

 © 2020 Sabah Al-Fedaghi. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

Journal of Computer Science

Original Research Paper

Modeling the Semantics of States and State Machines

Sabah Al-Fedaghi

Department of Computer Engineering, Kuwait University, Kuwait

Article history
Received: 16-06-2020
Revised: 04-07-2020
Accepted: 11-07-2020

Email: Sabah.alfedaghi@ku.edu.kw

Abstract: A system’s behavior is typically specified through models such

as state diagrams that describe how the system should behave. According to

researchers, it is not clear what a state actually represents regarding the

system to be modeled. Standards do not provide adequate definitions of or

sufficient guidance on the use of states. Studies show these inconsistencies
can lead to poor or incomplete specifications, which in turn could result in

project delays or increase the cost of the system design. This paper aims

to establish a precise definition of the notion of states and state

machines, a goal motivated by system modelers’ (e.g., requirement

engineers’) need to understand key concepts and vocabulary such as

states and state machine, which are major behavioral modeling tools

(e.g., in UML). “State” is the main notion of a state machine in which

events drive state changes. This raises questions about the nature of

these state-related notations. The semantics of these concepts is based

on a new modeling methodology called the thinging machine applied to

a number of examples of existing models. The thinging machine

semantics is founded on five elementary actions that divide the static
model into changes/states upon which events are defined.

Keywords: State, State Machine, System Behavior, Conceptual Model,

Modeling Change, Events

Introduction

Abstraction is one of the most important tools used in

computer science (Lewis and Lacher, 2016). The design

and implementation of complex systems cannot be done

without it (Van Otterlo, 2009). Many forms of

abstraction are used in modeling systems and among

them state abstraction is one of the most common. For

example, in chess a complete configuration of black and

white pieces on a board is the chess machine’s state

(Van Otterlo, 2009). State machines (abstract model

consisting of states, input and mapping of input to states)

typically specify how a system should behave. These

notions are essential ingredients in engineering systems

e.g., the (Defence Materiel Organisation, 2011)

Development Guide requires the identification of all of

the applicable states for the solution-classes (Olver and

Ryan, 2014). States provide means to “identify

different sets of performance requirements for

different sets of conditions that will be encountered by

the system” (Space and Missile Systems Center, 2005).

State-centric specifications not only serve to identify

what is to be accomplished but also specify how to

design the system (Wasson, 2005).

Problem

According to (Olver and Ryan, 2014), the various

methodologies for specifying states do not provide a

consistent message or framework of what constitutes a
state. They emphasized, “The wide variation of

definitions [of system states] demonstrates that no

consistent structure exists.” For example, the US

Department of Defense military standards do not

adequately define or provide sufficient guidance in the

use of states (Olver and Ryan, 2014) and the INCOSE

Handbook (INCOSE-TP-2003-002-03.2, 2010) does not

provide a definition for states and modes (Space and

Missile Systems Center, 2005). The (IEEE 610.12-1990,

1990) standards confuse the issue even more by defining

state as “a condition or mode of existence that a system,
component or simulation may be in” (Olver and Ryan,

2014). These inconsistencies can lead to poor or

incomplete specifications, which in turn could result in

project delays or increased cost of system design. While

the notion of state is used to describe a system, “there is

little guidance as to what constitutes a state, which is

made worse by poor usage of the terms” (Olver and

Ryan, 2014). Although there are many different ways in

which state-based specifications can be represented,

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

892

“there are few detailed methodologies that provide a

sound development framework to assist the organization

to develop the state based specification” (Olver and

Ryan, 2014). In the Unified Modeling Language (UML;

Object Management Group, 2015) and hence the System
Modeling Language (SysML; Object Management

Group, 2017), “It is not clear what a state actually

represents regarding the system to be modeled…. Aside

from UML, there are ‘state’ elements or concepts used in

different languages, tools and methods with different

semantics” (Baduel et al., 2018). In academia, the scarce

research investigating the different ways in which states

are defined and used within the systems engineering

disciplines (Olver and Ryan, 2014) does not include

many references (Edwards, 2003; Wasson, 2011).

A Finite State Machine (FSM) is used as a behavioral
model that characterizes behavior using transitions. A

basic FSM defines a set of states, a set of events it

responds to and a set of transitions that map a state and

event to (next) state. FSMs are a major behavioral

modeling tool and part of UML, which is the current

main information systems modeling notation. UML 2

adopted the Statechart model, which is an extension of the

basic FSM model. In UML, all objects have a state. An

object either does or does not exist. If it exists, then it has a

value for each of its attributes. Each possible assignment of

values to attributes is a state. According to (Olver and Ryan,

2014), “The clarity and unambiguous [nature] of the [UML]
FSM model (if done right) is by itself a sufficient

justification for using it.” Nevertheless, the implementation

of FSMs in Object-Oriented (OO) languages “often suffers

from maintenance problems” (van Gurp and Bosch, 1999).

In general, according to (Wagner et al., 2006),

In the scientific world the definition of the state machine

dominates in software application. Discussing hardware

design, scientific papers concentrate on model definitions,

optimization of state number and verification methods.

All those theoretical topics are of little practical

usefulness and do not make too much sense in the design

of an industrial control system. Hence, the knowledge and

the use of state machines in industry are half-hearted and

accompanied by several misunderstandings due to lack of

a sound theoretical basis. (Italics added).

Aim

This paper aims to further the understanding of the

semantics (interpretation of meaning) of states and state

machines. FSM semantics is severely complicated
because formalization takes multiple approaches and several

state machine dialects currently exist, each subtly different

from the others (Crane, 2006). OMG has issued

specifications for UML-based semantics, behavioral

semantics, static semantics and structural semantics (Object

Management Group, 2019). Behavioral semantics provide

“the denotational mapping of appropriate language

elements to a specification of a dynamic behavior resulting

in changes over time to instances in the semantic domain

about which the language is making statements” (Object

Management Group, 2007). In this study, semantics refers
to the meaning of individual constructs (Harel and Rumpe,

2004), such as FSM notions of state, event, change and

machine. The interest in semantics is motivated by the need

of system modelers (e.g., requirement engineers) to know

key concepts and vocabulary of major behavioral modeling

tools (e.g., in UML and SysML).

Focus on Semantics of Individual Constructs

Hatley and Pirbhai (2013) astutely pointed out that

“theoreticians enjoy long philosophical discourses on the
exact meaning of state.” In physics, a state is usually

defined as a system’s complete set of possessed

properties e.g., mass or electric charge; (Craig, 1998).

Olver and Ryan (2014; Baduel et al., 2018) provide

comparisons of the definitions of states given within

various articles in the modeling literature. A sample of

the definitions of state is as follows:

 A static snapshot of the set of metrics or variables

needed to fully describe the system’s capabilities to

perform the system’s function (Baduel et al., 2018)

 The overall condition of a system or a subsystem,

whereby events may be related hierarchically or

exclusively (Edwards, 2003)

 The operational or operating condition of a system

of interest required to safely conduct or continue its

mission (i.e., “state of operation;” Wasson, 2005)

 The events happening within the system at any point

in time (Holt, 2004)

 An exact operating condition of a system

(Jenney et al., 2010)

 A mode or condition of existence for a process or

other system component, as determined by current

circumstances (Hoffer et al., 1996)

Baduel et al. (2018) cross-referenced the various

definitions and established a few characteristics of states:

 States characterize a thing (e.g., a system).

 States relate to a specific kind of information,

operation, readiness, energy, etc.

 States are evaluated or considered at a given time.

For (Balabko and Wegmann, 2003), the state of an object

at an instant in time is the condition of the object that

determines the set of all sequences of actions in which

the object can take part. Action is something that

happens. Thus, the concept of state is intertwined with

the concept of action and these modeling concepts cannot

be considered separately.

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

893

Olver and Ryan’s (2014) survey of existing methods

of state presentation included state charts (Harel, 2007),

phases (re-mission, mission and post mission; (Wasson,

2005), flow graphs (Van Court Hare and Starr, 1967), UML

state machines (OMG, 2007) and temporal logic modelling

(Hoffer et al., 1996). According to (Baduel et al., 2018), the

state definition in UML cannot be used as a definition of the

concept because “to represent the behavior, we have to

define elements characterizing the execution of capabilities

and not the information used to allow it, which seems to be

the goal of the state machines in UML.”

It is difficult to say what an event is in the context of

FSM when reading the literature. The notion of an event

is understood in general from many examples as a

(interior or exterior) trigger of actions in a machine. Most

works in FSM literature do not define the term event
directly. For example, the valuable work in (Avnur,

2015) analyzes many interesting aspects of the FSM. It

includes more than 100 literary occurrences of the

term event. The first appearance of the word event is

on the second page: “The dynamic part of that

behavior definition is done by defining the transitions

from state to state-when it occurs, i.e., what event

causes it.” Then there are numerous mentions of the

word event, which include the following quotes:

 Integrity constraints … that are important or event
critical to the application

 Events are applied or “signaled” to the FSM through

its interface

 An event transitions the system from various states

to a common state

 List of events and their meaning: Delete: Delete the

record, Edit: Prepare the record for editing, etc

In the technical literature of state machines using

models such as UML and SysML, the states are the

stages or situations during a system’s life when it

performs some activity or waits for some event (Engel,

2010). In this description, an event is “an incident

provoking (or not) a reaction of the state machine [and] a

transition is a specification of how a state machine reacts

to an event. It specifies a source state, the event

triggering the transition, the target state, guard and

actions” (Henry, 2010). An action is an operation

executed during the triggering of the transition. A guard

is a Boolean operation that is able to prevent the

triggering of a transition that would otherwise fire.

Of course, the mathematical definition of FSM based

on automata theory provides a clear definition of an

event as an (user or system) input that triggers a change

from one state to another in the FSM. In this study, we

define events in terms of changes which, in turn, are

defined in terms of five elementary actions.

Semantics and FSM

According to (Yan, 2017), FSM is an approach to
bridging the gap between the real world and semantic

space by using events. Henry (2010) articulates that state

machines are “the description of a thing’s lifeline” that

includes different stages. The focus in this study is on

semantics of modeling; that is, the “meanings” of

constructs is a central concern in the paper. This

‘meaning’ will be defined in terms of five basic actions.

Take for example the FSM presented in (Clayton,

2018) that involves designing a shopping cart

encapsulated in an Order entity. The initial state is

‘creating’; in this state, the customer adds items to the

order. When the customer is done, they will ‘check out,’
causing the order model to transition to ‘finalizing’,

where no more items can be added to the cart. The

interest of this paper is the meaning of creating,

finalizing, paying, etc. According to (Engel, 2010), these

terms represent stages during the system’s life when it

performs some activity or waits for some events. As will

be clear at the end of the analysis in this study, the FSM

is a shorthand notation to a richer conceptual

representation called thing machine.

Approach: FSM and Thinging Machine

We will analyze two abstract machines: (a) An FSM

will be “stretched” (activities of states will be added) to

construct (b) an abstract machine called a Thinging

Machine (TM). The TM will be the mechanism used to

analyze and understand FSM. Such a study gives us an

opportunity to further understand the TM model and

demonstrate its viability in the conceptual modeling field.

Structure of the Paper

The next section presents an enhanced review of the

TM that has previously been used in several papers (Al-

Fedaghi and Al-Fadhli, 2020; Al-Fedaghi and

Behbehani, 2020; Al-Fedaghi and Haidar, 2020; Al-

Fedaghi and Al-Otaibi, 2019; Al-Fedaghi and Haidar,

2019). The remaining sections describe how the TM can

be applied to FSMs.

Thinging Machines

In the state machine paradigm, the categories of

modeling are states, events and transactions. A TM is

built from things and machines. Things emerge from

their machine; for example, as a set (thing) that manifests

the process of “grouping” its members (machine). The

philosophical foundation of this approach is based on

Heidegger’s notion of thinging (Heidegger, 1975).

Riemer et al. (2013) stated that Heidegger’s philosophy

gives an alternative analysis of eliciting knowledge of

routine activities, capturing knowledge from domain experts
and representing organizational reality in authentic ways

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

894

(Riemer et al., 2013). In TM modeling, things are unified

with the concept of a process by being viewed as single

ontological things/machines, or thimacs, which populate

the world. A unit in such a universe has a dual role as a

thing and as a machine.
The simplest type of a complete thimac Machine (M)

is shown in Fig. 1. The machine has five actions (also

called stages of M): Create, process, release, transfer and

receive. An action is defined as one of these five stages.

The arrows in M refer to the order (“before” and “after”)

among the five actions. Flow of things refers to the

“conceptual movement” of things (e.g., among stages).

Note the strong thesis in TM modeling that all actions in

the world are categorized as one of the five M actions.

The stages of M can be described as follows.

Arrive

A thing flows to a new machine (e.g., an external

signal arrives to an FSM).

Accept

A thing enters M (the arriving thing is accepted by the

event handler in FSM). For simplification, we assume

that all arriving things are accepted; hence, we can

combine arrive and accept into the receiving stage.

Release

A thing is marked as ready to be transferred outside

the machine (e.g., in an airport, passengers wait to board

after passport clearance).

Process (change)

A thing changes its form, but not its identity (e.g., a
node in the network machine processes a packet to

decide where to forward it).

Create

A new thing is born in a machine (e.g., a new

shopping cart in the shopping example).

Transfer

A thing is inputted into or outputted to/from a machine.
TM modeling includes one additional notation:

Triggering (denoted by a dashed arrow in this study’s
figures). Triggering initiates a flow from one
machine/submachine to another. Multiple machines can
interact with each other through flows or triggering.
Triggering is a transformation from one flow to another
(e.g., a flow of electricity triggers a flow of air).

The thesis that things are machines and machines

are things gives us a tool for handling things as

processes. Thus, instead of the notions of class,

attributes and methods in object-oriented

methodology, TM modeling has processes (machines)

and sub processes (submachines).

Ontology of the TM Model

TM modeling is based on a category called thimacs

(things/machines), which is denoted by Δ Fig. 2. The Δ

has a dual mode of being: The machine side, denoted as

M and the thing side, denoted by T. Thus, Δ = (M, T).

Machine here acts as a metaphor for a mechanism, or

apparatus to represent the “mechanical side” of being.

Diagrams in this study will show only the machine side

of thimac. According to (Vardi, 2012; Rapaport, 2015),

“Turing Machines, the lambda calculus, recursive

functions, etc., are all logically equivalent-that these distinct

notions are analogous to the wave-particle duality in

quantum mechanics: ‘An algorithm is both an abstract state

machine and a recurs or and neither viewed by itself-’ fully

describes what an algorithm is. This algorithmic duality

seems to be a fundamental principle of computer science.”

The claim of the TM model is that Δ is a fundamental

constituent in describing a portion of the world. The

model accounts for many thimacs. It is a continuant that

has static and dynamic versions of being. The static

version is a thing/machine that persists in pretime (to be

exemplified later) and undergoes changes. The dynamic

version also embraces time and hence it embraces events.

Ontologically, we construct the thimac as follows:

1. Actions definable in terms of five types of actions;

e.g., create something

2. Changes as chunks of actions

3. Events replace changes when time is inserted in the

thimac (e.g., the creation happens at 11:00-12:00 AM)

Three Levels of Modeling

According to (Olver and Ryan, 2014), a static

condition of the system could be defined as a state. A

dynamic condition could also be defined as a state, but may

better be defined as an operational phase. Such a

differentiation could be established by examining the effects

of time on the system (Olver and Ryan, 2014). TM

modeling presents a clear view of staticity, dynamism and

temporality by establishing three levels of representation:

(1) A static (atemporal) model, denoted by S, is

constructed upon the flow of things in five generic

actions (activities; i.e., create, process, release, transfer

and receive). The S model contains all Δs (thimacs and

subthimacs) that are there (no temporality)

(2) A dynamic model, denoted by D, identifies the

changes as subdiagrams of the diagram of S. The D

model is still an atemporal representation of changes

(3) A behavioral model, denoted by B, depicts a

chronology of events in time. An event is a change

that embeds a time subthimac

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

895

Fig. 1: A thinging machine, M

Fig. 2: A thimac has a dual mode of being a thing and a machine

Exemplifying TM Modeling of FSMs

In this section, we provide an example of the method

that will be pursued in the remaining part of this paper.

The overall paper is an expansion of this method with

larger examples and other, more relevant issues. This

example is presented by (Tsonev, 2018) and involves an

illustration of how a state machine works through

modeling a turnstile. The turnstile FSM has a finite

number of states (locked and unlocked) with their

possible inputs and transitions, Fig. 3.

Figure 4 shows the corresponding S model. Initially,

the turnstile (circle 1) is locked (2), which prohibits flow

through the transfer stage (3). This situation is analogous

to a lock and a door (represented by the transfer stage).

When the lock is ON, nothing can go through the door.

When a coin is created (generated/appears; 4) and
flows to the system (5), it is processed (validated; 6) to

unlock (7) the turnstile. This triggers permission to go

through the transfer stage (door; 8) when a person (10)

pushes through (11) the turnstile. Thus, the person is

received in (12), released and transferred (13) outside the

turnstile area, which triggers the turnstile to lock (14).

Later, we will justify why S is called the static model.

Viewing S as a collection of small scripts, the

modeler’s role is to identify consistent scripts that may

be constructed from the collection of short scripts.

This results in cutting the S diagram into specific

subdiagrams (called events), producing the D model as

shown in Fig. 5. The events are:

E1 = The locked turnstile

E2 = No transfer permitted

E3 = A coin inserted and processed
E4 = The turnstile unlocking

E5 = A person pushing through

E6 = Transfer permitted

E7 = A person exiting through the turnstile area to

outside

Figure 6 shows the chronology of these events.

In this study, we examine the semantics of the state

machine (i.e., states, events, transactions and action?) in

terms of TM modeling. The assumption here, as shown

in the turnstile example, is that TM modeling is richer

and more precise than FSM modeling. Furthermore, the

next example clarifies the nature of events and how they
relate to the D model.

T (Thing) M (Machine)

Create

Process

Release

Accept

Output Input Transfer

Arrive Receive

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

896

Fig. 3: State machine model of a turnstile (adapted from Tsonev, 2018)

Fig. 4: The S model of the turnstile

Fig. 5: D model of the turnstile

Fig. 6: B model of the turnstile

Interview States Re-Modelled

Bochmann (2015) presented a model of an interview

process involving what he called “agents” and “actions.”

the model comprises three agents: The company director,

a journalist (who is doing the interview to write an article

about the company to his/her journal) and a secretary.

The interview includes a welcome handshake, interview

talk and goodbye, jointly performed by the director and

E1

E3 E2 E4 E5 E6

Create Release Transfer Permitted Transfer Prohibited Receive Release Transfer

E2 E6

E4

E7

Control

Locked Create Unlocked

Create Release Transfer Transfer Receive Process

E3
Coins

Lock

Person E5

Create Release Transfer

Create Release Transfer

Coins

Person

Transfer Receive Process

Permitted Transfer Prohibited Receive Release Transfer

Locked Create Unlocked

Lock

5

4

9

10
11

8

7

6

1
2

14

13 12

3

Control System

E1

Push

Locked

Coin

Coin

Un-locked

Push

Initial

state

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

897

the journalist, as well as talk with the secretary and

secretary entering or leaving jointly performed by the

director and the secretary. The interview is interrupted

when the secretary enters the room until he or she leaves.

A sequencing of these actions is defined by the state

diagram Fig. 7, which also represents the order of actions

of the company director.
Figure 8 shows the S model of the interview example.

The manager and the journalist enter the area of the
interview (circles 1 and 2) where they engage in a
handshake, (3) then interact with each other in the
interview (4 and 5). The secretary enters the area (6) and
he or she is joined by the director (7), interrupting the
interview. The director and the secretary engage in
conversation (8). Then the director returns to the
interview (9) and the secretary exits (10).

The S description of Fig. 8 represents a typical
interaction process. The director, journalist and secretary
appear in the domain of the model along with the processes
of handshaking, the interview and the conversation between
the director and the secretary. Such a picture is atemporal
because it places different scenes within the interview
process side by side. The different scenes can be viewed as
changes in the sense that each scene plays its role in the
“theater” of the S plot. S does not exist as a real system, but
it does embed potentialities of real scenes interwoven
together without any time order. This does not imply
the absence of the structure of sequentiality, because
the flow (arrows) indicates a type of before and after
relationship. The relationship is atemporal (similar to
relationships such as “3, 4, 5” and “point, line,
square,” which embed some atemporal ordering; e.g.,
placing 3 before 4 has nothing to do with time).

The D Model

To simplify the turnstile example, we skipped

important semantics related to the divisions of S to

produce D as events. However, in the interview example,

we have to tie the static (timeless) S to unfolding scenes,

which we call changes, to (time) events.

We can view S as a collection of small scripts and the

modeler’s role is to identify consistent long scripts that

may be constructed from the collection of short scripts.
This can be achieved by slicing S into specific changes

(identifying processes), hence producing the D model.

The changes are timeless because S is atemporal. They

emerge from the slicing of S and constitute different

subdiagrams (machines/things). Each slice (change) is a

scene that has its position in the series of changes, thus

creating a chronology of changes by its relative position,

not by its time of creation. A change here means

variation in the sense of a difference from the rest of the

furniture (all things occupying S) in the modelled domain

(e.g., slices of an apple produced by a multicutter are
borne at the same instance but different from each other

in position). Modeling discourse requires this variation to

establish pieces that allow the modeler to go beyond the

static S and weave the model from these changes. Note

that changes are states that are produced in a systematic

way. A state is one scene in S.

Accordingly, 10 changes (states) are identified in the

S model of the interview example Fig. 9:

1. The director and the journalist enter the meeting

room.

2. They shake hands.
3. They start the interview.

4. They process the interview.

5. The secretary enters.

6. The director leaves the interview to meet the

secretary.

7. The director and the secretary converse.

8. The director returns to the interview.

9. The secretary leaves.

10. The director and the journalist end the interview.

Fig. 7: Model of an interview (adapted from Bochmann, 2015)

Talk with

secretary

Secretary goes

Bye

Secretary

comes in

Shake

hands

Interview

talk

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

898

Fig. 8: S model of the interview

Fig. 9: D model of the interview

Journalist 2 1

Transfer

Receive

Transfer

Receive

Release

Transfer

Transfer

Receive

Process Release

Transfer
Handshake

Release

Transfer

Transfer

Receive Interview

Transfer

Receive

Process

Release

Transfer
Release

Transfer

Transfer

Release

Receive

Transfer

Transfer

Release

Process

Receive

Transfer

Transfer

Release

Receive

Transfer T
ra

n
sf

er

R
ec

ei
v

e
6

7

8

4 5

3

9

10

Talk

Secretary

Journalist Director

Transfer Transfer

Receive Receive

Release

Transfer

Transfer

Receive

Process Release

Transfer

Transfer

Receive

Process

Release

Transfer
Release

Transfer

Transfer

Receive

Release

Transfer

Transfer

Interview

T
ra

n
sf

er

R
ec

ei
v

e

Release

Receive

Transfer

Transfer

Release

Process

Receive

Transfer

Transfer

Release

Receive

Transfer

Talk

Secretary

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

899

The TM flow in S dictates the order of changes: C1 

C2, then C2  C3, then C3  C4, then C4  C5 OR C4

 C5, etc. This produces the chronology of changes shown

in Fig. 10. Accordingly, we cannot view S as either a space

or a time, but rather a frame for changes relative to each

other; thus, order can be imposed (i.e., “before,” “after,” and

“simultaneously”). It is possible that S includes several

independent components of the chronology of changes

that are not connected by flows or triggering. We
assume that S has only one such chronology of changes

(a graph with only one component).

Philosophically, the chronology of changes/states looks

like a picture of the Aristotelian notion of what things

should be (form). If the journalist and director meet (coming

in), it is expected that they shake hands and then start the

interview. If the secretary’s interruptions are permitted, then

it is expected that the director will talk with her and then

return to the interview. The order of actions is a structural

order, not a temporal order. The scenario is a template

(form) of potential series of states/changes in the

world. Accordingly, the chronology of Fig. 10 is a

timeless order that reflects the rules governing the

order of elements in TM actions.

Time

Figure 10 (changes and their chronology) reflects, in

philosophy, the so-called B-series (of time), which is the

series of all changes ordered in terms of logical relations

such as “earlier than,” “simultaneously,” and “later

than.” The S structure covers multiple epochs of change

that encroach on each other. At this point, after
identifying all changes, we can insert time in the model,

thereby creating events. Changes are potential (physical)

events. For every event there is an accompanying change

(a change is called a fact in philosophy, but philosophical

facts may include time, thus mixing up time and events).

Time is necessary to exclude an unreasonable sequence

or duration of changes. Figure 11 shows the chronology

of events in the interview example.

Thus, time is a mechanism that realizes (makes

practical) plots of events. In our example, time physically

realizes the changes in terms of “adequate starts and

durations” (e.g., the interview occurs within an acceptable
period instead of over many days; Fig. 12. The “after” is a

relation between changes, but an “acceptable period” is a

time-based imposition projected over the relation (e.g., the

interview slice comes after the handshaking slice by minutes

but not after, say, a day). Time brings practicality to changes

in the model. Hence, the mere insertion of time in a change

is a physical event specifying the start and duration of each

change to make them fit together as a physical realization.

Additionally, with the introduction of time in the

chronology of events, we can invent events such as the

start time and end time for the whole chronology of
events. Note that we cannot create a “start change”

because all changes start simultaneously; hence, the start

change precedes all changes. If we cut a watermelon in

two slices, then both pieces are created simultaneously.

However, we can create a start event.

Assume that Δ is a basic thimac (i.e., a thimac with
no subthimac); for example, a single action such as

create, process, release, transfer, or receive. Let ▲

denote the time thimacs of basic thimacs. Assume that σ

is the smallest unit of time taken by any ▲. Accordingly,

the σs are mapped to the positive integers:

σ1, σ2, σ3,…

We will assume that each event is mapped to

consecutive σs that represent its start, duration and end time.

The aim is to align events with respect to each other such

that each occupies one or more σ. Any event will require

multiple consecutive σs. We can conclude that an event has

a unique time (hence, an event is unique) and a change may

have different events and hence different times (different

events over the same change).

Fig. 10: Chronology of changes in the interview example

Fig. 11: Chronology of events in the interview example

Fig. 12: Differences of realization of chronologies of changes

(top) and events (bottom; e.g., The director leaves the
interview to talk to the secretary, then comes back to
the interview is an acceptable model of changes, but
not of events.)

C1 C2 C3 C4 C6 C7

C9

C10 C5
C8

E1 E2 E3 E4 E6 E7

E9

E10 E5
E8

C1 C2 C3 C4 C5 C6 C7 C9 C3

E1 E2 E3 E4 E6 E7 E5 E9 E3

Days

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

900

It is obvious that events are never repeated.

Repeatability is a shorthand notation for events that have

identical changes. Thus, E3 (interviewing) denotes a set

of events E3
1, E3

2,…, E3
n such that C (E3

1) = C (E3
2) … =

C(E3
n). Saying “the sun rises every day” is a way of

saying “the sun rose today, yesterday, before, or after,”

etc. The different events have the same change (sun

rising) and differ only in their time subthimac.

A repeated single type of event (e.g., two knocks on a

door) indicates two consecutive events with the same

change. Events can be constructed from small

consecutive events. In general, if Ei happens before Ej,

then it is not possible that Ei follows Ej.

Changes also cannot be repeated except through

events. The arrows in the chronology of changes indicate

flow of things (note the difference in the type of arrows
between Fig. 10 of changes and Fig. 11 of events). An

apple that is decaying is a single change and a single

event involving flow of decay (e.g., creating more

bacteria), not a repeated change or event of decay. Thus,

C9  C3 does not mean a repeat of C3 but the flow of the

director back to C3. E9  E3 means the occurrence of

event of type E3 (has the same change as a previous event

of type E3).

Re-examining the interview example, Bochmann

(2015) described the model in Fig. 7 as a Labelled

Transition System (LTS). An LTS contains a finite

number of states and a finite number of transitions that

are labelled. Each label represents a certain interaction of

the modeled object with its environment and the

transition diagram defines the order in which these
interactions may be performed. LTSs seem to be an

active area of research. A very recent work involves LTS

decompositions and their solvability by Petri nets

(Devillers et al., 2019). According to (Fares et al., 2013),

formal specification languages introduce entities, usually

called processes, which offer similar operators and

define their operational semantics based on an LTS.

The aim of re-modeling this example is to develop a

better understanding of the formal LTS approach through

TM modeling. However, the result provided an

opportunity to exhibit some of the TM features,

especially those that correspond to state-based modeling.

For example, in the LTS diagram Fig. 7, the secretary

comes in then to reach the state where the director and

the secretary engage in talk and this talk seems to be

repeated (reflexive arrow). This repeatability of the state
of talk between the director and the secretary, according

to the TM model, is flow-based repetition (C9 to C3 and

C9 and C5 in Fig. 10). According to (Bochmann, 2015),

“In this example (and when using LTS models, in

general), one uses a state-oriented modeling approach

where the actions are modeled as transitions and not as

‘activities’ or ‘states’. In fact, these transitions here

represent collaborations between several agents.”

A transition is represented as an arrow that indicates

what activity can be executed next. A transition is

triggered by an event. There is no direct definition of

what an event is in LTS. In LTS, kinds of events are

given as messages, changes of the values of variables and

events that trigger time (e.g., timeout). Therefore, to

understand an event, we have to look at what a message

is, what a change is and what triggering time means.

Returning to the repeatability of talk with the

secretary in Fig. 7, it seems to involve time, but the

window of time is separate. Accordingly, “talking to the

secretary” involves many transitions that lead to the same

state. However, transitions are triggered by events. At
this point, it is not possible to understand the semantics

of this part of the LTS diagram, especially regarding the

timing aspects. A similar statement applies to the

reflexive arrow over the interview.

On the other hand, the TM modeling seems to provide a

simple description of the interviewing process as follows:

1. Description in terms of the S model with atemporal

flows specified by five actions

2. The D model identifies the states or changes. Hence,

we can construct the atemporal chronology of states
3. The behavior model model applies time to states to

build the temporal chronology of events

Each of the notions of a thimac, machine, thing,

action, flow, change or state, event and time has its own

precise definition and ways of participating in the

models. For example, an event is a change plus time. A

change is a scene as a subdiagram of S. The subdiagram

of S is constructed from TM actions, which are create,

process, release, transfer and receive.

A Traffic Light Control Re-modeled

This section applies TM modeling to a larger project

involving engineering design, which brings the analysis

closer to the typical state machines in the literature.
Wagner et al. (2006) designed a traffic light control at

a level crossing of a railway and a road. In this example,

there is only one rail line, but the trains may come from

either direction. Three sensors detect the trains: L (left), M

(middle) and R (right). The output of the system is a red

lamp that should be switched on if the train approaches

sensor L (if coming from left) and should be switched off if

the train leaves the sensor at M. Similar actions should be

performed if the train comes from the right. The state

diagram Fig. 13 to model the system is described in

Table 1, where X is either L or R. (Wagner et al.,
2006) stated that using state diagrams is a way to

rethink design software, in which most of the usual

control-flow coding is avoided and the FSM concept

takes a predominant part in the design process.

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

901

According to (Wagner et al., 2006), FSM introduces “a

concept of a state as information about its past history”

(Italics added). Other mentions of the notion of state include

“The history of input changes required for clear

determination of the state machine behavior is stored in an
internal variable State” (Wagner et al., 2006). In the given

example, the each state is clearly identified.

Figure 14 shows the S model of this railway example.

The train comes from the left (1) to enter the left-middle

area (2), triggering the red light (3 and 4). It continues

to the middle area (5), then to the middle-right area (6)

to trigger the green light (7 and 8). Then, the train

leaves (9) to the right.

Additionally, the train may come from the right area

(10) to the middle right area to trigger the red light (11

and 12). It continues to the middle area (13), then to the
middle-left area (14) to trigger the green light (15 and

16). It exits to the left area (16).

Figure 15 shows the D model. The changes in the

figure are identified according to (Wagner et al., 2006)

given states as follows:

 Change 1 (C1): The train is at the L sensor. This

change is captured by the L sensor when the transfer

of the train starts from the L to the L-M area, as

shown in C1 in Figure 15. This is what (Wagner et al.,

2006) call state 001 Table 1

 Change 2 (C2): Now the train is completely in the L-M

area. The L sensor now creates a signal to turn the light

red, which (Wagner et al., 2006) call state 011 Table 1

 Change 3 (C3): The train is at the M sensor. This is

what (Wagner et al., 2006) call state 011 Table 1. It

is not clear what the role of the sensor is, except

perhaps communicating the value 011

 Change 4 (C4): The train moves to the M-R area

to trigger turning the light green and continues to

the R area. This is what (Wagner et al., 2006) call

state 100 Table 1

Similarly, changes C5, C6, C7 and C8 occur when the

train comes from the right. Note that:

 C1 and C5 are of state type 001

 C2 and C6 are of state type 010

 C3 and C7 are of state type 011

 C4 and C8 are of state type 100

 C5 and C10 are of state type 101

Note also the roles of the L sensor:

(a) Recognizing that the train is coming from the left

(b) Sending a signal to turn the light red

The R sensor’s roles are as follows:

(a) Send a signal to turn the light green

(b) Signal that the train is going to the left

The R and L sensors play similar roles.

Table 1: State model of the train example (adapted from

Wagner et al., 2006)

Description State Code

No train No train 000
On X Coming 001
Between X and M Approaching 010
On M Present 011
Between M and X Leaving 100
On X Going 101

Fig. 13: State model of the train example (adapted from Wagner et al., 2006)

X_LOW & M_LOW

X_HIGH & M_LOW X_ LOW & M_ HIGH

X_LOW & M_LOW X_LOW & M_LOW

X_HIGH & M_LOW

2

Coming
3

Approaching

6

Going

5

Leaving

1

No train
4

Present

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

902

Fig. 14: S model of the railway crossing

Fig. 15: D model of the railway

From the TM perspective, the locations of the sensors

are problematic in (Wagner et al., 2006) description of

the problem. For example, according to the TM model,

the L sensor should be located at the end of the L-M area

(transfer from L to L-M) furthest from the M area. Thus,

the sensor functions as follows:

1. As soon as the front of the train enters (transfer) the

L-M area, the sensor recognizes the train is “On L”

Table 1

2. As soon as the end of the train enters the L-M area,

the sensor signals “between L and M”

However, when the train comes from the right, leaving

the M area and entering the M-L area, the sensor

should be located at the end of the M-L area closest to

the M area.

An additional observation of the FSM modeling of

the train example is that when the states are converted to

events, care should be taken in possible conflicts in

T
ra

n
sf

er

T
ra

n
sf

er

P
ro

ce
ss

R
el

ea
se

R
ec

ei
v

e

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

Left Between left and middle The middle Between right and middle Right

T
ra

n
sf

er

R
ec

ei
v

e

T
ra

n
sf

er

P
ro

ce
ss

R
ec

ei
v

e

T
ra

n
sf

er

T
ra

n
sf

er

R
el

ea
se

P
ro

ce
ss

T
ra

n
sf

er

R
el

ea
se

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er
 16

14

13

11

Transfer

Release Create

Release Transfer

T
ra

n
sf

er

R
ec

ei
v

e
R

ec
ei

v
e

T
ra

n
sf

er

P
ro

ce
ss

P

ro
ce

ss

P
ro

ce
ss

P

ro
ce

ss

R
ec

ei
v

e

R
ec

ei
v

e

T
ra

n
sf

er

T
ra

n
sf

er

Transfer

Create

Release

Release

Create

4

15 8

3

7

12

1 2 5 6 9

Create:

The Light

Green

Create

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

Left Between left and middle The middle Between right and middle Right

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

T
ra

n
sf

er

R
el

ea
se

R
ec

ei
v

e

T
ra

n
sf

er

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e

P
ro

ce
ss

R
el

ea
se

T
ra

n
sf

er

T
ra

n
sf

er

Transfer

Release

Transfer

Create

Release Transfer

T
ra

n
sf

er

T
ra

n
sf

er

R
ec

ei
v

e
R

ec
ei

v
e

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

P
ro

ce
ss

R
ec

ei
v

e
R

ec
ei

v
e

T
ra

n
sf

er

T
ra

n
sf

er

Create

Transfer

Transfer

Release

Release

Create

Create:

Green

The Light

101

001

001 010

011

100

010

011 100

10

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

903

behaviors (or sub-behaviors) of the system. For example,

in (Wagner et al., 2006) state machine, to avoid allowing

trains to come from the left and right simultaneously,

they equated states C0 (train from left) with C6 (train

from right) and made them one state. Because only one
state is active, no conflict occurs. However, the

orientation (direction) of the two is different so the two

states are not identical.

We will not elaborate further on such problems,

focusing instead on contrasting the semantics of FSM in

terms of the TM modeling.
Figure 16 shows the succession of changes. As stated

previously, generating changes is analogous to cutting S
into pieces in the sense that the changes are born
simultaneously. The cutting is a timeless process.
When we use a multicutter, say for an apple, then all
pieces stay in their positions relative to each other
after the cutting process. Each piece is a change in the
total apple. The slices’ positions relative to each other
may be taken as a base to order them and we call the
succession a chronology of changes. The whole order
is timeless: A change is “before” or “after” another
change only in the selected ordering. This is what
happens when we construct the D model. In the
chronology of changes in Fig. 16, we note that we can
start the chronology (timeless ordering) of changes at
C1 or C6. Note that if we introduce a “no train” event,
say, C0 = “no train” (as Wagner et al., 2006) as a
change (state), then C0 is adjacent to all changes
because they are created simultaneously. This would
disturb the diagram of the chronology of changes.

Again, the chronology of states (e.g., state machine)
creates a picture of what things should be (form). If a train is
coming, then things progress as follow: The train crosses the
area before arrival and then it arrives. Next, it moves away.
The order is a structural not temporal. It is a template (form)
of a potential series of motions in the world. Accordingly,
the actions or stages in the TM machine Fig. 1 are just
changes or states and their chronology is a timeless order
that reflects laws of order over elementary states. Of course,
it is possible that a thing flows from release back to process,
but this is not what things should be.

To develop the behavior of the system, all changes

are converted to events Fig. 17. The events diagram can

be justified as a construction process that involves time.
 In the analogy mentioned previously, suppose that

we want to cut the apple into 10 pieces. We first cut one

piece, then cut a second piece from the rest of the apple

and so on. Although the result is identical to the

simultaneous multicutting process, each piece now has a

temporal stamp that is either born before or after. Because

we are in the time context, we can declare the starting time

of the cutting process as Event 0 (E0). E0 is followed

exclusively by E1 or E6. Thus, we arrive at the behavior of

the system shown in Fig. 17. Now, E1 and E6 cannot occur

simultaneously. Wagner et al. (2006) “no train” event can

be amended to the end or beginning of the train flows.

Fig. 16: Chronology of changes in the railway example

Fig. 17: B model of the railway

Accordingly, we can declare that a state is a (timeless)

change. The change is a discrete snapshot of a portion

(subdiagram) of the grand thimac. Because it is a change,

the notion of state is a pre-events snapshot. The change or

state is a sub-thimac and the order of changes or states does

not need the notion of time. For example, the state “On M”

in the train example is a thimac and its machine is:

Middle. Transfer (input).Receive.Process.Release.

Transfer (output)

That is, the corresponding machine is the flow of the

train inside the middle area. “On M” is just a name for

the thimac. Hence, each of the five actions in M can

represent an elementary state. Accordingly, the TM Fig. 1

is a state machine with five elementary states.

Conclusion

This paper aims to establish a precise definition of the

notion of state and state machines. State is the main notion

E1 E2 E3 E4 E5

E6 E7 E8 E9

START

C1 C2 C3 C4 C5

C6 C7 C8 C9

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

904

of a state machine, in which events drive state changes. The

analysis of these concepts is based on a new modeling

methodology called the Thinging Machine (TM) and we

considered a number of examples of existing models.

The TM model seems to provide richer descriptions

of the situations in the given examples with clear

meaning of what a state (change) is. It can be used as a

semantic base for the state diagram. The state machine is

obviously a thimac without time and the order of the

states is a timeless order. This order is isomorphic to the

time order of states with time.

Ethics

This article is original and contains unpublished

material. No ethical issues were involved and the author

has no conflict of interest to disclose.

References

Al-Fedaghi, S. and Al-Fadhli, J. (2020). Thinging-

oriented modeling of unmanned aerial vehicles.

arXiv preprint arXiv:2006.00369.

Al-Fedaghi, S. and Al-Otaibi, M. (2019, March). Service-

oriented systems as a thining machine: A case study of

customer relationship management. In 2019 IEEE 2nd

International Conference on Information and Computer

Technologies (ICICT) (pp. 235-242). IEEE.

Al-Fedaghi, S. and Behbehani, B. (2020). How to

Document Computer Networks. arXiv preprint

arXiv:2006.16860.

Al-Fedaghi, S. and Haidar, E. (2019). Programming Is

Diagramming Is Programming. JSW, 14(9), 410-422.

Al-Fedaghi, S. and Haidar, E. (2020). Thinging-Based

Conceptual Modeling: Case Study of a Tendering

System. Journal of Computer Science, 16(4), 452-466.

Avnur, A, (2015). The Key FSM: A finite state machine

for better system development. Researchgate, AA-

SW-DEV.COM

Baduel, R., Bruel, J. M., Ober, I. S. and Doba, E. (2018).

Definition of states and modes as general concepts

for system design and validation.

Balabko, P. and Wegmann, A. (2003). From RM-ODP to

the formal behavior representation. In Practical

Foundations of Business System Specifications (pp.

41-66). Springer, Dordrecht.

Bochmann, G.V, (2015). Behavioral Modeling with States

and Transitions [Course notes], University of Ottawa.

https://www.site.uottawa.ca/~bochmann/SEG-2106-

2506/Notes/M1-2-StateMachines/index.html

Clayton, R, 2018. What is a State Machine? Use State

Machines. https://rclayton.silvrback.com/use-state-

machines.

Craig, E. (Ed.). (1998). Routledge Encyclopedia of

Philosophy: Genealogy to Iqbal (Vol. 4). Taylor and

Francis.

Crane, M.L., 2006. On the Syntax and Semantics of State

Machines. DOI: 10.1.1.114.5387 (Accessed on June
10, 2020).

Defence Materiel Organisation, 2011. 12-3-005 Function

and Performance (FPS) Development Guide,

Director General Materiel Management Policy and

Services, Version 1.1, Austeralia,November 2002.

(accessed June, 1, 2020).

http://www.pedalion.com.au/files/ocd_fps_and_tcd_

guide_-_v1.1.pdf.

Devillers, R., E. Erofeev and T. Hujsa, 2019. Synthesis of

Weighted Marked Graphs from Constrained Labelled

Transition Systems: A Geometric Approach. In:
Transactions on Petri Nets and Other Models of

Concurrency XIV, Koutny, M., L. Pomello and L.

Kristensen (Eds). Lecture Notes in Computer Science,

11790, Springer, Berlin, pp: 172-191. ISBN:

Edwards, M.T., (2003). A Practical Approach to State

and Mode Definitions for the Specification and

Design of Complex Systems, Systems Engineering

Test and Evaluation. Practical Approaches for

Complex Systems Conference, Rydges Capital Hill,

Canberra, Australia.

Engel, A. (2010). Verification, validation, and testing of

engineered systems (Vol. 73). John Wiley & Sons.
Fares, E., J. Bodeveix and M. Filali, (2013). Event

Algebra for Transition Systems Composition—

Application to Timed Automata. Presented at 20th

International Symposium on Temporal

Representation and Reasoning, Pensacola, FL, pp:

125-132. DOI: 10.1109/TIME.2013.23.

Harel, D. (2007, June). Statecharts in the making: a

personal account. In Proceedings of the third ACM

SIGPLAN conference on History of programming

languages (pp. 5-1).

Harel, D. and Rumpe, B. (2004). Meaningful modeling:
what's the semantics of" semantics"?. Computer,

37(10), 64-72.

Hatley, D. and Pirbhai, I. (2013). Strategies for real-time

system specification. Addison-Wesley.

Heidegger, M. (1975). The thing,‖ in Poetry, Language,

Thought, A. Hofstadter. Trans. New York: Harper

and Row, 161-184.

Henry, C., 2010. Meta State Machine (MSM), Boost

Software, Version 1.0.

https://www.boost.org/doc/libs/1_58_0/libs/msm/do

c/PDF/msm.pdf (Accessed June 10, 2020).

Hoffer, J.A., J.F. George and J.S. Valacich, 1996.

Modern Systems and Design Analysis,

Benjamin/Cummings, City. ISBN:

Holt, J. (2004). UML for Systems Engineering:

Watching the wheels (Vol. 4). IET.

https://www.site.uottawa.ca/~bochmann/SEG-2106-2506/Notes/M1-2-StateMachines/index.html
https://www.site.uottawa.ca/~bochmann/SEG-2106-2506/Notes/M1-2-StateMachines/index.html
https://rclayton.silvrback.com/use-state-machines
https://rclayton.silvrback.com/use-state-machines
http://www.pedalion.com.au/files/ocd_fps_and_tcd_guide_-_v1.1.pdf
http://www.pedalion.com.au/files/ocd_fps_and_tcd_guide_-_v1.1.pdf
https://www.boost.org/doc/libs/1_58_0/libs/msm/doc/PDF/msm.pdf
https://www.boost.org/doc/libs/1_58_0/libs/msm/doc/PDF/msm.pdf

Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905

DOI: 10.3844/jcssp.2020.891.905

905

IEEE 610.12-1990, (1990). IEEE Standard Glossary of

Software Engineering Terminology.

INCOSE-TP-2003-002-03.2, (2010). Systems

Engineering Handbook v3.2, Appendix D.

Jenney, J., Gangl, M., Kwolek, R., Melton, D. L.,

Ridenour, N. and Coe, M. (2010). Modern methods

of systems engineering: With an introduction to

pattern and model based methods. Joe Jenney.

Lewis, M. C. and Lacher, L. (2016). Introduction to

Programming and Problem-solving Using Scala.

CRC Press.

Object Management Group, (2007). Unified Modeling

Language Superstructure Specification v2.2.

https://www.omg.org/spec/UML/2.2/Superstructur

e/PDF.

Object Management Group, (2015). Unified Modeling

Language, Version 2.5. http://www.omg.org

Object Management Group, (2017). Systems Modeling

Language, Version 1.5. http://www.omg.org

Object Management Group, (2019). Precise Semantics of

UML State Machines (PSSM), Version 1.0.

https://www.omg.org/spec/PSSM/1.0/PDF

Olver, A. M. and Ryan, M. J. (2014). On a useful

taxonomy of Phases, Modes and States in Systems

Engineering. In Systems Engineering/Test and

Evaluation Conference, Adelaïde, Australia.

Rapaport, W. J. (2015). Citations to the work of.

Riemer, K., Johnston, R., Hovorka, D. and Indulska, M.

(2013). Challenging the philosophical foundations of

modeling organizational reality: The case of process

modeling.

Space and Missile Systems Center, (2005). SMC

Systems Engineering Primer and Handbook. 3rd

ed., U.S. Air Force.

Tsonev, K., (2018). The rise of the state Machines.

Smashing Magazine.
https://www.smashingmagazine.com/2018/01/rise-

state-machines/

Van Court Hare and Starr, M. K. (1967). Systems analysis:

A diagnostic approach. Harcourt, Brace and World.

van Gurp, J. and Bosch, J. (1999). On the Implementation of

Finite State Machines. Proceedings of the 3rd Annual

IASTED International Conference on Software

Engineering and Applications, (pp: 172-178), Acta

Press, Anaheim, CA

Van Otterlo, M. (2009). The logic of adaptive

behavior. Frontiers in Artificial Intelligence and
Applications, 192.

Vardi, M. Y. (2012). What is an algorithm?.

Communications of the ACM, 55(3), 5-5.

Wagner, F., Schmuki, R., Wagner, T. and Wolstenholme,

P. (2006). Modeling software with finite state

machines: A practical approach. CRC Press.

Wasson, C. S. (2005). System analysis, design and

development: Concepts, principles and practices

(Vol. 22). John Wiley and Sons.

Wasson, C. S. (2011, June). 3.3. 1 system phases, modes

and states: Solutions to controversial issues. In

INCOSE international symposium (Vol. 21, No. 1,
pp. 279-294).

Yan, W. Q. (2017). Surveillance Data Capturing and

Compression. In Introduction to Intelligent

Surveillance (pp. 21-40). Springer, Cham.

http://www.omg.org/
http://www.omg.org/
https://www.omg.org/spec/PSSM/1.0/PDF
https://www.smashingmagazine.com/2018/01/rise-state-machines/
https://www.smashingmagazine.com/2018/01/rise-state-machines/

