

 © 2020 Joseph Issa. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

 Journal of Computer Science

Original Research Paper

A Novel Method to Predict Processor Performance by

Modeling Different Architecture Parameters

Joseph Issa

Department of Electrical and Computer Engineering, Notre Dame University, Zouk Mosbeh, Lebanon

Article History

Received: 31-12-2019

Revised: 24-03-2020

Accepted: 20-04-2020

Email: joseph.issa@ndu.edu.lb

Abstract: Predicting processor throughput and performance is one of the

essential aspects of computer architecture. It is crucial to model processor

performance behavior for future architectures based on the existing data set.

Modeling processor performance for a given workload enables architects to

enhance processor features to meet specific performance targets for a given

benchmark. Developing an estimation method to predict performance using

one micro-architecture parameter is limited, given the need to model

multiple parameters simultaneously. In this paper, we propose a novel

performance prediction method for SPEC CPU 2006 and HDxPRT 2014

benchmarks based on a combination of measured and estimated

performance data. The performance project model predicts processor

performance while altering multiple microarchitecture parameters

simultaneously such as memory speed, number of cores and the core

frequency. We also present a detailed timing analysis for each processor

sub-component. The model is verified to project performance with less than

5% error margin between projected and measured baseline.

Keywords: Performance Analysis, Performance Estimations, Processor

Architecture, Microarchitecture, Computational Modeling

Introduction

Accessing processor performance is critical for the

effectiveness of the entire system combining both

hardware and software. The task of performance

estimation is challenging, given that performance

depends on different software and hardware variables.

Given the complexity of this task, it is still essential to

predict processor performance for a given benchmark

and be able to change the micro-architecture parameters

so that to estimate future performance numbers. The first

task to achieve this is to understand what determines the

processor performance. The two apparent settings in

processor performance are throughput and latency.

Unlike transaction-processing workloads, some

workloads are incredibly diverse in their use and stress

on different server sub-systems. Some are Central

Processing Unit (CPU)-bound and others are strongly

memory-bound. There is a big difference between CPU-

bound vs. memory-bound workloads. The most

important characteristic affecting the performance of any

workload on any system is the number of primary

memory transactions it does.
For the CPU-bound workloads, the performance is

gated by activity on the processor chip. The critical

performance parameters are core frequency, latencies
and bandwidth from processor caches. The unimportant
parameter is the memory subsystem. Usually, systems
are cheaper to build for CPU-bound workloads. The
memory-bound workloads are the opposite of CPU-
bounded workloads. The performance is mainly
determined by the off-chip events, primarily how many
main memory transactions can be completed per unit
time. CPU-bound workloads have few main memory
transactions and are constrained by core frequency,
cache latency/bandwidth, cache design and pipeline.
Memory-bound workloads have many principal memory
transactions and are limited by memory bandwidth and
sometimes by memory latency.

In this paper, we present a novel performance

prediction method based on a mathematical regression

approach, which takes as inputs different processor

microarchitecture parameters simultaneously to predict

performance for SPEC CPU (2006) and HDxPRT

benchmarks. The measured baseline is a Nehalem

processor in which the measured data is used for the

model. We propose a method to develop a projection

model that utilizes measured and mathematical methods

using regression data analysis and Amdahl’s Law. The

measured data assures that we are capturing the proper

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

480

effect of the workload behavior and its architecture

capabilities. The performance contributions from the

processor and memory can be mathematically

determined using Amdahl’s Law and carefully crafted

through experiments. We can look at the impact of

different architectural features for CPU and Memory by

studying them individually. The data regression

techniques are used to find mathematical relationships in

the data that can be used in developing extendable

models to predict performance for CPU configurations

which cannot be measured.

The method presented in this paper is analytical,

which means it does not require simulation data or

sampling traces for simulation. The simulation approach

requires developing a software-based simulator and

capturing significant traces based on Cycles-Per-

Instruction (CPI) and other architecture constraints that

resembles the entire benchmark. The paper is structured

as follows: In Section II, we discuss the motivation

behind developing the proposed analytical model. In

Section III, we discuss SPEC CPU 2006 and HDxPRT

benchmarks. In section IV we review previous work in

which we compare our analytical model to other

published modules, which estimate processor

performance using a systematic approach. In section V

we present the performance and sensitivity analysis for

SPEC CPU 2006 and HDxPRT using Nehalem

processor. In section VI we present the proposed

performance projection model supported by

experimental results and we conclude in Section VII.

Motivation

Modeling processor performance is essential for

processor engineers and designers using an analytical

approach as compared to a simulation approach. The

important feature is to evaluate different hardware

configurations and predict the performance for a

benchmark without using a trace-based simulator. This

approach will help processor architects in designing and

fine-tuning different architecture parameters for future

processors. The model can give an estimate for

performance indicators for SPEC CPU 2006 and

HDxPRT workloads by selecting the desired processor

architecture parameters. For example, what is the change

in performance when the number of cores increases?

This can provide processor engineers a leading edge to

estimate performance without having to measure the

benchmark on a processor that is not yet developed. The

model also enables evaluating performance for different

benchmarks projected performance score (Unit less

performance metric) for different processors, given they

are within the same family architecture. The score

variable used in this paper is inversely proportional to

the time domain for performance measurements.

Fig. 1: CPU and Memory architecture parameters

Usually, we expect an increase in benchmark

performance for future processors, given that more

technology, hardware features and capabilities are added

throughout the processor roadmap. Some of the essential

elements are an increase in the number of cores, an

increase in memory speed and memory capacity, or an

increase in the core frequency itself. In the model

proposed in this paper, we covered all the critical

features that will enable developers to get an early

projected performance number for SPEC CPU 2006 and

HDxPRT fora future processor configuration. A similar

approach can be developed for a different workload. We

chose SPEC CPU 2006 and HDxPRT because they are

CPU intensive (compute-bound) workload; other

workloads can be more memory intensive (memory-

bound). In order to develop a new module for a different

workload, a new set of processor sensitivity analysis is

required. Measurement provides the expected

performance of the workload on a given set of

architecture settings. The benchmark characteristics

consist of a collection of measured data, defining a set

of architecture parameters of interest and statistical

output for the architecture parameters. The concept in

Amdahl’s Law allows us to determine the contribution

of the CPU and Memory to the overall performance and

how specific elements change the component

contribution. We do this by running experiments where

we keep one side constant and vary parameters, on the

other hand, as shown in Fig. 1.

Benchmarks Overview

The SPEC CPU2006 was released by the Standard

Performance Evaluation Corporation (SPEC). It’s a

standardized processor and memory benchmark, which is

what we need for our performance projection model. It is

designed to stress the CPU and memory subsystems and

provides a comparative measure of compute-intensive

performance by measuring integer and floating-point

performance. This benchmark is widely used in the

industry by several computers and processor

CPU Memory

Number of cores

Large caches Smaller caches

Memory

bandwidth

Core

Instructions Per

Cycle (IPC)

Higher memory

latency

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

481

manufacturers to test their processor performance. It’s

also used for comparing the performance of different

processors by different vendors to decide what

processor to purchase based on performance and other

factors. It is also used to compare the high-end

processor versus the low-end processor’s performance;

this is used to determine the cost of each processor

segment. There are two metrics to measure processor

performance, the first metric is time and the second

metric is throughput. Time determines the execution

time, which is how fast a task is completed per unit

time. Another parameter is the throughput, which is to

measure how the amount of computation achieved per

unit time. In SPEC CPU 2006, we used throughput as

performance metrics and also execution time. SPEC

CPU 2006 is categorized as a compute-intensive

workload, which means it’s a compute-bound workload

or bounded by the number of cores. Every workload

belongs to these two categories, a compute-bound

workload or memory-bound workload or in between.

For compute-bound workloads mean that the workload

is only sensitive to the number of cores and the core

frequency. This also means that if memory bandwidth

and capacity increases, the performance will not

increase. Memory-bound workloads mean that the

workload is bounded to the capacity of memory and

memory speed. So, any increase in the number of cores

and/or the core frequency will not be translated into an

increase in performance even though the computation

power increased. Workloads can have different

sensitivity; for example, some workloads are sensitive

to memory bandwidth and memory speed as compared

to being sensitive to the number of cores, core

frequency or the total number of threads. The

performance contributions coming from the CPU and

memory can be mathematically determined using a

measured baseline. The impact of performance change

from different parts of processors and memory and be

analyzed individually. A regression method is used to

determine the relationship to performance in order to

construct the performance projection model. In this

paper, we propose a performance equation as a function

of different microarchitecture parameters, which

includes the number of cores, CPI, core frequency,

memory frequency and memory latency. This enables

the processor engineer to change different

microarchitecture parameters and estimate the change in

processor performance.
HDxPRT scoring benchmark is divided into two sub-

categories. The first category consists of creating the HD
score, which in turn includes an edit and convert videos
from camcorder, edit photos and video from a digital
camera and prepare media for portable devices. The
second category is the HD video playback, which
consists of HD video (1080 p, H.264) and HD video
online (1080 p with Flash).

Related Work

Researchers have developed different prediction

models to predict processor performance for a given

benchmark using an analytical approach instead of a trace-

based simulation. The analytical model presented in this

paper enables the performance projection of relative

performance with a <10% error margin difference

between measured and estimated performance scores

using the SPEC CPU 2006 and HDxPRT benchmarks.

In our previously published papers, we proposed a

performance estimation model using Amdahl’s law

regression method in (Issa and Figueira, 2010).

Amdahl’s law is based on the law of diminishing returns,

which means increasing the number of processors or the

number of cores, do not lead to a proportional increase in

the same amount in performance. The definition for

Amdahl’s law states that the performance improvement

gained from implementing a faster mode of execution is

limited by the fraction of the time the quicker mode can

is used. Amdahl’s Law states that a system’s overall

performance increase is limited by the fraction of the

system that cannot take advantage of the enhanced

performance. The method published in (Issa and

Figueira, 2010) predicts benchmark performance with

less than a 10% error margin. The way presented in

(Issa and Figueira, 2010) is limited, given that it can

only accept only one architecture parameter change at a

time to estimate performance for different values of that

same parameter. The method requires at least two

measured data points to establish a measured baseline

and this enables performance estimation for

microarchitecture parameters that cannot be measured on

the processor under test. Note that the measured baseline

and the projected performance must be of the same

microarchitecture parameter, for example, the number of

cores or the core frequency.

This paper is also a continuation of the work we

published in (Issa, 2016) for our initial work on this

project. In this paper, we added more elaboration, fine-

tuned the regression method and added the timing

analysis in the results section to show the breakdown in

time between the core time and the memory time for

SPEC CPU 2006.

Saavedra and Smith (1996) proposed a method for a

given benchmark to characterize the machine

performance and the program execution. The paper

focuses on determining the execution time of the

benchmark. The difference between our method and the

method published in (Saavedra and Smith, 1996) is that

our approach is more general and can be used for any

processor by changing different microarchitecture

parameters. Krishnaprasad (2001) presented various

ways of using Amdahl’s law in a different form. Our

method presented in this paper has the same objectives,

but we use a regression approach instead.

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

482

Hoste et al. (2007) presented a method based on

computing a set of microarchitecture parameters

independent characteristics and weights these

independent characteristics resulting in locating the

application of interest in benchmark space. The

performance prediction is implemented by weighting the

performance number of a benchmark in the

neighborhood of the application of interest. In our

method, we do not apply any weighting mechanism for a

given benchmark to predict performance, as this may

change and becomes different for a different benchmark.

Phansalkar et al. (2007) proposed a simulation-based

approach for SPEC CPU 2006 by calculating the CPI for

cache and Translation Lookaside Buffer (TLB) misses.

The paper concludes that a larger TLB size can reduce

the cache and TLB miss rates, which in turn will reduce

the CPI and may improve performance.
Jens (1996) proposed a different performance

estimation method for the Linpack benchmark based on
predicting the runtime using a message-passing
approach. Our estimation model approach is different in
a way we analyze different processor architecture
parameters and developed an empirical formula to
predict relative performance.

A significant amount of work has been done

(Ganesan et al., 2008; Prakash and Peng, 2008) using

different performance metrics to analyze and optimize

the performance of different workloads. These research

papers are highly dependent on microarchitecture

parameters that are tight to a specific Instruction Set

Architecture (ISA) which makes it bias to a specific

architecture. It is used to find performance bottlenecks

for different benchmarks.

Khan et al. (2012) presented a novel method for

cache segmentation replacement technique that works

independently from Least Recently Used (LRU)

replacement method. The method is tested with different

cache sizes for Last Level Cache (LLC) sizes using

intensive memory subsets of SPEC CPU 2006. This

shows the importance for cache performance modeling

for memory intensive subsets of SPEC CPU 2006.

Issa and Figueira (2010) proposed a performance

estimation model using Amdahl's Law regression

method. The method is limited as it requires changing

one microarchitecture parameter such as core frequency

or memory frequency while keeping other processor

parameters fixed. The technique also requires having a

measured baseline with a minimum of three measured

data points to enable performance projection using the

measured baseline. The approach presented in this paper

allows performance prediction by changing several

architecture variables simultaneously.

Hoste and Eeckhout (2007) presented different

metrics for characterizing benchmarks based on

microarchitecture-independent characteristics. It is based

on instrumenting program binaries to describe diverse

instruction mix, ILP, working set size and branch

predictability. This is based on the simulation of ISA

traces to module performance.

Baghsorkhi et al. (2010) proposed an analytical

method to predict the performance of the general-

purpose application on a GPU architecture. The

technique identified how kernel affects different GPU

microarchitecture parameters.

Hong and Kim (2009) presented an analytical model

for GPU architecture with an emphasis on memory-level

and thread-level parallelism. In our analysis, we

analyzed the sensitivity of HDxPRT with respect to

different cache sizes and the number of cores.

Sensitivity Analysis

a) SPEC CPU 2006

SPEC CPU 2006 benchmark includes twenty-six

different benchmarks executed to stress the processor

and memory. The output of the benchmark is one

number, which is referred to as the performance score

(SPEC rate). It is important to design the right

experiment so that the performance data can be analyzed

accordingly. The objective of the performance model

presented in this paper is to combine all the regression

measurements into a single empirical formula to predict

performance for a SPEC CPU 2006. This enables us to

perform a multivariable regression. It is important to

mention that all measured data presented contains a

common configuration, which means that all

performance data presented is referenced to a normalized

measured baseline, which is equal to one ‘1’. The

remaining measured data are referenced to this '1', which

is known as the normalized measured baseline. The main

factor contributing to lower processor performance are

summarized as follows:

 A low number of cores

 Small cache size

 Low core Instruction-Per-Cycle (IPC). IPC is

usually reduced (lower performance) in case of an

increase in cache misses structural hazards, control

hazards, or data hazards

There are different memory factors that contribute to

lower performance such as, lower memory bandwidth,

smaller cache size and high memory latency. All the

performance measurements used for sensitivity analysis

are based on relative performance with respect to the

Intel Nehalem Xeon processor with 8 cores, 2800 MHz

core frequency and 400 MHz memory speed. It is

implemented by taking the measured data for a given

workload and analyze the sensitivity performance curve

with respect to one performance parameter (number of

cores) while keeping all other parameters fixed.

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

483

When a benchmark score is larger for higher

performance numbers as shown in Fig. 2, inverting the

performance parameters, in this case, it’s the number of

cores along with the score often provides linear lines in a

plot, as shown in Fig. 3.
The model output for the relative score with respect

to the number of cores is calculated using regression as =
1/(M*(1/# of cores)+B) where M and B are the
regression slope and intercept. Linear relationships help
in simplifying the predictive model, but this does not
always happen.

Some elements of performance end to be well
behaved in producing a linear relationship to
performance using this technique. The lists of
architecture parameters that work well for SPEC CPU
2006 benchmark are:

 Frequency vs. Score (Fig. 4)

 Core count vs. Score

 Memory Bandwidth vs. Score (Fig. 5)

 Memory Latency vs. Score

 IPC improvements vs. Score

Fig. 2: Score vs. # of cores

Fig. 3: Linear plot for 1/score vs. 1/cores

Fig. 4: 1/Score vs. 1/Frequency

Score

S
co

re

12

10

8

6

4

2

0
0 5 10 15 20 25 30

Cores

1/Score

1
/S

co
re

1.2

1

0.8

0.6

0.4

0.2

0
0 0.2 0.4 0.6 0.8 1 1.2

1/Cores

Frequency

1
/S

co
re

2.5

2

1.5

1

0.5

0
0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

1/Frequency

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

484

Fig. 5: 1/Score vs. 1/DIMM speed per thread

Fig. 6: Cache size vs. performance score

Fig. 7: LN (Cache Size) vs. LN(Score)

Best conditions are with heavily threaded

homogeneous workloads and they vary per benchmark.

Some regressions don’t work well using this

approach. Some relationships are harder to work with.

The cache size tends to be one of those. It will shift

work from the main memory to the CPU as you

increase the work size. We can modify the input

parameters in the experiment and regress this into a

relationship. In this case, a 3rd order polynomial

relationship works best, as shown in Fig. 6 to 8.

However, what we need here is to know how the

memory contribution changes and this relationship is

to total performance.

Some regressions don’t work well; In this case, we

need to simulate two different frequencies for each cache

size. From this data, we can extract the CPU and memory

contributions for each of the cache sizes. The impact of

the cache size on memory contribution can regress into an

equation that is used to modify the memory component, as

shown in Fig. 9. The reference configuration cache size

should be set to 1 (normalized). All values should be in

reference to the normalized baseline (1).

Memory bandwidth

1
/S

co
re

2

1.5

1

0.5

0

0 0.002 0.004 0.006 0.008 0.01 0.012

1/Equivalent DIMM speed per thread

Cache size

S
co

re

1.02

1

0.98

0.96

0.94

0 5 10 15 20

Cache size

y = 0.015 ln(x) +0.967

R2 = 0.976

LN (Cache size)

L
N

 (
S

co
re

)

0.02

0.01

0

-0.01

-0.02

-0.03

-0.04

-0.05

-1 0 1 2 3

LN (Cache size)

y = 0.002x2+0.011x-0.034

R2 = 0.996

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

485

Fig. 8: 1/Cache Size vs. 1/Score

Fig. 9: Performance score vs. different frequency for different cache sizes

Fig. 10: 1/Score vs. 1/Frequency for different cache sizes

From Fig. 10, the slope for 1/score vs. 1/Freq for all

sizes of the cache memory is the same, which is 2.588;

however, the intercept part differs. This is expected,

given the different cache sizes.

Designing the right experiments simplifies the

analysis. With the right experiment sets, we can combine

the regression data into one formula to project

performance. We can conduct a multivariable regression

to do this. Some rules used in conducting a measured

experiment used to develop the performance model are:

Rule 1: All experiment sets must contain a standard

configuration

Rule 2: Experiment sets should have a minimum of 3

configurations. More is always better.

Rule 3: Always measure two different frequencies for sets

producing non-linear relationships (i.e., cache size)

The experiment set for option 1 used is shown in Fig.

11. This would be the best experiment set, a single

thread set is used for better projections of single-thread

1/size of cache

1
/S

co
re

1.05

1.04

1.03

1.02

1.01

1

0.99

0.98

0 0.5 1 1.5 2 2.5

1/Cache size

y = 0.016 ln(x) +1.03

R2 = 0.9796

Score vs. frequency for different sized of cache

S
co

re

1.3

1.1

0.9

0.7

0.5

2 2.5 3 3.5

Freq

@ 0.5M

@ 1M

@ 2M

1/score vs. 1/frequency

1
/S

co
re

1.4

1.2

1

0.8

0.6

0.4

0.2

0

0 0.2 0.4 0.6

1/Freq

@ 0.5M

@ 1M

@ 2M

Linear (@ 0.5M)

Linear (@ 1M)

Linear (@ 2M)

y = 2.58x +0.18

y = 2.58x +0.09

y = 2.58x +0.04

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

486

benchmarks. Note that in every set, there are duplicates

from other sets. The total number of experiments is less

than the number of configurations shown.

The experiment set of other options is described as

option 1 and option 2. For option 1, represent a method

to use the least amount of Multi-thread measurement.

The frequency and cache scaling experiments are done

with 1 thread measurement. The output for this option

provides the least measurement time with the least

accurate method.

For option 3, these sets recognize the behavior of a

module (core pairs) needs to be modeled. It is a

compromise of Option 1 and Option 2. A Single thread

set is used for better projections of single-thread

benchmarks. Note that in every set, there are duplicates

from other sets. The total number of experiments is less

than the number of configurations shown in Fig. 11.

Deriving the relative performance is with respect to the

Intel Nehalem Xeon processor, configured with eight

cores, with 2800 MHz core frequency and memory speed

bus of 400 MHz. First, we take measured data from

SPEC CPU2006 and analyze the sensitivity performance

curve with respect to one performance parameter, for this

case, it’s the number of cores while keeping all other

architecture parameters fixed. The measured

performance curve is shown in Fig. 12. Relative

performance derived is shown in equation (1) as:

8
1 / ,

#

Relative Preformance

Slope Intercept
of cores

  
     

  

 (1)

Fig. 11: Experiment sets used for single-threaded and multi-threaded benchmarks

Experiment set Core

Core

config Freq1 Freq2 DRAM L3 $/core
Equiv

DIMM

Men

CH

Core count

Memory

bandwidth

2 1CL2T 2800 3200 400 1 2x 400

4 2CL4T 2800 3200 400 1 2x 800

8 4CL8T 2800 3200 400 1 2x 1600

8 4CL8T 2800 3200 100 1 2x 400

8 4CL8T 2800 3200 200 1 2x 800

8 4CL8T 2800 3200 400 1 2x 1600

8 4CL8T 2800 3200 800 1 2x 3200

8 4CL8T 2000 N/A 400 1 2x 1600

8 4CL8T 2400 N/A 400 1 2x 1600

8 4CL8T 2800 N/A 400 1 2x 1600

8 4CL8T 3200 N/A 400 1 2x 1600

8 4CL8T 2800 3200 400 0.5 2x 1600

8 4CL8T 2800 3200 400 1 2x 1600

8 4CL8T 2800 3200 400 1.5 2x 1600

8 4CL8T 2800 3200 400 2 2x 1600

CPU

frequency

L3 cache size

Experiment set Core

Core

config Freq1 Freq2 DRAM L3 $/core
Equiv

DIMM

Men

CH

Memory

bandwidth

CPU

frequency

L3 cache size

1T/2T scaling

1 1CLT 2800 3200 1600 8 2x 800

1 1CLT 2800 3200 3200 8 2x 1600

1 1CLT 2800 3200 4800 8 2x 2400

1 1CLT 2400 N/A 3200 8 2x 1600

1 1CLT 2800 N/A 3200 8 2x 1600

1 1CLT 3200 N/A 3200 8 2x 1600

1 1CLT 2800 3200 3200 2 2x 1600

1 1CLT 2000 3200 3200 4 2x 1600

1 1CLT 2400 3200 3200 8 2x 1600

1 1CLT 2800 3200 3200 10 2x 1600

1 1CLT 3200 3200 3200 12 2x 1600

2 1C2T 2800 3200 1600 4 2x 1600

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

487

The constant ‘8’ used in Equation (1) is derived from

a measured baseline using the Intel Xeon processor with

eight cores. Processor configuration with eight cores is

used as the normalized baseline and all other

measurements are relative to this baseline. The slope and

intercept values are derived using regression. The

performance in Figure 12 shows a non-linear relation

between the number of cores and relative performance.

Taking the inverse will give us a linear relationship, as

shown in Figure 13.

We implement the linearity method for memory

DIMM speed per thread. The relative memory

performance is derived in Equation (2):

400
1 / .

Relative Preformance

Slope Intercept
DIMM Speed

  
     

  

 (2)

The slope and intercepts derivations are discussed

and derived in the results section. The reason we have

400 in the equation is that for the measured baseline

we used a memory speed of 400 MHz. We repeat the

same experiments for DIMM speed versus the

memory relative performance, also the inverse of

memory speed versus the inverse of relative

performance as shown in Fig 14 and 15.

Fig. 12: Relative performance versus # of cores

Fig. 13: 1/relative performance vs. 1/# of cores

Fig. 14: DIMM speed/thread versus memory relative performance

Relative performance vs. # of cores

R
el

at
iv

e
p

er
fo

rm
an

ce

2.5

2

1.5

1

0.5

0

0 5 10 15 20 25 30

of cores

1/relative performance vs. 1/# of cores

1
/R

el
at

iv
e

p
er

fo
rm

an
ce

 7

6

5
4

3

2

1

0

0 0.2 0.4 0.6 0.8 1 1.2

1/number of cores

Memory performance vs. DIMM speed/thread

M
em

o
ry

 r
el

at
iv

e

p
er

fo
rm

an
ce

1.500

1.000

0.500

0.000

1 1000 2000 3000 4000 5000 6000

DIMM speed (MHz)

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

488

Fig. 15: Inverse of memory DIMM speed and relative performance

Fig. 16: Relative performance Vs. CPU core frequency

Fig. 17: 1/relative performance versus the 1/core frequency

By repeating the same analysis for the core frequency

generates a linear relationship between the inverse of the

relative performance versus the inverse of the core

frequency, this is shown in Fig. 16 and 17.

b) HDxPRT

For HDxPRT, the performance score which consists

of the three sub-categories (convert videos from

camcorder, edit photos and video from a digital camera

and prepare media for portable devices) is derived using

the GeoMean of the three components as follows:

100
Tref

score
Trun

 
   

 
 (3)

In our sensitivity analysis, we conclude that there

is a 40% scaling for the change in the number of

cores, minimum sensitivity to cache and <3%

sensitivity to Simultaneous Multi-Threading (SMT),

as shown in Table 1.

The core sensitivity for different subcategories are

shown in Fig. 18.

1/memory bandwidth

1
/R

el
at

iv
e

p
er

fo
rm

an
ce

 2

1.5

1

0.5

0
0 0.002 0.004 0.006 0.008 0.01 0.012

1/Equivalent DIMM speed/thread

Relative performance vs. CPU cores frequency

R
el

at
iv

e
p

er
fo

rm
an

ce

1.5

1

0.5

0

1 1000 2000 3000 4000 5000

Core frequency (MHz)

1/core frequency

1
/R

el
at

iv
e

p
er

fo
rm

an
ce

2.5

2

1.5

1

0.5

0

0 0.0002 0.0004 0.0006 0.0008 0.001 0.0012

1/core frequency

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

489

Fig. 18: Sub-category sensitivity analysis for HDxPRT

Table 1: Sensitivity analysis for HDxPRT

Number of Cores scaling Cache Sensitivity SMT ON vs. SMT OFF

2core vs. 1 core 1.48 1MB vs. 3MB 1.02 2 cores 4 threads vs. 2 cores 2 threads 1.01

4 cores vs. 2 cores 1.42 3MB vs. 6MB 1.01 4 cores 8 threads vs. 4 cores 4 threads 1.03

6 cores vs. 4 cores 1.04 6MB vs. 8MB 1.01 cores 612 threads vs. 6 cores 6 threads 1.03

There is an 80% performance improvement for Edit

and Convert videos from camcorder and 30%

improvements for Edit photos and videos from the

camera. For HDxPRT benchmark, the performance for

projected time is calculated as:

 

 # /

T projected

CPI of instructions Weight freq  
 (4)

and per component HDxPRT score is computed as

 

   /

Score per component

T referenced T projected 
 (5)

The overall score is computed using the GeoMean

score show in Equation (3).

Experimental Results

Using multivariable regression on the linear

relationships, we can get coefficients for the input

parameters to predict a score. Additionally, we can

compute the CPU and memory component times. The

component times can be modified by the non-linear

relationship from the L3 measurements. We used four

different processor architecture variables, which are the

number of cores, the core frequency, the memory DIMM

speed, latency and the Instruction-Per-Cycle (IPC). The

IPC variable depends on the number of branches misses

cache misses and pipeline and structural hazards. The

higher the occurrence of these variables, the more cycles

are consumed, which will result in a lower IPC, which in

turn will result in lower performance. The IPC value is

measured for SPEC CPU2006 using a measured reference

baseline for Nehalem processor. Given the sensitivity

analysis we discussed, the general formula for the relative

performance can be derived as in Equation (3):

Re

1

#

lative performance

Corecoefficient Core Frequencycoefficient
Z IPC

of Cores Core Frequency

DIMM speed Coefficient
Memory Latency

DIMM speed


  

    
  
 
  
  

(6)

The value for the core coefficient in Equation (3) is

derived from the regression coefficient for 1/# of cores.

The value for Z in the linear line intercepts and core

frequency coefficient is also calculated from regression

for 1/(core frequency). The value for the DIMM speed

coefficient can be derived from the regression coefficient

for 1/DIMM speed. These coefficients are derived using

statistical regression analysis for the measured dataset.

For example, for one of the configuration we want to

predict performance, the coefficients calculated by the

regression statistics are as follows: Z = -0.75, number of

cores coefficient = 6, core frequency coefficient =2100 and

DIMM speed coefficient = 100. The relative performance

equation is set to project relative performance with respect

to the measured baseline. For this experiment, the

measured baseline is Intel Xeon 8 cores, 2800 MHz core

frequency, with 400 MHz DIMM speed. The following

table summarizes the relative performance score for

different projected processor configurations.

Sub category sensitivity analysis for HDxPRT

2.5

2

1.5

1

0.5

0
Edit video from

camcorder

Create memories

from camcorder

Prepare the media

for on-the-go

4 cores vs. 2 cores  1.42 2 cores vs. 1 cores  1.48

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

490

Table 2: SPEC CPU2006Regression coefficients for different configurations

 Core DIMM speed Core freq. DIMM
of Cores frequency (MHz) (MHz) Relative perf. Core time time speed time Z

1 2800 400 0.16 6 0.75 0.25 -0.75
8 2800 400 1 0.75 0.75 0.25 -0.75
10 2800 560 1.28 0.6 0.75 0.17 -0.75
12 2800 560 1.47 0.5 0.75 0.17 -0.75
12 3600 600 2 0.5 0.58 0.16 -0.75

Fig. 19: SPEC CPU2006 Experimental results, Measured vs. Projected Performance

The relative performance shown in Table 2 is

normalized '1' with respect to Intel Nehalem Xeon using

eight cores, 2800 MHz core frequency and DIMM speed

of 400 MHz. This is the normalized baseline and all

other measured and projected performance is relative to

this measured baseline. The remaining configurations are

measured and relative project performance to this

normalized configuration. The statistical regression tool

enables us to derive the regression coefficients for the

number of cores coefficient, core frequency coefficient

and DIMM speed coefficient and Z.

The next step is to apply the empirical performance
relation in Equation (3) to verify the method with respect
to the measured data baseline. We compare relative
performance measured with respect to predicted
relative performance. The error margin between
estimated and measured relative performance is <10%
for all test configurations, as shown in Fig. 19. The
model is used to cross-validate the estimation of SPEC
CPU 2006 performance for different Xeon processor
configurations. This enabled performance projection for
the future processors that we don't have it yet available
for measurement.

In Fig. 19, the performance projection model is used
to estimate the relative performance with respect to the
Intel Xeon Nehalem baseline. To verify the model, we
compare the performance score to a measured score
using the same processor configuration as a baseline.
The normalized configuration in Fig. 11 is normalized
relative to '1', which is done by setting the number of
cores to 8, core frequency to 2800 MHz and DIMM
speed to 400 MHz. Using the proposed model, if we
increase the number of cores to 12, core frequency to
3600 MHz and DIMM speed to 600 MHz, the relative
performance increases to about 2.1. The actual measured
relative performance is two which is about 5% error
margin. Different configurations show an error margin <
5% between measured and projected data.

The timing analysis for multi-variable regression is
derived in Equation (7) as follows:

TotalTime CoreTime

FerequencyTime DIMM Time InterceptTime



  
 (7)

The time contribution for the core computation time

is the Core_time + Frequency_time + Intercept_Time
and the DIMM_time is for the memory time only.

SPEC CPU 2006 relative performance (Measured vs. projected)

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
C = 1, F = 28000

MHz DIMM =

400 MHz

Project

Measured

C = 8, F = 28000

MHz DIMM =

400 MHz

C = 10, F =
28000 MHz

DIMM = 560 MHz

C = 12, F =
28000 MHz

DIMM = 560 MHz

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

491

Table 3: SPEC CPU2006 timing analysis for core and memory

 Time Contribution % Time Contribution

 --- --------------------------------------

Cores Freq DIMM Score Core Time Memory Time Core Time Mem. Time

1 2800 400 0.16 6 0.3 96% 4%

8 2800 400 1 0.8 0.3 75% 25%

10 2800 560 1.284 0.6 0.2 77% 23%

12 2800 560 1.474 0.5 0.2 74% 26%

12 3600 600 2 0.3 0.2 67% 33%

Fig. 20: HDxPRT measured Vs. projected performance

In Table 3, we show the timing breakdown for SPEC

CPU 2006 in terms of core time and memory time. The

benchmark is more dependent on the core time as

compared to the memory time for a lower number of

cores. For one core system, the core time is very

significant (96%) as compared to the memory time (4%).

As the number of cores increases and DIMM speed

increases, the memory time contribution also increases.

The % core time is derived by taking the ratio of the

core_time/total_time. Memory % time is derived

similarly by taking the ratio of the DIMM time and the

total time. The same method is used to project relative

performance for HDxPRT, as shown in Fig. 20.

Concluding Remarks

In this paper, we proposed a novel performance

projection method using measured and regression data to

predict relative performance for SPEC CPU2006 and

HDxPRT using different processor architecture variables

that stress the CPU and memory sub-systems. The

projection model is independent of underlying ISA; it

utilizes regression with a mathematical approach to

project relative processor performance. We discovered

that the relative performance for the cache is logarithmic

rather than linear, while the relative performance for the

core frequency, number of cores and memory bandwidth

is linear. The estimated relative performance average

error margin < 5% compared to the measured

performance baseline for Xeon processor configurations.

The proposed method in this paper enables the modeling

of different processor architecture parameters to estimate

relative performance for SPEC CPU 2006 and HDxPRT.

The model can be modified by establishing a new

measured baseline known as the normalized baseline

(normalized to 1) and estimate relative performance from

that baseline for different processor architecture. This

method does not require any binary or sampled traces

used in the simulation for a given benchmark to have an

instruction mix that represents well the entire

benchmark's instruction mix. For future work, we can

implement a sensitivity analysis for different architecture

parameters such as the TLB misses, which contributes to

lower IPC (higher CPI). Also, the method can be

expanded to cover different benchmarks that are used by

the industry as a reference to evaluate processor

HDxPRT relative performance (Measured vs. projected)

1.8

1.6

1.4

1.2

1

0.8

0.6

0.4

0.2

0
C = 1, F =
28000 MHz

DIMM = 400

MHz

C = 8, F =

28000 MHz

DIMM = 400

MHz

C = 12, F =

28000 MHz
DIMM = 560

MHz

Project

Measured

C = 10, F =

28000 MHz

DIMM = 560
MHz

Joseph Issa / Journal of Computer Science 2020, 16 (4): 479.492

DOI: 10.3844/jcssp.2020.479.492

492

performance and be able to predict performance for

future architecture.

Competing Interests

The author declares that he has no competing interests.

References

Baghsorkhi, S.S., M. Delahaye, S.J. Patel, W.D. Gropp

and W.W. Hwu, 2010. An adaptive performance

modeling tool for GPU architectures. Proceedings of

the 15th ACM SIGPLAN symposium Principles

Practice Parallel Programming, Jan. 9-14, ACM,

Bangalore, India, pp: 105-114.

 DOI: 10.1145/1693453.1693470

CPU, 2006. Benchmark. https://www.spec.org/cpu2006/

Ganesan, K., L. John, V. Salapura and J. Sexton, 2008.

A performance counter based workload

characterization on Blue Gene/P. Proceedings of the

37th International Conference on Parallel

Processing, Sept. 9-12, IEEE Xplore Press, Portland,

OR, USA. DOI: 10.1109/ICPP.2008.57

Hong, S. and H. Kim, 2009. An analytical model for a

GPU architecture with memory-level and thread-

level parallelism awareness. Proceedings of the 36th

Annual International Symposium on Computer

Architecture, Jun. 20-24, ACM, Austin, TX, USA,

pp: 152-163.

Hoste, K. and L. Eeckhout, 2007. Microarchitecture-

independent workload characterization. IEEE Micro,

27: 63-72. DOI: 10.1109/MM.2007.56

Hoste, K., L. Eeckhout and H. Blockeel, 2007.

Analyzing commercial processor performance

numbers for predicting performance of application

on interest. Proceedings of the ACM SIGMETRICS

International Conference on Measurement and

Modeling of Computer Systems, Jun. 12-16, San

Diego, California, USA.

 DOI: 10.1145/1254882.1254937

Issa, J. and S. Figueira, 2010. Graphics performance

analysis using Amdahl's law. Proceedings of the

International Symposium on Performance Evaluation

of Computer and Telecommunication System, Jul.
11-14, IEEE Xplore Press, Ottawa, ON, Canada.

Issa, J., 2016. Processor performance modeling using

regression method. Proceedings of the 18th

Mediterranean Electrotechnical Conference, Apr.
18-20, IEEE Xplore Press, Lemesos, Cyprus.

 DOI: 10.1109/MELCON.2016.7495404

Jens, S., 1996. Performance prediction on benchmark

programs for massively parallel architectures.

Proceedings of the 10th International conference of

High-Performance Computer, (HPC’ 96).

Khan, S.M., Z. Wang and D.A. Jiménez, 2012.

Decoupled dynamic cache segmentation.

Proceedings of the 18th IEEE International

Symposium on High-Performance Computer

Architecture, Feb. 25-29, IEEE Xplore Press, New

Orleans, LA, USA.

 DOI: 10.1109/HPCA.2012.6169030

Krishnaprasad, S., 2001. Uses and abuses of Amdahl’s

law. J. Comput. Sci. Coll., 17: 288-293.

 DOI: 10.5555/775339.775386

Phansalkar, A., A. Joshi and L.K. John, 2007. Analysis

of redundancy and application balance in the SPEC

CPU2006 benchmark suite. Proceedings of the 34th

International Symposium on Computer Architecture,

(SCA’ 07).

Prakash, T.K. and L. Peng, 2008. Performance

characterization of SPEC CPU2006 benchmarks on

Intel Core 2 Duo processor. Proceedings

International Conference on Parallel Processing,

(CPP’ 08).

Saavedra, R.H. and A.J. Smith, 1996. Analysis of

benchmark characteristics and benchmark

performance prediction. ACM Trans. Comput. Syst.,

14: 344-384. DOI: 10.1145/235543.235545

List of Abbreviations

The following is a list of abbreviation used:

CPI: Cycles per Instruction

HDxPRT: High Definition Expert

CPU: Central Processing Unit

HD: High Definition

LRU: Least Recently Used

LLC: Last Level Cache

DIMM: Dual In-line Memory Module

SMT: Simultaneous Multi-Threading

IPC: Instruction per Cycle

CPU: Central Processing Unit

SPEC: Standard Performance Evaluation Corporation

TLB: Translation Lookaside Buffer

LN: Natural Logarithmic

https://www.spec.org/cpu2006/
http://portal.acm.org/author_page.cfm?id=81100280358&coll=ACM&dl=ACM&CFID=60676304&CFTOKEN=85369218

