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Abstract: Cognitive architecture deals with describing the intelligent 

behavior of an agent. The description of intelligent behavior states how 

well an agent can solve and represent variety of problems of the domain-

independent task. The intelligence of an agent is considered in terms of its 
learning capabilities. In this study, we are exploring solving 8-Queens 

combinatorial problem using SOAR symbolic cognitive architecture. An 8-

Queens problem consists of various constraints which is expressed by 

Constraint Satisfaction Problem (CSP). The constraints are further 

generalized in the Fuzzy Constraint Satisfaction Problem (FCSP) (a sub 

domain of CSP), which simplifies the condition of constraints by providing 

the priority value to the location of queen. This paper provides a way to 

solve 8-Queens problem by using a heuristic search and backtracking. 

These concepts are implemented in SOAR to find an efficient solution of 

similar task. The implementation of 8-Queens in SOAR provides 

computation efficiency in solving and a way for an agent to learn their own 
production rules to solve similar domain problems. The 8-Queens problem 

is analyzed by two parameters. First parameter defines how an agent can 

learn and transfer rules to solve similar domain problem. The second 

parameter describes number of chunks required to solve a problem.  

 

Keywords: Procedural Memory, Chunking, Constraint Satisfaction 

Problem, Backtracking 

 

Introduction  

The recent advancement of cognitive architecture has 

made general purpose intelligent agents smart. These 

agents can solve tasks just as humans can (Lindes, 

2018). The various popular programming language such 

as Java, C++ and C are not required for these tasks. 

Moreover, these languages do not offer any built-in 

features to communicate the problem space as effectively 

and efficiently as an intelligent agent can perform in 
comparison. Cognitive Architectures such as GPS, 

SOAR (Laird, 2012), ACT or Clarion provide the 

higher levels of abstraction fixed processes, memories 

and their associated algorithms and data structures. 

However, the user must still program the tasks at the 

symbol level to symbolize and process knowledge 

about the environment for reasoning, problem solving 

activities and goal-oriented behavior.  

Research on cognitive architectures is essential as 

these architectures provide capabilities like creation and 

understanding of problem tasks. This general-purpose 

behavior of agents in cognitive architecture resembles 

the problem-solving skills of humans (Wray and Chong, 

2007). In a previous couple of decades, AI research has 

actively used specific algorithms to solve particular 

problems, whereas cognitive architecture aims to cover 

across diverse sets of tasks and domains. Cognitive 

architectures are more capable of handling domain 

related problems or independent domain learning based 
on real-life issues. The problems are well described by 

CSP. CSP is used to show how constraints are related 

logically among several variables. CSP is defined 

knowledge in a set of hard constraints. These 

constraints are restricted by particular values, which 

sometime results in no-solution of the problem. The 

rigidity is overcome by FCSP that makes hard 

constraints accessible in such a way that constraint 

encompasses both decision similarities among 

permissible instantiations of variables and set 

preferences amid constraints. 

The FCSP is utilized in making symbols in SOAR to 
define the facts about the real world. These symbols can 
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be manipulated as some predefined instruction sets. 

Furthermore, these instruction sets are defined under the 

term as rule-based deductive reasoning, which 

manufactures the knowledge about the problem, 
represents in production rules and also determines how 

to solve problems using different techniques.  

The integration of FCSP and SOAR helps general 

agent to become intelligent enough to perform a variety 

of tasks related to the problem. This paper demonstrates 

the solving method for the 8-Queens Problem and makes 

an agent intelligent enough to solve similar domain tasks 

or repeated task. 

Here is a brief description of 8-queens problem. The 

8 different queen pieces need to be placed on 8*8 

chessboard such that each queen piece can follow the 
following constraints: 

 

C1- No two or more queens can place in the same row 

C2- No two or more queens can place in the same 

column 

C3- No two or more queens can place in the same 

diagonal 

 

An architectural framework is required to represent 

the above-mentioned problem statement. By providing 

framework, a computational infrastructure is maintained 

for developing intelligent agents. These agents are 
designed to break down problems into sub-problems, 

look for algorithms to solve these sub-problems and 

define how to integrate learning with performance and, 

how to express knowledge so that it can be retrieved 

effectively and efficiently.  

The reason for using SOAR as architectural 
framework is due to SOAR’s ability to simplify 

computation. The computation is basically based on 

problem spaces, states, operators and goals.  

SOAR manages several memories in its architecture 

as depicted in Fig. 1 such as working memory, long-term 

memories as episodic memory, procedural memory and 

semantic memory. Each memory has its own specific 

role to perform, such as working memory is responsible 

for getting knowledge from long-term memories as well 

as being the basis for initiating action. 

The three long-term symbolic memories are 
independent in performance (Christophe et al., 2009) 

and have separate learning mechanism. The procedural 

long-term memory is used for retrieving the knowledge 

that controls the processing. The knowledge in 

procedural long-term memory (Laird et al., 2017) is 

represented as production rules (other words if-else 

statement) that match conditions against the contents of 

working memory and perform actions in parallel. 

Production rules commonly modify the status of working 

memory. To control behavior of these production rules, 

there is need to generate preferences, which are used by the 

decision procedure to select an appropriate operator 
(Mininger and Laird, 2018). Operator selection is a major 

key of making decision and taking action in SOAR. 

 

 

 

Fig. 1: The architecture of SOAR cognitive architecture
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Once an operator is selected, it is applied and causes 

persistent changes in working memory. The other 

memories monitor some of the reserved areas of working 

memory. The changes that occur in working memory can 
either initiate retrievals from semantic/episodic memory 

or initiate actions in the environment. Soar has a couple 

of learning mechanisms (Zwaan and Radvansky, 1998) 

correlated by procedural memory that consists of 

chunking and reinforcement learning. Semantic memory 

store general facts, whereas episodic memory store 

snapshots of working memory.  

Method 

Integrated Architecture of FCSP and SOAR. 

The design goals of integrated FCSP and SOAR are 

depicted below in Fig. 2. The Fig. 2 has two majors 

sections which are used for solving 8-Queens problem. 

First, the FCSP is applied to those variables that have 

domain independent priority values. The heuristic search 

approach is applied using backtracking in SOAR. 
Second, is to focus on how SOAR internal function 

procedure is represented to select the priority value of 

the variable (Cassimatis, 2006). The knowledge of 

solving problem is expressed in integrated architecture of 

SOAR and FCSP which consists of 1. Soar Core 2. Soar 

Agent 3. External Agent. 

Soar Core 

Soar Core represents a fixed set of computations 

which efficiently bring large forms of symbolic 

knowledge to perform different tasks using various 

techniques. The core part consists of several 

computational mechanisms such as working memory 

(state representation); long-term memory (Laird, 2012) 
(defines functioning in the form of procedural, semantic 

and episodic memory); decision procedures (provides a 

link to interact between working and long-term memory) 

and learning procedure. 

Soar Agent 

An agent needs some steps of instruction to solve a 

problem. The instructions are encoded in the form of 

production rules which performed in long-term memory 

where other memories are contributed in the preparation 

of production rules (Mohan and Laird, 2014).  

These rules have general criteria for usage: First, an 

operator is proposed then a defined operator is selected 

and lastly the selected operator is applied. Operators 

perform specific actions to aid in decision making. The 

decision-making procedure is accomplished by using 

heuristic approach which is summarized in Fig. 3. 

These heuristics steps help in maintaining decision 

cycle through which all Problem Space Computational 

Model (PSCM) (Laird, 2012) functions as depicted in 

Fig. 4 will perform their tasks. 

These functions include State Elaborations, Operator 

Proposal, Operator Evaluation, Operator Selection, 

Operator Elaboration and Operator Applications. The 

functionality performed by each function is considered 

as SOAR’s process cycle. 

 

 
 

Fig. 2: Integrated architecture FCSP-SOAR 
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Fig. 3: Heuristic approach to solve problem 
 

 
 

Fig. 4: Soar process cycle 
Table 1: Pattern rules and related heuristics 

Name Pattern rules Heuristics 
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DEG Di, several chances to move according to constraint are linked to variable. The largest Di value variable is selected. 
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Operator Selection and Operator Application in Fig. 4. 
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(Langley et al., 2009) after an impasse. Operator 
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in other functions. However, operator application is 
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retrieve structures from semantic memory or episodic 

memory as well as store structures to semantic memory. 

External Agent 

The process which is responsible for operating 

production rules is termed as External Agent. The 

production rules are most important to select which 

heuristic will come and perform an action. 

Table 1 describes two heuristics that are considered 

to evaluate a pattern that places queen on the board with 

8-Queen problem constraints: 

 

 Degree (DEG)-Degree is a value that defines how 

many choices are available for a queen to be 

placed at a location 

 Maximum Priority Value (MPV) -Priority is a 

value that defines the priority of a cell where 
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Queen will select the cell that has the highest priority 

value and is within the degree of queen movement. 

From the pattern an agent is able to make decision 

for selecting a particular variable and its value for 

solving the problem. 

The Relationship between Soar and External Agent 

The SOAR agent act as the brains and external agent 

act as body. External agent performs the task requested 

by SOAR agent and after task execution external 
agent transfers knowledge and state description back 

to SOAR agent. The SOAR agent (Gluck and Laird, 

2019) maintains a binary graph of constraints known as 

constraint graph in working memory. This graph helps in 

keeping status of changing state. This relationship also 

maintains the number of levels where both agents can 

share more intrinsic information and can improve their 

functionality to solve the problem. 

Level 0: Architecture retrieves relevant knowledge 

(Perceiving and comprehending the knowledge). 

A Soar agent at the level-0 (knowledge level) consists of 

an object that can connect with an environment, knowledge 
and a set of goals. The Principle of rationality (Lee and 

Anderson, 2001) determines interaction behavior. With the 

existence of knowledge level; the quality and content of 

experience are provided to soar agents and they, in turn, 

select an action for the agent. To setup, a better relationship 

between the external agent/world and soar agent; the 

knowledge has to be more general. Generality is defined by 

the interaction between the knowledge level system and the 

environment. The interaction decides the range of goals an 

agent can achieve and the scope of knowledge that an agent 

can acquire and use. 

Level 1: Decision Making 

Decision making is a critical component in solving 

the problem. It is dependent on problem space. Decisions 

are required to change the state of a problem using the 

operator. The procedure of decision making (Walsh et al., 

2013) involves the parts of working memory, which are 

elaborated by parallel access of long-term memory to 

exhaustion (Laird et al., 2017). The elaboration process 

determines the changing behavior in existing state to 
new state. This procedure repeats till it finds the solution 

of problem space or finds the sub-problem/subgoal of a 

problem. Otherwise backtrack is applied. 

Backtracking is a procedure where the variables of a 

problem are initiated linearly and the validity of 

instantiated constraints associated with variables is 

checked. If any variable breaks one or any condition 

related to specified restrictions, then backtracking is 

done to the various recent mentioned variable. The 

backtracking performs a depth-first search of the 

potential FCSP solutions typically. The run-time 

complexity of backtracking is better. Sometimes the 

complexity of nontrivial problems is exponential because 

the backtracking standard bears from thrashing; i.e., 

exploration in several elements of the space continues 

breaking for the same reasons. To improve this kind of 
situation (Genesereth et al., 2005), a variable can be ordered 

with a value known as priority value. This will eliminate 

inconsistent node is eliminated from the domains. 

In 8-Queens problem, an agent may traverse constant 

search for the solution that can lead to thrashing 

(Hinrichs and Forbus, 2013). Thrashing means searching 

similar sub optimal solutions again and again. To 

minimize thrashing, locations must be ascertained with 

some priority value, so that highest priority value get 

selected. Figure 5 describes the sequential instantiation 

of queens on board location with task parameters that 
generate desired sub-state after satisfying the constraints. 

These constraints (Mohan et al., 2012) are represented as 

production rules in Soar procedural memory which helps 

SOAR agent to make solution-oriented decisions. 

If the constraints are not satisfied and queen has 

chosen minimum priority location, then algorithm 

recommends the procedure of Backtracking in Fig. 6. 

The backtracking algorithm in Fig. 6 is modeled on a 

recursive depth-first search. The preference function is the 

critical function which holds the selection of location based 

on priority value. The above-mentioned algorithms help in 

setting constraints and well get integrated with Soar. 

Level 2: Subgoaling Processing 

Subgoaling level is related to the decision-making 

procedure. When decision-making procedure is 

incompetent to make a selection of solution then an 

impasse state occurs in problem-solving. An impasse 

state suggests that the system is not capable to know how 

to proceed further to solve a problem. To resolve an 

impasse condition system automatically generate sub- 

goal state. The impasses and thus their sub-goals are 
varied from problem to problem.  

For subgoaling (Walsh and Gluck, 2014), SOAR 

provides the capability and knowledge to an 

architecture for resolving impasse conditions. This is 

done using a look ahead algorithm. The same 

approach is applied in FCSP-Soar. 

Level 3: Pattern Measure Evaluation 

FCSP-SOAR uses three parameters to measure the 

pattern between location on board and their priority 

value. The first is a simple calculation that provides 

priority value preference rules for selecting further tasks. 
This preference rule selects MPV. The procedure 

requires circulation series (looping) to acquire a solution.  

Second, if a pattern evaluation is directed towards sub-

state domain failure, then it gets rejected. Third, if no 

match is found in the sub-state, then pattern evaluation 

considered as a “failure” state. 
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Fig. 5: Algorithm for minimum thrashing 

 

 
 

Fig. 6: Algorithm for backtrack

Algorithm 1: MINIMUM-THRASHING FOR 8-

QUEENS 

function MINIMUM-THRASHING (x, d, n-max-
steps) returns a solution or failure 

inputs: x as location on board, d as domain, Pr 
represents priority value, n-max-steps as the 

maximum steps, a queen can perform 
 

1. current_val_queen  an initial position of 
queen on board 

2. for i = 1 to n-max-steps do 
3. if current_val_queen is the solution then 

return current_val_queen 

4. Pr(x)  a next row is selected from d, 

domain 

5. MPV  Pr(x) of current queen location is 

checked with other location variable of row, 
the maximum priority value MPV for Pr(x) 

is selected that minimizes THRASHING 
(Pr(x),v, current, csp) 

6. set Pr(x) = MPV maximum value in 
current_val_queen 

 

else return failure or BACKTRACK 

function BACKTRACK-SEARCH (d, x) returns a 

solution or failure 
 return BACKTRACK ({}, d, x) 

function BACKTRACK (state, d, x) returns a solution, 
or failure 

1. If state is completing, then return state 
2. Preference(x) select move-sequence (d, x) 

3. for each value in domain (Preference(x), state, d, 

x) do 
3.1 if value is maximum priority with state then 

3.2 add {Preference(x) = value} to stat 
 update prev(x) = {preference(x), value} 

 backtrack is performed 
 else if value is minimum priority then 

 update preference(x) = value 
 add preference to state 

 result  BACKTRACK(state, d, preference (x)). 

 if result  failure then 

 return result 
4. remove {Pr(x) = value} and preference from 

state 
 add {Pr(x) = old value} from visited. 

5. return failure 
 

 

Algorithm 2: BACKTRACK_8-QUEENS 
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With these pattern measure evaluations, the FCSP-

SOAR determines the learning production rules that 

helps in making an agent learn and practice the 

specific task. This approach creates small chunks of 

learning. Resulting chunks have their own set of 

conditions, either unary or binary conditions, 

composed in operators. 

Results and Discussion 

The above-mentioned integrated architecture and 

number of levels are used for 8-Queens problem as 

shown in Fig. 7 and describes as follows: 

At level 0; an integrated architecture delivers 

knowledge related to the 8-queens problem which 

demonstrates that an external agent can interact with the 

SOAR agent and access different types of available 

memories (Gluck and Laird, 2019).  
To define production rules, procedural memory is 

utilized and provides enough knowledge to apply some 

decision procedure to calculate priority value for the 

movement of queen; and update the working memory with 

the variable pattern measure and value pattern measure. 

Throughout this procedure, backtracking algorithms come 
into play to determine the solution of the problem. 

The implementation of the 8-Queens problem is 

based on PSCM functions and the creation rules of states 

that are stored in SOAR’s long-term memory. 

At level- 1, for decision making, several rules, such 

as, preference rules, elaboration rules, operator selection 

rules that aid SOAR decision making. These learned rules 

are passed by using concept of transfer of learning. This 
concept helps in avoiding unnecessary impasse state. The 

results of heuristic and learned rules of an agent is based on 

two computational factors, described below. 

Factor 1: Analysis by Learning and Transfer of 

Learning 

The transfer of learning is based on the number of 
decisions that are required to solve 8-Queens problem 

where the number of decisions depends on 64(8*8 board-

cells) variables that represents each cell on board and 4 

constraints C1, C2, C3, C4 mentioned in (Introduction). 

According to constraints, the SOAR agent required 38 

production rules to place queens at their desired locations. 

Some of the test cases mentioned in Table 2, we applied to 

evaluate the performance of an agent.  

Figure 8, if we look at the 8-queens bars at case-2, 

the test case represents hardcoded value and variable, 

where each board location value is hard-coded with a 

specific constant that defines the priority. The result is 
decreased number of decisions by 41% in comparison 

with the random choice of pattern measures used in test 

case 1. The subgoaling and learning feature were 

selected for architecture to generate chunks at an average 

of 60 chunks/subgoaling. 

 

 

 
Fig. 7: Representation of 8-queens in FCSP-SOAR 

Soar core 

Long term memory 

Procedural memory 

Constraint propagation Select variable 

pattern 

Select value 

pattern 
Backtrack 

Decision procedure 

Comparision is conducted via elaboration rules 

Pr(C) > Pr (C') 

M
at

ch
 

C
h

an
g

es
 

FCHS phase 

Working memory 

Variable pattern measure Value pattern measure 

External agent communicates 

with soar agent via Right Hand 

Side (RHS) in terms of action. 

External agent 

Constraint graph 

tepresentation 

Constraint propagation 

Backtrack 

Priority value calculations 

Variable/value selection 

Substate creation 

Semantic memory Episodic memory 

Condition Action 

Soar agent 

Intialization of board variables (consist 

of rows and cols) and 8 queens 

General facts 

and mental 

ability 

Past experience 

snapshots 

First queen is placed 

at 1st row and 1st 
column. 

Place other queen in 
next row where 

position variable 

value is not 0. 

Update the 
same position 
value variable 

as 1 and all 
other position 
value variable 

in same row, col 
and diagonal 
marked as 0. 



Neha Rajan and Sunderrajan Srinivasan / Journal of Computer Science 2020, 16 (5): 642.650 

DOI: 10.3844/jcssp.2020.642.650 

 

649 

Table 2: Test cases 

S.no Test cases Description 

1 Random Choice Random variables and values are selected (indifferent). 
2 Hard- Coded Choice Explicitly coded Priority in term of MPV, number of degrees in terms of DEG variable are selected. 
3 Internal received chunks Problem runs working memory and acquire chunks. 

 

 
 
Fig 8: Decisions represented as a Sub-goaling/Learning Test 

Cases 

 

 
 
Fig. 9: Comparing of decisions defined as problem complexity 

Case 3 explains the way to improve the problem-

solving technique that uses the 64 (8*8 chessboard) 

internal decision cycles. These cycles include 

backtracking, failure and goal-oriented rules to acquire 

memorized regulations. These rules are then correlated with 

hard-coded heuristics mentioned in case 2. The end result is 

21% decrease in conclusion sequences. From case 3 results, 
it can be noted that Soar applied both aggregate range of 

variables and value patterns to ensure a solution.  

Factor 2: Analysis by Competence 

Another factor explored as the analysis of 

competence which describes the performance of stored 

knowledge depicted in Fig. 9. The performance is 

determined in terms of complexity of production rules. 

The firing of production rules satisfies the constraints of 

the problem and checking learned knowledge- all these 
tasks are measured by problem complexity under the 

decision cycles in Fig. 9. 

The stored knowledge is utilized many times for 

random selection. The related chunks, created by random 

selections, increase in complexity in comparison to 

hardcoded test cases. This means that the agent 

consumes maximum time to understand the learned 

knowledge in comparison with hardcoded values.  

Conclusion and Future Work 

The unification behavior of FCSP-SOAR provides 

the representation and handling constraints; involves the 

concept of providing value as preference associated with 

prioritized constraints. The concept of FCSP, a subpart 

of CSPs, offers a range of combinatorial problems to 

solve problems like 8-Queens.  

This specific form of FCSP constraint-based 

reasoning introduced a SOAR to solve the 8-Queens 

problem using a generalized set of production rules. The 

rules include the reasoning of putting together constraint 

propagation, rule chaining and backtracking.  

The production rules are based on an if-then rule 

which describes the capability of Soar architecture to 

solve any problem. These production rules further learned 

by an agent while solving the problem. The integration of 

FCSP is not that hard to implement as the same production 

rules are associated with some constraint specific value 

which further expands the problem search space. When 

associated priority values are satisfied and a specific 

solution is got, then the problem is solved otherwise 

backtracking algorithm is used. 
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Future work is to improvise the networks of 

constraints so that subgoaling can be satisfied and related 

chunks can be learned. These learned chunks provide 

better efficiency in satisfying a constraint network, 
which are also known as macro-constraint. The 

production rules among preference rules and priority 

values will define for the macro constraint that can be 

utilized for any combinatorial problem. This behavior 

can improve the decision procedure’s efficiency and can 

make an agent intelligent to solve similar problems or 

repeated problems.  
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