with the possibility of

multiple so-called substances. In the information system

context, the grand thimac interweaves within it all users

and other internal/external supplies (creators) of things,

data, information, actuators, signals, images, etc.

Thimacs in a System

Thimacs, as a founding category of being, replace

traditional categorizations, properties and behaviors.

They determine what an entity is as a thing and as a

machine. Thimacing is a conceptualization of a thimac

network used to express abstractions of the state of affairs

in a given portion of reality. A TM model is the

abstraction of a sphere articulated according to a domain

conceptualization. Note that the thimac notion is not new.

In physics, entities at the subatomic level must be

regarded as both particles and waves to enable a full

description and explanation of observed phenomena

(Steiner, 1985). According to Sfard (1991), abstract

notions can be conceived in two fundamentally different

ways: Structurally, as objects/things (static constructs)

and operationally, as processes. This paper adopts this

notion of duality in conceptual modeling, generalizing it

beyond mathematics and its utilization in software

engineering modeling. Structural conception means

seeing a notion as an entity with a recognizable static

structure. The operational way of thinking emphasizes

the dynamic process of performing actions. A model is a

description of a given domain independent of

technological choices that could impact the

implementation of a system based on itself.

Example

Flow indicates a change to a TM’s spatial form

(different stage or machine). A TM flow encompasses

the classical notion of motion; thus, heat flowing to

water triggers an increase in the water temperature (. 2

and 3). In Fig. 2, heat (a thing) is created (it appears),

then is released and transferred. The water (as a thimac)

receives and processes the heat, which triggers (dashed

arrow) the creation of an increase in temperature, which

is processed (takes its course).

Figure 3 shows the dynamic features, which are

supimposed (will be further defined later) on the diagram

of Fig. 2. Two events are recognized: The flow of heat

(yellow) and the increase in temperature (orange). Figure

4 shows the system’s behavior in terms of the two events:

More heat results in a greater increase in temperature. We

can see here the “nature” of the static TM (Figure 2)

description, in which the arrows in the static diagram

represent a map of dry rivers (red and purple arrows).

Philosophically, the static TM model forms the basis

upon which potentialities that are materialized through

events are modeled. It has the capacity to be real without

being actual (DeLanda, 2015). Potentiality and actuality

are Aristotelian notions that refer to movement from the

possible to the real. They are related to a TM’s passage

from static description to dynamic specification by

applying events (and time) over the original TM

diagram. The TM’s dynamic specification involves

multiplicity, e.g., looping (Aristotelian number), the

region of the event (Aristotelian space) and the flow of

time (approximately, Aristotelian motion).

While a thimac reflects the idea of unity, the details

of this unity are defined through the system’s intrinsic

structure in terms of its thimacs and its network of

subthimacs. These replace the typical conceptualization

of classes and subclasses. The actuality (the dynamic

system) is related to the idea of truth (i.e., data and

events reflect the reality of the system and its being).

Applying the TM Model to Identifying

Classes

As a further illustration of the TM modeling approach,
we apply it to a known problem in the field. Finding
classes, as the first step in capturing requirements, is a
central decision in OO software systems; making such
decisions correctly takes talent, experience and luck

(Meyer, 1997). In function-oriented design, we would
concentrate on the verbs; in OO design, we underline
the nouns, which describe objects (Meyer, 1997). In the
TM approach, we search for processes (TM machines)
that involve creating, processing, releasing, transferring
and/or receiving things.

UML-Based Methods of Identifying Classes

Consider a sample approach to identifying classes

called noun extraction. de Champeaux et al. (1993)

utilized this method of identifying classes in the context

of an example of a Bank (B), which is described as

follows (classes shown in italics).

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

457

Fig. 2: The TM model of heating water

Fig. 3: Events in the TM model of heating water

Fig. 4: Repeating the events

Every branch office has equipment to maintain the

accounts of its clients. All equipment is networked

together. Each ATM is associated and connected with the

equipment of a particular branch office. Clients can have

checking, savings and line of credit accounts, all

conveniently interconnected… (de Champeaux et al.,

1993). de Champeaux et al. (1993) select the noun

phrases with the classes of branch office, account, client,

equipment, ATM, etc.

In event-based class identification, according to

Singh et al. (2010), a large number of diagrams need to

be analyzed before arriving at a final class diagram.

Singh et al. (2010) give an example of a list of events

from an online reservation system that includes:

 A customer views the tour information (external

event)

 A customer makes a reservation while on a tour

(external event)

 A customer cancels a reservation while on a tour

(external event)

Then, Singh et al. (2010) identified events that are

explicitly specified in the requirements statements or

added by a domain expert. The events lead to a class

diagram specification being derived. In OO

methodology, an event is generally an external

stimulus from one object to another that occurs at a

particular point in time. It is a transmission of

information from one object to another. A scenario is

a sequence of events that occurs during one particular

execution of a system (Nath, 2020).

Alternatively, when applying the initial TM-based

thinking of this problem, we can search for machines. As

a result, in the example of an online reservation system,

a static TM model is produced, as shown in Fig. 5.

We isolate and cut the problem space up into TM

machines that handle things that flow: Machines that

handle requests; machines that provide lists of offers; and

reservation machines, for which things are created,

processed, released, transferred and received in each case.

Figure 6 shows some of the TM events (dotted

circles) in part of Fig. 5. The notion of what an event is

in software modeling still seems unsettled. For example,

the OMG’s (2000) UML specification defines an event

as a noteworthy occurrence; in Rumbaugh et al.’s (1991)

words, “an event is a noteworthy change in state.” In

TM, we can identify events from the static TM

description (e.g., Fig. 5) based on elementary events that

correspond to the five generic processes. Events at many

levels are constructed from lower-level events. Humans

seem to focus on events in the middle of event

hierarchies. The same phenomenon is applied to classes

in the OO methodology. According to Taivalsaari

Create Process Release Receive Transfer

Heat

Boiler

Water

Transfer

Process Create Increase

Temperature

Create Process Release Receive Transfer

Heat

Boiler

Water

Transfer

Process Create Increase

Temperature

E1 E2

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

458

(1997), in “class hierarchies in object-oriented

programming, the basic classes typically end up in the

middle of the class hierarchy. In contrast, those classes

that are at the top (root) or at the bottom (leaves) of the

hierarchies are typically of less interest, either because

they are overly generic or overly specific for the

purpose of examination.”

Further description of the notion of events in the TM

model will be provided during the following discussion

of the examples.

How to Represent a Class in the TM Model

The TM model can enhance different notions within

the OO methodology. Consider the notion of class. The

term class has two somewhat different meanings:

 It is the pattern according to which objects are

created

 It is the set of objects that have been created

according to that class

The class, as a pattern, dictates the characteristics and

behavior of objects that are created from it. Authors of

OO books, including Grässle et al. (2005) and Weisfeld

(2009), like to compare a class to a cookie cutter, which

can be used to cut cookies (objects of the class) from

dough. In the example, the dough is shown in Fig. 7.

In the TM model, an entity is not a pattern and an

object, but an integration of a thing and a machine

(thimac). A thing, in this vocabulary, refers to a family

of instances of things, just as class and objects do. These

instances flow in thimacs that reflect a particular gestalt.

As shown in Fig. 8, the dough is a machine (circle 1)

with submachines and itself is a thing that can be

created, released and transferred (2). It has a circular

pattern. The cutter (3) processes (4) the dough to trigger

(5) the creation of cookies (6). The cookies have a star

pattern (7) and form a collection (8).

Additionally, the TM embeds the dough/cookie

system’s behavior in terms of events. An event in TM is

a thimac. For example, Fig. 9 shows the event The dough

has been processed by the cutter. The region of the event

is where the event occurs. For simplicity, we will

represent events only by their regions. Accordingly, we

select the following events, as shown in Fig. 10:

 Event 1 (E1): The dough is created in a circular

shape

 Event 2 (E2): The dough is processed by the cutter

 Event 3 (E3): Cookies are created in a star shape

Fig. 5: TM model of Singh et al.’s (2010) event Customer views tour information

Fig. 6: Possible events in the TM model

Customer

Create

System

Release Transfer Transfer Receive Process

Process Receive Release Transfer Transfer

Create Release Transfer Transfer Receive Process

List of

offers

Request for list of offers

Reservation on tour

Customer System

The system receives the

request and processes it

The customer generates a

request and sends it to the

system

Request for list of offers

Create Release Transfer Transfer Receive Process

The request is

transmitted

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

459

Fig. 7: Illustration of the class in the cookie-cutter example (redrawn from Grässle et al., 2005)

Fig. 8: The dough as a thimac

Fig. 9: The event the dough has been processed by the cutter

Fig. 10: The events in the dough/cookie example

Dough
Pattern

Set

Dough

Cutter Cookies

Create

Release

Transfer Transfer

Receive

Process

Create: circle
Pattern

Create

3

1

2

6
7

Create: star

Pattern

4

5

8

Transfer Receive Process Release Transfer

Time

The event
Region

Cutter

Transfer

Release

Transfer

Receive

Create

Process

Process

Dough

E1

E2
E3

Transfer

Receive

Process

Release

Transfer

Create

Pattern
Create: circle

Create: star

Pattern

Create

Cookies Cutter

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

460

Fig. 11: Behavior of the dough/cookie system

Figure 11 shows the system’s behavior as a

chronology of events.

Applying the TM Model to a Case Study:

Tendering System

As mentioned previously, in the information systems

field, one of the reasons why projects fail is the inability to

capture requirements in a way that can be technically used

to configure a system. In this section, we introduce an

actual case study that involves capturing requirements. We

now provide a sample of this problem in terms of designing

a tendering system in a real organization (the second

author’s workplace) applying the TM model. The case

involved in this paper is a tendering system that

describes the actual process of how a vendor can register

itself in the system in order to apply its purchase orders

(POs), which can be described as follows:

(1) A vendor acquires an account

(2) The account must be activated

(3) A registration fee is paid

(4) The vendor account is activated

(5) The vendor fills out the purchase order application

Figure 12 and 13 show sample representations of the

current documentation of the tendering application using

UML diagrams.

Tendering processes are complex and involve

many business procedures, such as tender

specification preparation, tender awarding and

contract monitoring. A tendering system often needs

to communicate with other systems, such as supply,

order and purchase systems, to complete its

procedures (Ng et al., 2007). In a traditional paper-

based bidding process, after a tender is released,

suppliers must provide quotations to the tendering

system so that they can be ranked by certain tender

requirements before the tender contract is selected and

granted. This results in a significant amount of human

effort and time being wasted in the tender business

procedures (Ng et al., 2007).

Several e-tendering systems are well-known (Alyahya

and Panuwatwanic, 2018). For example, Ng et al.’s (2007)

model-tendering process uses the UML language. They also

use an ad hoc diagram to describe the system’s totality.

They convert the UML class diagram into XML

specifications for message exchange between stakeholders.

Fig. 12: Tender submission (redrawn, partially from Ng et al.,

2007)

Fig. 13: Activity diagram for the tendering system (partially

redrawn from (Alkhalifah and Ansari, 2016))

A general observation in the current tendering

system model is the lack of a tool for building a

holistic view of the system. According to Kong et al.

(2009), “The intuitive nature of UML notations

greatly facilitates distribution and communication of

software artifacts among different developers.”

Although UML provides many notations, it is

sufficient to use class diagrams and state diagrams

(Cavarra et al., 2003). Nevertheless, according to

E1 E2 E3

Employee

Enter System with

Email and Password

Vendor

Enter all Purchase

Orders (PO) data

fields

Submit

Winner Winner

Vendor register

Email sent to

vendor

Filling Purchase

Order (PO)

If PO Completed

Refill

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

461

Cavarra et al. (2003), one weakness of UML is the

lack of a well-defined model design process that

integrates the different kinds of diagrams; it is “a bunch

of notations without an effective integration.”

Furthermore, “This leads to a more apparent than real

understanding of models, difficulty to perform rigorous

analysis, validation, verification, integrity of models and

difficulty to develop tools supporting mechanical

validation and verification” (Cavarra et al., 2003).

Kong et al. (2009) proposed a visual approach that

automatically assigns precise behavioral semantics to

statechart diagrams. They defined an integrated

behavior by combining the behavioral semantics of

statechart diagrams with dynamic reconfigurations in

object diagrams. The hierarchical structure of states is

automatically formalized as a graph grammar

(Kong et al., 2009).

In the TM approach, with its single diagram

featuring events superimposed over a static

description, integration is already a property of the

system. Next, we show this feature for our case study.

The following list includes some of the requirements

specified by the stakeholder for the tendering system

under consideration:

1. Vendor registration: Vendors must be able to

electronically file all of their information and upload

all of the required official documents

2. The tender data must include the vendor’s name,

date of submission, cost, legal requirements and

other information

3. Tender openings must be provided

4. The Tendering Committee’s meeting minutes must

be provided

5. Rewarded tenders: A list of all tenders and the

companies that they were rewarded to, with all

related details, must be provided

6. Vendor qualifications must be available

7. Tender postponement must be an option

8. The e-tendering system must be ready for

payment gateway integration, to allow purchases

of tenders online

9. A minimum of ten reports on e-tendering in the

intranet portal must be provided so that the tenders,

vendors, categories, etc., can be reviewed

10. The system must provide a dashboard for different

queries in the portal

11. The system must support an advanced workflow and

fully utilize SharePoint technologies

According to the TM approach, the first task is to

construct a grand representation of the system. Figure

14 shows the first part of the TM model, described as

follows:

1. The vendor creates (Circle 1) a request for a

registration account that flows to the system (2) to

be processed after (3) creating an account (4) in the

database. Then the account information is filled out

with name, email, civil ID and password values and

a description from the data supplied in the

registration request (5).

2. Additionally, the following steps are triggered:

(a) Initializing the account’s status as inactive (6).

(b) Initializing of the payment’s fee-credit value as

zero (7)

3. Then, an email value is created (8) that includes

account data (name, civil ID, password and

description) (9) and email destination (10)

The email flows to the vendor (11). Accordingly,

the vendor is triggered (12) to go to the Nazaha

building to pay its fees with a payment card (13). The

card flows to the payment machine (14) to register the

amount (15), which issues a receipt that flows (16) to

the vendor. The receipt, then, is given to the

NAZAHA employee (17), who inputs the payment

number into the system (18). Upon the number’s

arrival in the system, the following processes are

performed on the payment numbers:

i. The payment values are stored in the database (19)

ii. The payment value is inserted to the database by

searching a table that contains all numbers of

correspondence values

iii. The fee-credit value is changed to the payment

Value (20)

iv. The user’s status is switched to active account (21)

v. Then, the payment information is released to the

system (22)

During the submission period (23), the vendor can

request (24) to enter the system using its email address

and password. The system will check if the vendor’s

account is activated and that it has paid its fees (25);

then, a session will be created (26) for the vendor to

enter the system (27). Meanwhile, the system involves

the following:

(a) Initializing the application’s status as un-submitted

(28)

(b) Initializing the application’s rank as un-ranked (29)

(c) Initializing the application’s completion as

incomplete (30)

The vendor will start by filling out the Purchase

Order (PO) application (31) with all of the required

fields (32) and send it back to the system (33) to be

stored (34) and then view the full PO application (34) to

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

462

submit it (35) and send it back to the system (36) to change the status to submitted (37).

Fig. 14: TM model of the case study tendering system

Vendor interface

Registration

system Database

Tendering system

System

Account

Email

Database

P
ay

m
en

t

Transfer

Release

Create

Process

Receive

Transfer

Transfer
12 18

Process

Receive

Transfer

Process Receive Transfer

Create

Release

Transfer

Email

1

2

N
am

e

E
m

ai
l

C
iv

il
 I

D

P
as

sw
o
rd

D
es

cr
ip

ti
o
n

C
re

at
e

Vendor him/herself
Registration

Request

Transfer

Receive Create

Release

Transfer

13

17

11

3

N
az

ah
a

E
m

p
lo

y
ee

T
ran

sfer

R
eceiv

e

R
elease

T
ran

sfer

Create 4 Create: zero

Fees credit 7
5

Payment

card

Transfer Release

Receive Transfer C
iv

il
 I

D

N
am

e

P
as

sw
o
rd

E
m

ai
l

D
es

cr
ip

ti
o
n

Create: Inactive initially

 Active 6

Status

16
Payment

T
ran

sfer
R

eceiv
e

P
ro

cess

Receipt

Create Release Transfer

Create Process

14

16
10

21

9

8

Transfer

Transfer
Receive

Receive

T
ra

n
sf

er

D
es

ti
n
at

io
n

E
m

ai
l

Release

N
am

e

C
iv

il ID

P
assw

o
rd

D
escrip

tio
n

Create

Value

Process

Receive

Transfer

Table

Create

Create Create

Email Password

Create
Time

Process:

If 10 days passed

State
Open

OFF

23

20
Vendor’s Interface

Request for Tendering
24

Create

Create Release

Release

Transfer Transfer Transfer Receive Receive

Transfer Receive Transfer

26 25

22

19 Session

Transfer Receive
Transfer

Receive

Process

T
ra

n
sf

er

R
el

ea
se

P
ro

ce
ss

27
Create

Release
38

Transfer Transfer Release
28 29

Status Rank Transfer Receive

Create: Un-submitted

Submitted
Create: Un-Ranked

Ranked

Purchase Order

Application
37

41 30

Process

Create

Release

Transfer
31 32

D
es

cr
ip

ti
o
n

Q
u
al

it
y

P
ri

ce

A
tt

ac
h
m

en
ts

Receive

Transfer

Create: Un-completed

Completed

Completion

Process Receive Transfer Transfer Release

Create Transfer Receive Process

Release
42

Process: if

complete 33

36

40

35

Submission

R
el

ea
se

T

ra
n
sf

er

34

T
ran

sfer

39

Process Receive Transfer

Nazaha Employees’ Interface

Receive Transfer

43
If complete

Process:

Winner selected

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

463

Fig. 15: Partial view of the events of the vendor-registration process in the tendering system

All PO applications are viewed (38) by the

employee (39) for him or her to check whether they
are completed (40) and then to rank them (41). The
employee will view all of the ranked PO applications
(42) to select the winner (43).

The static description of Fig. 14 can be converted
into a program in any programming language (e.g., to
C++, as described in Al-Fedaghi and Haidar, 2019). It is
also used to identify the events.

For space considerations, Fig. 15 shows only the first
seven events:

 Event 1 (E1): The vendor requests registration in the

tendering system
 Event 2 (E2): The system creates a new account for

the vendor
 Event 3 (E3): An email is created and sent to the

vendor
 Event 4 (E4): The vendor receives the email and

goes to the NAZAHA organization to complete its
registration

 Event 5 (E5): The vendor pays the registration fee
and provides the receipt to the appropriate employee

 Event 6 (E6): The employee receives the proof of
payment and accesses the system

 Event 7 (E7): The payment’s serial number is
inputted into the vendor’s account to activate it

The resultant TM dynamic diagram can be used as a

conceptual model in simulations, similar to using
flowcharting in the simulation language Arena.

Conclusion

We have applied the recently developed TM model
as a conceptual framework to impose uniformity across
the task of describing system requirements. The TM
model, as a new type of philosophical foundation,
incorporates complete unity between things and
processes as well as five generic operations and
integrates static and dynamic features of the system.

We introduced an enhanced version of the TM model

and described its components and philosophical

underpinnings.
We substantiated the model’s viability using many

examples from the literature and by modeling an actual
case study. The TM model seems to provide new
contributions to the field of conceptual modeling that can
enhance and enrich current modeling methodologies
such as OO and UML.

The complexity of the TM diagram may be considered a

weakness of the approach. However, a TM diagram can be

used at various levels of granularity and complexity, as in

the case of nontechnical use. For example, Fig. 14 can be

simplified by removing the release, transfer and receive

stages under the assumption that the direction of the arrows

is sufficient to represent the flow. This is demonstrated in

the upper part of Fig. 16. Such simplification can be

applied at various levels. The resulting diagram

facilitates communication among various stakeholders

and leads to a common understanding and mental picture

of various system components.

Process

Receive

Transfer

Transfer

Transfer

Release

Create Transfer

Create

Release

Transfer N
am

e

E
m

ai
l

C
iv

il
 I

D

P
as

sw
o
rd

D
es

cr
ip

ti
o
n

C
re

at
e

Vendor interface

Registration

request

E7

E4

E6

E2

E1

E5

E3

Vendor him/herself Email

P
ay

m
en

t

Receive Process Receive Transfer

Nazaha Building

Payment

card

Create
Registration

system

System

Transfer

Release

N
az

ah
a

em
p
lo

y
ee

Receive

Transfer

Process

T
ran

sfer

R
eceiv

e

R
elease

T
ran

sfer

17

Payment

T
ran

sfer
R

eceiv
e

P
ro

cess

Create Transfer

Process Create

Release

T
ra

n
sf

er

D
es

ti
n
at

io
n

E
m

ai
l

Release

Receive

Transfer

Receive

Release Create

N
am

e

C
iv

il ID

P
assw

o
rd

D
escrip

tio
n

Create

Process

Receive

Transfer

Email

Transfer Receive

Amount

Receipt

Value

Table

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

464

Fig. 16: Simplification of the lower part of the TM model of the case study tendering system

Authors’ Contributions

The first author is the main developer of the TM

model. The second author is the main builder of the case

study of the tendering system.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript.

No ethical issues were involved and the authors have no

conflict of interest to disclose.

References

Al-Fedaghi, S., 2019a. Five generic processes for

behaviour description in software engineering. Int. J.

Comput. Sci. Inform. Security, 17: 120-131.

Al-Fedaghi, S., 2019b. Thing/machines (thimacs)

applied to structural description in software

engineering. Int. J. Comput. Sci. Inform. Security,

17: 1-11.

Al-Fedaghi, S., 2019c. Toward maximum grip process

modeling in software engineering. Int. J. Comput.

Sci. Inform. Security, 17: 8-18.

Al-Fedaghi, S. and G. Aldamkhi, 2019. Conceptual

modeling of an IP phone communication system: A

case study. Proceedings of the 18th Annual Wireless

Telecommunications Symposium, Apr. 9-12, New

York, NY, USA.

Al-Fedaghi, S. and O. Alsumait, 2019. Toward a

conceptual foundation for physical security: Case

study of an IT department. Int. J. Saf. Secur. Eng., 9:

137-156.

Al-Fedaghi, S. and J. Al-Fadhli, 2019. Modeling an

unmanned aerial vehicle as a thinging machine.

Proceedings of the 5th International Conference on

Control, Automation and Robotics, Apr. 19-22,

Beijing, China.

Al-Fedaghi, S. and M. BehBehani, 2018. Thinging

machine applied to information leakage. Int. J. Adv.

Comput. Sci. Applic., 9: 101-110.

Al-Fedaghi, S. and E. Haidar, 2019. Programming is

diagramming is programming. J. Software, 14:

410-422.

Alkhalifah, A. and G.A. Ansari, 2016. Modeling of E-

procurement System through UML using data mining

technique for supplier performance. Proceedings of the

International Conference on Software Networking,

May 23-26, Jeju, South Korea, pp: 1-6.

Create Create

Create

Email Password

State
Open

OFF

Process:

If 10 days passed
Time

Create

Create

Session Process

Tendering System Request for Tendering

Vendor’s Interface

P
ro

ce
ss

Create

Process

Database

Status Rank

Create

D
es

cr
ip

ti
o
n

Q
u
an

ti
ty

P
ri

ce

A
tt

ac
h
m

en
ts

D
es

cr
ip

ti
o
n

Q
u
an

ti
ty

P
ri

ce

A
tt

ac
h
m

en
ts

Purchase

Order

application

Create: Un-submitted

Submitted
Create: Un-ranked

Ranked

Create: Un-completed

Completed

Completion

Process

Create Process

Process if

complete

Process

Process:
It complete

Nazaha Employee’s Interface

Winner selected

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

465

Alyahya, M. and K. Panuwatwanic, 2018. Implementing

e-tendering to improve the efficiency of public

construction contract in Saudi Arabia. Int. J.

Procurement Manage., 11: 267-267.

Bryant, L.R., 2012. Towards a machine-oriented

aesthetics: On the power of art. The Matter of

Contradiction Conference, Limousin, France.

Bunge, M.A., 1977. Treatise on Basic Philosophy:

Ontology I-The Furniture of the World. 1st Edn.,

Kluwer Academic Publishers, Dordrecht,

 ISBN-10: 9027707855, pp: 354.

Cavarra, A., E. Riccobene and P. Scandurra, 2003.

Integrating UML Static and Dynamic Views and

Formalizing the Interaction Mechanism of UML

State Machines. In: Abstract State Machines 2003

(ASM 2003), Börger, E., A. Gargantini and E.

Riccobene (Eds.), Springer, Berlin, pp: 229-243.

Chen, P.P.S., 1976. The entity relationship model-toward

a unified view of data. ACM Trans. Database Syst.,

1: 9-36.

de Champeaux, D., D. Lea and P. Faure, 1993. Object-

Oriented System Development. 1st Edn., Addison-

Wesley, Reading, MA., ISBN-10: 020156355X,

pp: 532.

DeLanda, M., 2015. The new materiality. Architectural

Design, 85: 16-21.
DCS, 2010. Software engineering. University of Cape

Town.
Eichelberger, H., 2003. Nice class diagrams admit good

design? Proceedings of the ACM Symposium on

Software Visualization, Jun. 11-13, ACM Press, San

Diego, California, pp: 159-168.

Frank, U., 1999. Conceptual modelling as the core of the

information systems discipline-perspectives and

epistemological challenges. Proceedings of the 5th

America’s Conference on Information Systems,

(CIS’ 99), Association for Information Systems,

Milwaukee, pp: 695-698.

Frigg, R. and J. Nguyen, 2017. Models and

Representation. In: Springer Handbook of Model-

Based Science, Magnani, L. and T. Bertolotti (Eds.),

Berlin, Springer, pp: 49-102.
Grässle, P., H. Baumann and P. Baumann, 2005. UML

2.0 in action: A project-based tutorial. Packt
Publishing Ltd., Birmingham, UK.

Guizzardi, G. and T.A. Halpin, 2008. Ontological
foundations for conceptual modelling. Applied
Ontol., 3: 1-12.

Heidegger, M., 1975. The Thing. In: Poetry, Language,
Thought, Hofstadter, A. (Trans.), Harper and Row,
New York, pp: 161-184.

Hölldobler, K., A. Roth, B. Rumpe and A. Wortmann,

2017. Advances in Modeling Language Engineering.

In: Model and Data Engineering, Ouhammou, Y., M.

Ivanovic, A. Abelló and L. Bellatreche (Eds.),

Lecture Notes in Computer Science, pp: 3-17.

Hossain, B.A. and R. Schwitter, 2018. Specifying

Conceptual Models Using Restricted Natural

Language. In: Proceedings of Australasian

Language Technology Association Workshop, Kim,

S.M. and X. Zhang (Eds.), Dunedin, New Zealand,

pp: 44-52.

Kong, J., K. Zhang, J. Dong and D. Xu, 2009.

Specifying behavioral semantics of UML diagrams

through graph transformations. J. Syst. Software, 82:

292-306.

Lauesen, S. and O. Vinter, 2001. Preventing requirement

defects: An experiment in process improvement.

Requirements Eng., 6: 37-50.

Lu, S. and J. Parsons, 2005. Enforcing ontological rules

in UML-based conceptual modeling: Principles

and implementation. Proceedings of the 10th

Workshop on Evaluating Modeling Methods for

Systems Analysis and Design, Held in Conjunction

with the 17th Conference on Advanced

Information Systems, (AIS’ 05), FEUP, Porto,

Portugal, pp: 451-462.

Meyer, N., 1997. Object-Oriented Software

Construction. 2nd Ed. Prentice Hall Professional

Technical Reference, ISBN-10: 0136291554.

Nath, R., 2020. Introduction to object-oriented

methodology.

Ng, L.L.N., D.K.W. Chiu and P.C.K. Hung, 2007.

Tendering Process Model (TPM) Implementation

for B2B integration in a web services environment.

Proceedings of the 40th Annual Hawaii International

Conference on System Sciences, Jan. 3-6, Waikoloa,

HI, USA, pp: 143-152.

OMG, 2000. Unified Modeling Language Specification.

1st Edn., OMG.

Osis, J. and E. Asnina, 2010. Model-Driven Domain

Analysis and Software Development: Architectures

and Functions. 1st Edn., IGI Global, Hershey,

Pennsylvania, USA.
Recker, J.C., 2005. Conceptual model evaluation.

Towards more paradigmatic rigor. Proceedings of
the CAiSE Workshops, Jun. 13-14, Porto,
Portugal.

Ribbert, M., B. Niehaves, A. Dreiling and R. Holten,
2004. An epistemological foundation of conceptual
modeling. Proceedings of the 12th European
Conference on Information Systems, Jun. 14-16,
Turku, Finland, pp: 1-12.

Rumbaugh, J., M. Blaha, W. Premerlani, F. Eddy and W.

Lorensen, 1991. Object-Oriented Modeling and

Design. 3rd Edn., Prentice Hall, Englewood Cliffs,

ISBN-10: 0136298419, pp: 500.

Singh, S.K., 2011. An event-based framework for object-

oriented analysis, computation of metrics and

identification of test scenarios. Ph.D. Thesis, Jaypee

Institute of Information Technology, Deemed

University, Noida, India.

Sabah Al-Fedaghi and Esraa Haidar / Journal of Computer Science 2020, 16 (4): 452.466

DOI: 10.3844/jcssp.2020.452.466

466

Singh, S.K., S. Sabharwal and J.P. Gupta, 2010. An

event-based methodology to generate class diagrams

and its empirical evaluation. J. Comput. Sci., 6:

1301-1325.

Sfard, A., 1991. On the dual nature of mathematical

conceptions: Reflections on processes and objects as

different sides of the same coin. Educ. Stud. Math.,

22: 1-36.

Steiner, H.G., 1952. Theory of mathematics education:

An introduction. Learn. Math., 5: 11-17, 1985.

Stotts, D., 2007. Documenting an OO design: Class

diagrams. team software engineering website.

Szlenk, M., 2006. Formal semantics and reasoning about

UML class diagram. Proceedings of the

International Conference on Dependability of

Computer Systems, May 25-27, IEEE Xplore Press,

Szklarska Poreba, Poland, pp: 51-59.

 DOI: 10.1109/DEPCOS-RELCOMEX.2006.27

Taivalsaari, A., 1997. Classes vs. prototypes: Some

philosophical and historical observations. J. Object-

Oriented Programm., 10: 44-50.

Wand, Y. and R. Weber, 2002. Research commentary:

Information systems and conceptual modeling-a

research agenda. Inform. Syst. Res., 13: 363-376.

Wand, Y. and R. Weber, 1993. On the ontological

expressiveness of information systems analysis and

design grammars. J. Inform. Syst., 3: 217-237.

 DOI: 10.1111/j.1365-2575.1993.tb00127.x

Washizaki, H., M. Akimoto, A. Hasebe, A. Kubo and Y.

Fukazawa, 2010. TCD: A text-based UML class

diagram notation and its model converters.

Proceedings of the International Conference on

Advanced Software Engineering and Its Applications,

Dec. 13-15, Jeju Island, Korea, pp: 296-302.

Weisfeld, M., 2009. The Object-Oriented Thought

Process. 3rd Edn., Addison-Wesley, Upper Saddle

River, NJ.

