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Abstract: Cryptography is one of the most important applications and 

widely used in our life especially in the information security that needed by 

many government institutions, banks, communications and others to keep 

data over internet and other transportations that it is ensure safety of 

transfers between the sender and the recipient. The most important system 

in cryptography is public key cryptography and the mostly used is the 

elliptic curves cryptosystem, because of it is very efficient and secure and 

difficult to solve the discrete logarithm problem and find the secret key. In 

this study a new method is introduced using the Menezes-Vanstone Elliptic 

Curve Cryptosystem (MVECC) for data based on quadratic Bézier curve 

techniques. The purpose of this proposal is to increase the security of this 

cryptosystem. We will apply this proposed method to all measurements of 

National Institute of Standards and Technology (NIST) tests and running 

time and compared it with the original method.  

 

Keywords: Elliptic Curve Cryptosystem, Menezes-Vanstone Elliptic 

Curve, Bézier Curve, Encryption, Decryption, ASCII 

 

Introduction 

It is known that cryptography is one of the mathematical 

methods that ensure security of information 

communications, it contains algorithms and protocols 

which used to help it to do that, so cryptography it is very 

important for the security of communications between the 

sender and the recipient. Therefore, many researchers 

specialists in this approach developed the methods that used 

in cryptography to increase level of security of information 

exchange and reducing attacks, there are some research that 

has been using Bézier curves techniques like in (Srividya 

and Akhila, 2014) use quartic Bézier curve to improve 

encryption and decryption of data and to lower 

computational complexity which is depend on Galois field 

multiplication table. Abdul Wahab and Satter Jaber (2016) 

used quadratic Bézier curve in chebyshev to improvement 

NTRU and DES algorithm and also produce protocol 

depended on PGP behavior. Improve encryption algorithm 

for secure digital image depend on the scrambling the 

pixel's position and changing the gray value of image for 

pixel's image by using chaotic map and Bernstein from 

Bézier curve (El-Latif et al., 2011). 

In this work, the proposition uses the Menezes-

Vanstone Elliptic Curve Cryptosystem (MVECC) based 

on quadratic Bézier curve for encryption and decryption 

that depend on Bézier's point, the parameters of t in the 

interval, [0,1] the key and point of message. This 

proposed uses the ASCII code values to represent each 

characters of the text. 
This paper is organized as follows: Section 2 a Basic 

concepts of Quadratic Bézier Curve (QBC) and Elliptic 
Curve Cryptosystem (ECC), section 3 the proposed 
cryptography method using Menezes-Vanstone Elliptic 
Curve Cryptosystem and quadratic Bézier Curve, section 4 
the implementation of example for proposed method, 
section 5 discussion and results of the comparison between 
the proposed method and the Original Method of Menezes- 
Vanstone Elliptic curve Cryptosystem and section 6 the 
conclusion and the advantages of the proposed method. 

Basic Concepts of Quadratic Bézier Curve 

and Elliptic Curve Cryptosystem 

Bézier curve it is one of the most important 
mathematical representations of curves and surfaces used 
in computer graphics and design forms. Therefore, in 
1958 - 1960 was it the original development of Bézier 
curve in the cars manufacture by two French scientists 
Pierre Bézier and Paul de Casteljau. Bézier curves is 
polynomial curves and it is popularity used because it 
possess a number of mathematical properties which is 
easy to manipulation and analysis. A Bézier curve of 
degree n is specified by a sequence of n+1 points which 
are called the control points (Marsh, 1999). 
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Quadratic Bézier Curve (QBC) 

Quadratic Bézier curve is described by three points 

P°, P1 and P2. The first point and the third point are 

"anchors". The second point affect the shape of the 

curve. The generated curve starts at the first point P° 

going toward the second point P1 and it settles at the 

third point P2. Therefore, this curve will not pass through 

the second point P1 (Armstrong, 2005). 

To development of the quadratic Bézier curve let three 

control points P°, P1 and P2 with parameter t, which it a 

number between in the interval (0,1) (Joy Kenneth, 2000). 

** P1
(1) be a point on the piece 

1P P
and defined by 

(Fig. 1): 
 

 (1)

1 11P t P t P    (1) 

 

 
 
Fig. 1: representation of  P1

(1) point. 
 

** P2
(2) be a point on the piece

1 2P P  and defined by 

(Fig. 2): 
 

 (1)

2 1 21P t P t P    (2) 

 

 
 
Fig. 2:  representation of  P2

(1) point. 
 

** P2
(2) be a point on the piece (1) (1)

1 2P P and defined by 

(Fig. 3): 
 

   (2) (1) (1)

2 1 21P t P t P    (3) 

 
 

Fig. 3: representation of  P2
(2) point on curve. 

 

** Define B(t) = P2
(2) 

 

Each of this points P1
(1), P2

(2) and P2
(2) are a function of 

the parameter t and P2
(2) can be equated with B(t) since it is 

a point of the curve that agree upon to the parameter value t 

for developing the equation of the curve. In this way B(t) 

become the equation of Bézier curve: 

 

   

     

(2)

2

(1) (1)

1 21

B t P t

t P t t P t



  
 

 

Since, P1
(1)(t) = (1-t)P° + t P1 and P2

(1)(t) = (1-t)P1+t P2. 

Then: 

 

 

       

     

   

1 1 2

2 2

1 1 2

2 2

1 2

1 1 1 1

1 1 1

1 2 1

B t t t P t P t P t P

t P t t P t t P t P

t P t t P t P







            

      

    

 (4) 

 

This is quadratic polynomial (Quadratic Bézier Curve): 

 

     
2

2

1 1 1 1 1 2 1 31 2 1x t t x t t x t x      (5) 

 

     
2

2

2 2 1 2 2 2 2 31 2 1y t t y t t y t y      (6) 

 

0  t1, t2  1, where, (x, y) are the control points. 

Elliptic Curves Cryptosystem (ECC) 

Elliptic curves was use in cryptography by Neal Koblitz 

in 1987 (Kobliz, 1987) and Miller (1986). Since then, many 

research papers have been published in this approach about 

security and efficient of elliptic curves, where elliptic curve 

systems have begun to receive wide agreement and have 

been used by private companies to keep their security 

products (Hankerson et al., 2004). There are another type of 

cryptosystem is called the public key cryptosystem, or 

asymmetric cryptosystem. The most famous cryptosystems 

P1 

P1
(1) 

P° 

P2 

P1 

P1
(1) 

P° 

P2 

P2
(1) 

P1 

P1
(1) 

P° 

P2 

P2
(2) P2

(1) 

Point on 

the curve 
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that used in public key cryptography are known as RSA and 

ECC and they provides the same level of security but ECC 

deals with shorter keys than keys that used in RSA it about 

(160-256 bit vs. 1024-3072 bit). ECC is based on the 

discrete logarithm problem and can be realized in EC 

protocols like Diffie- Hellman key exchange using elliptic 

curves. ECC has advantages like few of computations and 

(short signatures and keys) over RSA and Discrete 

Logarithm (DL) schemes. The elliptic curves are more 

associated with the mathematical than those of RSA and 

DL schemes (Paar and Pelzl, 2010). There are 

cryptosystems based on elliptic curve cryptography like 

ElGamal elliptic curve cryptosystem and Menezes-

Vanstone elliptic curve cryptosystem and more. Menezes- 

Vanstone Elliptic Curve Cryptosystem (MVECC) was one 

of a famous methods that used ECC and gave security for 

sender and recipient data (Menezes and Vanstone, 1993). 

Definition 2.2.1 

An elliptic curve E over a field Fp is defined by an 

equation: 

 
2 3: modE y x ax b p    (7) 

 

If p is an odd prime, then a and b shall satisfy (4a3 + 

27b2  0) mod p in Fp and every point P = (xP, yP) on E 

(other than the point O) in Fp (Mogollon, 2007). 

Operations on Elliptic Curve 

There are many arithmetic operations that used in 

Elliptic curve cryptosystems schemes as studied in 

(Stallings, 2017): 

Point Addition 

Let P = (xP, yP) and Q = (xQ, yQ) such that P  -Q, are 

two points lie on an elliptic curve E defined the Equation 

(1). Then the sum R = P + Q = (xR, yR) is determined by 

the following: 

 

Q P

Q P

y y

x x






 (8) 

 

 2 modR P Qx x x p    (9) 

 

  modR P R Py x x y p   
 

 (10) 

 

Point Doubling 

Let P = (xP, yP) be a point lies on E. Adding the point 

P to itself: 

 

2P P P R    (11) 

where: 

 
23

2

P

P

x a

y



 (12) 

 

 2 2 modR Px x p   (13) 

 

  modR P R Py x x y p   
 

 (14) 

 

Multiplication 

Let k is an integer and P = (x1, y1) is a point lies on E. 

Is defined as repeated addition: 

 

kP P P P     (15) 

 

For example, the scalar multiplication 9P can be 

calculated by the following expression: 

 

  9 2 2 2 .P P P   

 

Negative of the Point 

Let, P = (x, y) then the negative of the point P is -P = 

(x, -y) where, P + (-P) = P – P = 0.  

Menezes-Vanstone Elliptic Curve Cryptosystem 

(MVECC) 

This cryptosystem has no analogue for Discrete 

Logarithm Problem (DLP), this means that it does not 

depend on discrete logarithm problem like ElGamal 

cryptosystems. Once one has a curve and a point on it, 

one is sure to succeed in embedding data into the 

system. That is not true for the elliptic curve analogue 

of DLP, it is a variant of the ElGamal analogue      

(Sadiq and Kadhim, 2009). 

Therefore, in this cryptosystem the sender (Alice) 

and the recipient (Bob) are agree upon publicly an 

elliptic curve E over finite field Fp and abase point B 

on E. Bob chooses a secret integer d such that (1 < d < 

N), where N is the number of points of E and he 

computes and publishes his public key the point QB = 

dB Alice wants to send the message M = (m1, m2) to 

Bob, first she will choose a private random positive 

integer e such that (1 < e < N) then uses Bob's public 

key to compute QA = eQB = (k1, k2) and encrypt her 

message by compute: 

 

c1 = m1 * k1 mod p 

c2 = m2 * k2 mod p, 

 

where, C = (c1, c2) is cipertext: 

 

Send, {(c1, c2), eB} to Bob. 
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When Bob decrypts the ciphertext C = (c1, c2) he 

needs first to compute: 

 

   1 2,d eB k k
 

 

Then he computes the following: 

 

m1 = c1 * k1
1 mod p 

m2 = c2 * k2
1 mod p to get message 

M = (m1, m2) (Al-Saffar et al., 2013) 

 

The Proposed Method 

The modification of Menezes-Vanstone Elliptic 

curve cryptosystem MVECC has been produced in 

this section. This modification making the system has 

high level of security and more efficient than the 

original cryptosystem. This proposed based on the 

quadratic Bézier curve QBC technique (depend on the 

Equations (5) and (6)). 

Assume that Alice and Bob want to communicate and 

exchange messages with each other using modified 

MVECC over insecure channel. 

Firstly, they should agree on publicly an elliptic 

curve E over finite field Fp (E(Fp)) with equation: 

 

E: y2 = x3 + ax + b mod p, 

 

such that a and b satisfy the condition c: 

 

(4a3 + 27b2  0) mod p 

 

and abase point B on E. 

Secondly, they agree on secretly Bézier point 

(control point) BP = (x, y) and the parameters t = (t1, 

t2)  [0,1] mod p. 

Bob chooses a private key d then computes and 

publish his public key by QB = dB. 

Alice also chooses a secret random positive integer e 

and uses Bob's public key to compute QA = eQB = (k1, k2) 

and computes eB. 

Encryption part (Alice): Wants to send the message 

M to Bob, she must first convert each character in the 

message M to ASCII value according to Table 1, by take 

every two characters (char1, char2) in the message M and 

separate them to represented as a point then convert each 

of them into ASCII value (M1, M2). 

Then she computes the ciphertext using Bézier 

point BP = (x, y) and t = (t1, t2) [0,1] mod p and the 

key QA = (k1, k2) by: 

 

   
2

2

1 1 1 1 1 1 11 2 1 modc x t k t t M t p     
  

 

 

   
2

2

2 2 2 2 2 2 21 2 1 modc y t k t t M t p     
  

 

 

Send, {(c1, c2), eB} to Bob. 

Decryption part (Bob): Receives the ciphertext, he 

start to compute d(eB) = (k1, k2) = QA and then decrypts 

the ciphertext using Bézier point BP = (x, y), t = (t1, t2) 

[0,1] mod p and QA = (k1, k2) as following: 

 

     

     

2 1
2

1 1 1 1 1 1 1

2 1
2

2 2 2 2 2 2 2

1 2 1 . mod

1 2 1 . mod

M c x t k t t t p

M c y t k t t t p





     
  

     
    

 

Then converts the ASCII value (M1, M2) into 

characters (char1, char2) and rewrite to (char1 char2) then 

he get the original characters. By same way for each two 

characters in the message M. 

 
Table 1: ASCII values of each printable characters 

Space 32 0 48 @ 64 P 80  ` 96 p 112 

! 33 1 49 A 65 Q 81 a 97 q 113 

" 34 2 50 B 66 R 82 b 98 r 114 

# 35 3 51 C 67 S 83 c 99 s 115 

$ 36 4 52 D 68 T 84 d 100 t 116 

% 37 5 53 E 69 U 85 e 101 u 117 

& 38 6 54 F 70 V 86 f 102 v 118 

' 39 7 55 G 71 W 87 g 103 w 119 

( 40 8 56 H 72 X 88 h 104 x 120 

) 41 9 57 I 73 Y 89 i 105 y 121 

* 42 : 58 J 74 Z 90 j 106 z 122 

+ 43 ; 59 K 75 [ 91 k 107 { 123 

, 44 > 60 L 76 \ 92 l 108 | 124 

- 45 = 61 M 77 ] 93 m 109 } 125 

. 46 < 62 N 78 ^ 94 n 110 ~ 126 

/ 47 ? 63 O 79 _ 95 o 111 del 127 
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Implementation Example for Proposed 

Method 

In this section, the implement the proposed method is 

studied in the following simple example: 

Alice and Bob Agree Upon 

 

1) Publicly: An Elliptic Curve E over F3023 and 

(E(F3023)) and B = (873, 1491)  E, E: y2 = x3 + 1x + 

2825 mod 3023, where, a = 1, b = 2825 and p = 

3023 satisfy the condition c: 4a3 + 27b2 = 4(13) + 

27(28252) = 21546879 mod 3023 = 462  0. 

2) Secretly: Bézier point BP = (220, 260) and t = (0.75, 

0.55) [0,1] mod 3023 and they compute: 

 

 
 

 

1 175 100 ,55 100 mod3023

75 393,55 393 mod3023

2268,454

t

t

t

   

  


 

 

Key Generation 

1) Bob: 

Selects a private key d = 1465 and computes 

public key QB = dB = 1465(873, 1491) = (1731, 2744) 

2) Alice: 

Chooses a secret random positive integer e = 1280, 

uses Bob's public key to compute: QA = eQB = 1280 

(1731, 2744) = (1062, 1570) = (k1, k2) 

 

Encryption Part (Alice) 

1) Wants to send the plaintext "Cryptography" and 

takes two characters (Cr), (yp), (to), (gr), (ap) and 

(hy) separates them as a points: 

 

             

         

, , , , , ,

, , , ,

Cr C r yp y p to t o gr

g r ap a p and hy h y

  

  
 

 

2) Converts each of them into ASCII values to 

become: 

 

           (C, r) → (67, 114), (y, p) → (121, 112), 

           (t, o) → (116, 111), (g,  r) → (103, 114),  

          (a, p) → (97, 112), (h, y) → (104, 121). 

 

Encrypts her message (67,114) by compute: 

Uses BP = (220, 260), t = (2268, 454) and QA = 

(1062, 1570) as follows: 

   

    

    

 

   

    

    

2
2

1 1 1 1 1 1 1

2

2

2
2

2 2 2 2 2 2 2

2

2

1 2 1 mod

220 1 2268 2 1062 1 2268
mod3023

2268 67 2268

9445385156 mod3023 2528

1 2 1 mod

260 1 454 2 1570 1 454
mod3023

454 114 454

5689271

c x t k t t M t p

c y t k t t M t p

     
  

   
 
 
 

  

     
  

   
 
 
 

  16 mod3023 1484

 

 

where, C = (2528, 1484) is ciphertext 

3) Computes: eB = 1280(873, 1491) = (1085, 2103) 

4) Sends {C, eB} to Bob 

 

Decryption Part (Bob) 

 

1) Computes d(eB) = 1465(1085, 2103) = (1062, 1570) 

= (k1, k2) = QA 

2) Decrypts the ciphertext C = (2528, 1484) by using 

Bézier point BP = (220, 260), t = (2268, 454) and 

QA = (1062, 1570) by compute: 

 

     

 

   
 

  

     

 

   
 

2 1
2

1 1 1 1 1 1 1

2
1

2

2 1
2

2 2 2 2 2 2 2

2
1

2

1 2 1 . mod

2528 220 1 2268 2
. 2268 mod3023

1062 1 2268 2268

9790023892 2353 mod3023 67

1 2 1 . mod

1484 260 1 454 2
. 454

1570 1 454 454

M c x t k t t t p

M c y t k t t t p









     
  

   
 
  

 

     
  

   
 
  

  

mod3023

592425824 1977 mod3023 114 

 

 

3) Converts from the ASCII values (67, 114) into 

characters (C, r). 

 

4) Rewrites as (C, r) as (Cr). By the same way, for 

each remaining two characters until to get the 

original message 

 

Results and Discussion 

In this section, a comparison between the proposed 

method in this paper and the original method of MVECC 

is done the total running time in seconds to encryption 

and decryption of the message as in Table 2 and this 
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table shows that running time of the proposed method is 

almost the same in the original method for (1000, 3000 

and 5000) characters, but the difference be in one-three 

seconds or the part of millisecond. According to the 

mathematical complexity for the number of operations 

which are used in the processing of encryption and 

decryption in Table 3 shows the proposed method 

possess operations of computational complexity more 

than in the original method and this make it more 

efficient from the original method where used Inv. for 

inverse operation, Mult. For multiplication operation, 

Add for addition operation and Sub for subtraction 

operation. In Table 4 it is done for testing of all the 

measurement of NIST tests between the proposed 

method and the original method. 

We have programmed the two methods of the 

proposed and the original method on Core i3 computer 

with CPU 2.00GHz and RAM 4GB by using MATLAB 

R2018b (9.5.0.944444) 64-bit software to compute the 

running time for encryption and decryption of the 

messages with different sizes. 

It is known that in the tests of NIST, the output 

values if it is a great than or equal (0.01) would be 

considered to be random and if it less than (<0.01) 

would be considered to be non-random. In our paper 

was put word "Success" for random and word 

"Failure" for non- random. 

From Table 4, show that the Run test have been 

success for the original method and the proposed 

method, but in this test it we found that the proposed 

method has higher random than the original method and 

also at in (Random excursion variant test, Random 

excursion test, Non overlapping template matching test, 

Frequency (Monobit) test, Linear complexity test and 

Discrete Fourier transform test) all of them show that the 

proposed method have higher random than the original 

method. While, in the tests (Serial test, Overlapping 

template matching test, Maurer’s universal statistical 

test, The longest run of ones in a block test, Frequency 

test within a Block test, Cumulative sums test, 

Approximate Entropy test and Binary Matrix Rank test) 

show the original method was a failure because all of 

tests for it have values less than (0.01) and at in the 

proposed method was success because values of it was 

great than (0.01). 

 
Table 2: The time implementation in encryption and decryption for the proposed method and the original method 

 The original method of MVECC The proposed method 

 ------------------------------------------------------------------ --------------------------------------------------------------- 

Text characters Encryption time/seconds Decryption time/seconds Encryption time/seconds Decryption time/seconds 

1000-bit 16.9303 4.2559 16.9943 5.2962 

3000-bit 59.4118 15.246 59.5675 18.8306 

5000-bit 85.1119 22.207 85.3577 26.5149 

 
Table 3: The required operations for the proposed and the original methods 

The original method of MVECC  The proposed method 

------------------------------------------------------------ -------------------------------------------------------------------------- 

Encryption Decryption Encryption Decryption 

2Mult. 2Inv. + 2Mult. 6Mult.+ 4Add+4Sub 6Mult.+ 8Sub +2Inv. 

 
Table 4: The randomness tests of NIST for testing a 1000-bit message for the proposed method and the original method 

 Tests The original method of MVECC Results The proposed method Results 

1 Run test 0.12510758813168163 Success 0.8839328393793418 Success 

2 Serial test 0.0005123514118502457 Failure 0.17289182407808948 Success 

3 Random excursion variant test 0.8551321405847059 Success 0.9211265554360596 Success 

4 random excursion test 0.9991851051973619 Success 0.9995000204954214 Success 

5 Overlapping template matching test 0.0016233947920264553 Failure 0.9063677327153351 Success 

6 Non overlapping template matching test 0.24185444190641325 Success 0.4298705921548936 Success 

7 Frequency (Monobit) test 0.011817618288016488 Success 0.17210447783471447 Success 

8 Maurer’s universal statistical test 8.07147831032501e -11 Failure 0.5135537962284511 Success 

9 The longest run of ones in a block test 0.008274192337445328 Failure 0.3917392658576128 Success 

10 Linear complexity test 0.016703740699514164 Success 0.9429964032844659 Success 

11 Frequency test within a Block test 0.0012353209554503248 Failure 0.802503853550373 Success 

12 Discrete fourier transform test 0.2641550563920085 Success 0.7822356899775442 Success 

13 Cumulative sums test 0.006625202552503318 Failure 0.12937702786808813 Success 

14 Approximate entropy test 0.004863219563516038 Failure 0.1870431824257016 Success 

15 Binary matrix rank test 3.533009372110865e-08 Failure 0.990123117669481 Success 
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So, all tests in Table 4 show that the proposed 

method was success to had a higher random than the 

original method. 

Robustness of Proposed Method 

Assume that Eve is the attacker and she 

knowledgeable about the present algorithm. She can 

gain access and read the ciphertext C = (c1, c2) and eB, 

the parameters that available to her is the elliptic 

curve over finite field Fp and abase point B and the 

public key of Bob QB, because these chosen in 

publicly. Eve can't arrives to the secret random 

number e for Alice and private key d for Bob and also 

she can't arrives to BP = (x, y) and t = (t1, t2) [0,1] 

mod p because this points chosen in secretly, only 

Alice and Bob knows them. 

Therefore, she will have difficulty for breaking 

ciphertext C = (c1, c2) because she can't get the following 

parameters {e, d, BP and t} and to computes and find the 

session keys (the keys who use to processing in the 

decryption to find the original message) using d or e and 

also BP and t (which are also has been consider as the 

keys) because these parameters are important for attacker 

to processing and find the original message. The 

parameters required to break the ciphertext are more than 

the original method. 

Previously, in the original method of MVECC the 

parameters which can't get it was {e, d}. Therefore, the 

proposed method has more secure than the original method. 

Finally, we can say that this proposed method 

showed an increase in the randomness of the output than 

in the original method due to the effect of BP = (x, y) and 

t = (t1, t2) [0,1] mod p on the encryption process and 

the processing technique which is used on it as shown 

the NIST measures in Table 4. 

Analysis of the Proposed Method 

The complexity of ECC (the difficulty of breaking it) 

is actually equivalent to solving the discrete logarithm 

problem. Finding the discrete logarithm of one element 

in EC does not help find the logarithm of any other 

element. Let E denote order of E and let r be the largest 

prime factor E of. Then the better known algorithms for 

finding discrete logarithms in E have complexity 

0 r
n

 
 
 

, such that n is the number of processors 

working on the problem. Thus, the mathematical 

complexity which is based on the largest prime factor 

E of and on the number of operations which are used 

during the processing of encryption and decryption 

(Al-Saffar et al., 2013). 

So, we will discuss analysis of the proposed method 

according to the mathematical complexity compared 

with the original method as follow. 

The proposed method is more efficient than the original 

method of MVECC, because: 

 

1) In proposed method: In the encryption scheme there 

are six multiplication operations {x(1-t1)2,2k1(1-t1)t1, 

M1t1
2, y(1-t2)t2 and M2t2

2}, four addition operations 

and four subtraction operations. While in decryption 

scheme there are needs to compute two inverse 

operations for {t1
2 and t2

1} and six multiplication 

operations {x(1-t1)2,2k1(1-t1)t1, y(1-t2)2, [c1-x(1-t1)2-

2k1(1-t1)t1](t1
2)1 and [c2-y(1-t2)2-2k2(1-t2)t2](t2

2)1} 

eight subtraction operations 

2) In original method for MVECC: In the encryption 

scheme there are two multiplication operations {m1k1 

and m2k2}. While in the decryption scheme needs to 

compute two inverse operations for {k1 and k2} and 

two multiplication operations {c1k1
1 and c2k2

1} 
 

According the Time Implementation Between the 

Proposed and the Original Methods 

It is known that cryptosystems often take a little 

different amounts of time to process different inputs, 

so we used different sizes bit of message and take 

same elliptic curve with prime number as in the 

example implementation in section 4 to compared 

between the proposed method and the original method 

with the time required to implement each process. 

We note in the Table 2, that the proposed method is 

longer to decrypt than the original method, where the 

different was almost 1-4 sec. While in encryption the 

proposed method also longer to encrypt, the different 

was in the parts millisecond. Therefore, the different 

between them was very small. 

Conclusion 

In this paper we proposed a new technique to 

improve the Menezes-Vanstone Elliptic Curve 

Cryptosystem MVECC based on Quadratic Bezier Curve 

QBC to made it more secure and efficient, also used the 

ASCII value in this proposed to convert the text to 

numbers by taken every two characters in the message 

and separate them as a point and then convert into ASCII 

values. MVECC is a very important cryptosystem 

because of it the message not necessary be a point from 

the points on elliptic curve or the numbers of 

mathematical operations used it, so we were modified it 

using QBC equation and ASCII values. This proposed 

succeed to obtain a high level of security compared it 

with the original method of MVECC in all testing of the 

NIST according to the results in the Table 4. This 

modification improved the MVECC and make it has a 

higher level of security and the mathematical complexity of 

the proposed method is more efficient than the original 

method because it has more numbers of operations which 
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are used in encryption and decryption processes as 

shown in Table 3. Although the time implementation 

of the proposed method is slow compared to the 

original method as shown in Table 2, we have 

obtained much higher level security than the original 

method. 
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