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Abstract: A system’s behavior is typically specified through models such 

as state diagrams that describe how the system should behave. According to 

researchers, it is not clear what a state actually represents regarding the 

system to be modeled. Standards do not provide adequate definitions of or 

sufficient guidance on the use of states. Studies show these inconsistencies 
can lead to poor or incomplete specifications, which in turn could result in 

project delays or increase the cost of the system design. This paper aims 

to establish a precise definition of the notion of states and state 

machines, a goal motivated by system modelers’ (e.g., requirement 

engineers’) need to understand key concepts and vocabulary such as 

states and state machine, which are major behavioral modeling tools 

(e.g., in UML). “State” is the main notion of a state machine in which 

events drive state changes. This raises questions about the nature of 

these state-related notations. The semantics of these concepts is based 

on a new modeling methodology called the thinging machine applied to 

a number of examples of existing models. The thinging machine 

semantics is founded on five elementary actions that divide the static 
model into changes/states upon which events are defined. 
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Introduction 

Abstraction is one of the most important tools used in 

computer science (Lewis and Lacher, 2016). The design 

and implementation of complex systems cannot be done 

without it (Van Otterlo, 2009). Many forms of 

abstraction are used in modeling systems and among 

them state abstraction is one of the most common. For 

example, in chess a complete configuration of black and 

white pieces on a board is the chess machine’s state   

(Van Otterlo, 2009). State machines (abstract model 

consisting of states, input and mapping of input to states) 

typically specify how a system should behave. These 

notions are essential ingredients in engineering systems 

e.g., the (Defence Materiel Organisation, 2011) 

Development Guide requires the identification of all of 

the applicable states for the solution-classes (Olver and 

Ryan, 2014). States provide means to “identify 

different sets of performance requirements for 

different sets of conditions that will be encountered by 

the system” (Space and Missile Systems Center, 2005). 

State-centric specifications not only serve to identify 

what is to be accomplished but also specify how to 

design the system (Wasson, 2005).  

Problem 

According to (Olver and Ryan, 2014), the various 

methodologies for specifying states do not provide a 

consistent message or framework of what constitutes a 
state. They emphasized, “The wide variation of 

definitions [of system states] demonstrates that no 

consistent structure exists.” For example, the US 

Department of Defense military standards do not 

adequately define or provide sufficient guidance in the 

use of states (Olver and Ryan, 2014) and the INCOSE 

Handbook (INCOSE-TP-2003-002-03.2, 2010) does not 

provide a definition for states and modes (Space and 

Missile Systems Center, 2005). The (IEEE 610.12-1990, 

1990) standards confuse the issue even more by defining 

state as “a condition or mode of existence that a system, 
component or simulation may be in” (Olver and Ryan, 

2014). These inconsistencies can lead to poor or 

incomplete specifications, which in turn could result in 

project delays or increased cost of system design. While 

the notion of state is used to describe a system, “there is 

little guidance as to what constitutes a state, which is 

made worse by poor usage of the terms” (Olver and 

Ryan, 2014). Although there are many different ways in 

which state-based specifications can be represented, 
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“there are few detailed methodologies that provide a 

sound development framework to assist the organization 

to develop the state based specification” (Olver and 

Ryan, 2014). In the Unified Modeling Language (UML; 

Object Management Group, 2015) and hence the System 
Modeling Language (SysML; Object Management 

Group, 2017), “It is not clear what a state actually 

represents regarding the system to be modeled…. Aside 

from UML, there are ‘state’ elements or concepts used in 

different languages, tools and methods with different 

semantics” (Baduel et al., 2018). In academia, the scarce 

research investigating the different ways in which states 

are defined and used within the systems engineering 

disciplines (Olver and Ryan, 2014) does not include 

many references (Edwards, 2003; Wasson, 2011). 

A Finite State Machine (FSM) is used as a behavioral 
model that characterizes behavior using transitions. A 

basic FSM defines a set of states, a set of events it 

responds to and a set of transitions that map a state and 

event to (next) state. FSMs are a major behavioral 

modeling tool and part of UML, which is the current 

main information systems modeling notation. UML 2 

adopted the Statechart model, which is an extension of the 

basic FSM model. In UML, all objects have a state. An 

object either does or does not exist. If it exists, then it has a 

value for each of its attributes. Each possible assignment of 

values to attributes is a state. According to (Olver and Ryan, 

2014), “The clarity and unambiguous [nature] of the [UML] 
FSM model (if done right) is by itself a sufficient 

justification for using it.” Nevertheless, the implementation 

of FSMs in Object-Oriented (OO) languages “often suffers 

from maintenance problems” (van Gurp and Bosch, 1999). 

In general, according to (Wagner et al., 2006), 

 

In the scientific world the definition of the state machine 

dominates in software application. Discussing hardware 

design, scientific papers concentrate on model definitions, 

optimization of state number and verification methods. 

All those theoretical topics are of little practical 

usefulness and do not make too much sense in the design 

of an industrial control system. Hence, the knowledge and 

the use of state machines in industry are half-hearted and 

accompanied by several misunderstandings due to lack of 

a sound theoretical basis. (Italics added).  

Aim  

This paper aims to further the understanding of the 

semantics (interpretation of meaning) of states and state 

machines. FSM semantics is severely complicated 
because formalization takes multiple approaches and several 

state machine dialects currently exist, each subtly different 

from the others (Crane, 2006). OMG has issued 

specifications for UML-based semantics, behavioral 

semantics, static semantics and structural semantics (Object 

Management Group, 2019). Behavioral semantics provide 

“the denotational mapping of appropriate language 

elements to a specification of a dynamic behavior resulting 

in changes over time to instances in the semantic domain 

about which the language is making statements” (Object 

Management Group, 2007). In this study, semantics refers 
to the meaning of individual constructs (Harel and Rumpe, 

2004), such as FSM notions of state, event, change and 

machine. The interest in semantics is motivated by the need 

of system modelers (e.g., requirement engineers) to know 

key concepts and vocabulary of major behavioral modeling 

tools (e.g., in UML and SysML).  

Focus on Semantics of Individual Constructs  

Hatley and Pirbhai (2013) astutely pointed out that 

“theoreticians enjoy long philosophical discourses on the 
exact meaning of state.” In physics, a state is usually 

defined as a system’s complete set of possessed 

properties e.g., mass or electric charge; (Craig, 1998). 

Olver and Ryan (2014; Baduel et al., 2018) provide 

comparisons of the definitions of states given within 

various articles in the modeling literature. A sample of 

the definitions of state is as follows: 
 

 A static snapshot of the set of metrics or variables 

needed to fully describe the system’s capabilities to 

perform the system’s function (Baduel et al., 2018)  

 The overall condition of a system or a subsystem, 

whereby events may be related hierarchically or 

exclusively (Edwards, 2003)  

 The operational or operating condition of a system 

of interest required to safely conduct or continue its 

mission (i.e., “state of operation;” Wasson, 2005)  

 The events happening within the system at any point 

in time (Holt, 2004)  

 An exact operating condition of a system   

(Jenney et al., 2010)  

 A mode or condition of existence for a process or 

other system component, as determined by current 

circumstances (Hoffer et al., 1996)  

 

Baduel et al. (2018) cross-referenced the various 

definitions and established a few characteristics of states: 

 

 States characterize a thing (e.g., a system). 

 States relate to a specific kind of information, 

operation, readiness, energy, etc. 

 States are evaluated or considered at a given time. 

 

For (Balabko and Wegmann, 2003), the state of an object 

at an instant in time is the condition of the object that 

determines the set of all sequences of actions in which 

the object can take part. Action is something that 

happens. Thus, the concept of state is intertwined with 

the concept of action and these modeling concepts cannot 

be considered separately.  
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Olver and Ryan’s (2014) survey of existing methods 

of state presentation included state charts (Harel, 2007), 

phases (re-mission, mission and post mission; (Wasson, 

2005), flow graphs (Van Court Hare and Starr, 1967), UML 

state machines (OMG, 2007) and temporal logic modelling 

(Hoffer et al., 1996). According to (Baduel et al., 2018), the 

state definition in UML cannot be used as a definition of the 

concept because “to represent the behavior, we have to 

define elements characterizing the execution of capabilities 

and not the information used to allow it, which seems to be 

the goal of the state machines in UML.”  

It is difficult to say what an event is in the context of 

FSM when reading the literature. The notion of an event 

is understood in general from many examples as a 

(interior or exterior) trigger of actions in a machine. Most 

works in FSM literature do not define the term event 
directly. For example, the valuable work in (Avnur, 

2015) analyzes many interesting aspects of the FSM. It 

includes more than 100 literary occurrences of the 

term event. The first appearance of the word event is 

on the second page: “The dynamic part of that 

behavior definition is done by defining the transitions 

from state to state-when it occurs, i.e., what event 

causes it.” Then there are numerous mentions of the 

word event, which include the following quotes: 

 

 Integrity constraints … that are important or event 
critical to the application 

 Events are applied or “signaled” to the FSM through 

its interface 

 An event transitions the system from various states 

to a common state 

 List of events and their meaning: Delete: Delete the 

record, Edit: Prepare the record for editing, etc 

 

In the technical literature of state machines using 

models such as UML and SysML, the states are the 

stages or situations during a system’s life when it 

performs some activity or waits for some event (Engel, 

2010). In this description, an event is “an incident 

provoking (or not) a reaction of the state machine [and] a 

transition is a specification of how a state machine reacts 

to an event. It specifies a source state, the event 

triggering the transition, the target state, guard and 

actions” (Henry, 2010). An action is an operation 

executed during the triggering of the transition. A guard 

is a Boolean operation that is able to prevent the 

triggering of a transition that would otherwise fire.  

Of course, the mathematical definition of FSM based 

on automata theory provides a clear definition of an 

event as an (user or system) input that triggers a change 

from one state to another in the FSM. In this study, we 

define events in terms of changes which, in turn, are 

defined in terms of five elementary actions.  

Semantics and FSM  

According to (Yan, 2017), FSM is an approach to 
bridging the gap between the real world and semantic 

space by using events. Henry (2010) articulates that state 

machines are “the description of a thing’s lifeline” that 

includes different stages. The focus in this study is on 

semantics of modeling; that is, the “meanings” of 

constructs is a central concern in the paper. This 

‘meaning’ will be defined in terms of five basic actions.  

Take for example the FSM presented in (Clayton, 

2018) that involves designing a shopping cart 

encapsulated in an Order entity. The initial state is 

‘creating’; in this state, the customer adds items to the 

order. When the customer is done, they will ‘check out,’ 
causing the order model to transition to ‘finalizing’, 

where no more items can be added to the cart. The 

interest of this paper is the meaning of creating, 

finalizing, paying, etc. According to (Engel, 2010), these 

terms represent stages during the system’s life when it 

performs some activity or waits for some events. As will 

be clear at the end of the analysis in this study, the FSM 

is a shorthand notation to a richer conceptual 

representation called thing machine.  

Approach: FSM and Thinging Machine 

We will analyze two abstract machines: (a) An FSM 

will be “stretched” (activities of states will be added) to 

construct (b) an abstract machine called a Thinging 

Machine (TM). The TM will be the mechanism used to 

analyze and understand FSM. Such a study gives us an 

opportunity to further understand the TM model and 

demonstrate its viability in the conceptual modeling field.  

Structure of the Paper 

The next section presents an enhanced review of the 

TM that has previously been used in several papers (Al-

Fedaghi and Al-Fadhli, 2020; Al-Fedaghi and 

Behbehani, 2020; Al-Fedaghi and Haidar, 2020; Al-

Fedaghi and Al-Otaibi, 2019; Al-Fedaghi and Haidar, 

2019). The remaining sections describe how the TM can 

be applied to FSMs.  

Thinging Machines  

In the state machine paradigm, the categories of 

modeling are states, events and transactions. A TM is 

built from things and machines. Things emerge from 

their machine; for example, as a set (thing) that manifests 

the process of “grouping” its members (machine). The 

philosophical foundation of this approach is based on 

Heidegger’s notion of thinging (Heidegger, 1975). 

Riemer et al. (2013) stated that Heidegger’s philosophy 

gives an alternative analysis of eliciting knowledge of 

routine activities, capturing knowledge from domain experts 
and representing organizational reality in authentic ways 
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(Riemer et al., 2013). In TM modeling, things are unified 

with the concept of a process by being viewed as single 

ontological things/machines, or thimacs, which populate 

the world. A unit in such a universe has a dual role as a 

thing and as a machine.  
The simplest type of a complete thimac Machine (M) 

is shown in Fig. 1. The machine has five actions (also 

called stages of M): Create, process, release, transfer and 

receive. An action is defined as one of these five stages. 

The arrows in M refer to the order (“before” and “after”) 

among the five actions. Flow of things refers to the 

“conceptual movement” of things (e.g., among stages). 

Note the strong thesis in TM modeling that all actions in 

the world are categorized as one of the five M actions.  

The stages of M can be described as follows.  

Arrive 

A thing flows to a new machine (e.g., an external 

signal arrives to an FSM).  

Accept 

A thing enters M (the arriving thing is accepted by the 

event handler in FSM). For simplification, we assume 

that all arriving things are accepted; hence, we can 

combine arrive and accept into the receiving stage.  

Release 

A thing is marked as ready to be transferred outside 

the machine (e.g., in an airport, passengers wait to board 

after passport clearance).  

Process (change) 

A thing changes its form, but not its identity (e.g., a 
node in the network machine processes a packet to 

decide where to forward it).  

Create 

A new thing is born in a machine (e.g., a new 

shopping cart in the shopping example).  

Transfer 

A thing is inputted into or outputted to/from a machine.  
TM modeling includes one additional notation: 

Triggering (denoted by a dashed arrow in this study’s 
figures). Triggering initiates a flow from one 
machine/submachine to another. Multiple machines can 
interact with each other through flows or triggering. 
Triggering is a transformation from one flow to another 
(e.g., a flow of electricity triggers a flow of air).  

The thesis that things are machines and machines 

are things gives us a tool for handling things as 

processes. Thus, instead of the notions of class, 

attributes and methods in object-oriented 

methodology, TM modeling has processes (machines) 

and sub processes (submachines).  

Ontology of the TM Model  

TM modeling is based on a category called thimacs 

(things/machines), which is denoted by Δ Fig. 2. The Δ 

has a dual mode of being: The machine side, denoted as 

M and the thing side, denoted by T. Thus, Δ = (M, T). 

Machine here acts as a metaphor for a mechanism, or 

apparatus to represent the “mechanical side” of being. 

Diagrams in this study will show only the machine side 

of thimac. According to (Vardi, 2012; Rapaport, 2015), 

“Turing Machines, the lambda calculus, recursive 

functions, etc., are all logically equivalent-that these distinct 

notions are analogous to the wave-particle duality in 

quantum mechanics: ‘An algorithm is both an abstract state 

machine and a recurs or and neither viewed by itself-’ fully 

describes what an algorithm is. This algorithmic duality 

seems to be a fundamental principle of computer science.”  

The claim of the TM model is that Δ is a fundamental 

constituent in describing a portion of the world. The 

model accounts for many thimacs. It is a continuant that 

has static and dynamic versions of being. The static 

version is a thing/machine that persists in pretime (to be 

exemplified later) and undergoes changes. The dynamic 

version also embraces time and hence it embraces events. 

Ontologically, we construct the thimac as follows: 

  
1. Actions definable in terms of five types of actions; 

e.g., create something 

2. Changes as chunks of actions 

3. Events replace changes when time is inserted in the 

thimac (e.g., the creation happens at 11:00-12:00 AM) 

 

Three Levels of Modeling  

According to (Olver and Ryan, 2014), a static 

condition of the system could be defined as a state. A 

dynamic condition could also be defined as a state, but may 

better be defined as an operational phase. Such a 

differentiation could be established by examining the effects 

of time on the system (Olver and Ryan, 2014). TM 

modeling presents a clear view of staticity, dynamism and 

temporality by establishing three levels of representation: 

 

(1) A static (atemporal) model, denoted by S, is 

constructed upon the flow of things in five generic 

actions (activities; i.e., create, process, release, transfer 

and receive). The S model contains all Δs (thimacs and 

subthimacs) that are there (no temporality) 

(2) A dynamic model, denoted by D, identifies the 

changes as subdiagrams of the diagram of S. The D 

model is still an atemporal representation of changes 

(3) A behavioral model, denoted by B, depicts a 

chronology of events in time. An event is a change 

that embeds a time subthimac 
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Fig. 1: A thinging machine, M 

 

 
 

Fig. 2: A thimac has a dual mode of being a thing and a machine 

 

Exemplifying TM Modeling of FSMs  

In this section, we provide an example of the method 

that will be pursued in the remaining part of this paper. 

The overall paper is an expansion of this method with 

larger examples and other, more relevant issues. This 

example is presented by (Tsonev, 2018) and involves an 

illustration of how a state machine works through 

modeling a turnstile. The turnstile FSM has a finite 

number of states (locked and unlocked) with their 

possible inputs and transitions, Fig. 3.  

Figure 4 shows the corresponding S model. Initially, 

the turnstile (circle 1) is locked (2), which prohibits flow 

through the transfer stage (3). This situation is analogous 

to a lock and a door (represented by the transfer stage). 

When the lock is ON, nothing can go through the door.  

When a coin is created (generated/appears; 4) and 
flows to the system (5), it is processed (validated; 6) to 

unlock (7) the turnstile. This triggers permission to go 

through the transfer stage (door; 8) when a person (10) 

pushes through (11) the turnstile. Thus, the person is 

received in (12), released and transferred (13) outside the 

turnstile area, which triggers the turnstile to lock (14). 

Later, we will justify why S is called the static model.  

Viewing S as a collection of small scripts, the 

modeler’s role is to identify consistent scripts that may 

be constructed from the collection of short scripts.  

This results in cutting the S diagram into specific 

subdiagrams (called events), producing the D model as 

shown in Fig. 5. The events are: 

 

E1 = The locked turnstile  

E2 = No transfer permitted  

E3 = A coin inserted and processed  
E4 = The turnstile unlocking 

E5 = A person pushing through  

E6 = Transfer permitted  

E7 = A person exiting through the turnstile area to 

outside  

 

Figure 6 shows the chronology of these events.  

In this study, we examine the semantics of the state 

machine (i.e., states, events, transactions and action?) in 

terms of TM modeling. The assumption here, as shown 

in the turnstile example, is that TM modeling is richer 

and more precise than FSM modeling. Furthermore, the 

next example clarifies the nature of events and how they 
relate to the D model. 

T (Thing) M (Machine) 

Create 

Process 

Release 

Accept 

Output Input Transfer 

Arrive Receive 
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Fig. 3: State machine model of a turnstile (adapted from Tsonev, 2018) 
 

 
 

Fig. 4: The S model of the turnstile 
 

 
 

Fig. 5: D model of the turnstile 

 

 
 
Fig. 6: B model of the turnstile 

Interview States Re-Modelled 

Bochmann (2015) presented a model of an interview 

process involving what he called “agents” and “actions.” 

the model comprises three agents: The company director, 

a journalist (who is doing the interview to write an article 

about the company to his/her journal) and a secretary. 

The interview includes a welcome handshake, interview 

talk and goodbye, jointly performed by the director and 

E1 

E3 E2 E4 E5 E6 

Create Release Transfer Permitted Transfer Prohibited Receive Release Transfer 

E2 E6 

E4 

E7 

Control 

Locked Create Unlocked 

Create Release Transfer Transfer Receive Process 

E3 
Coins 

Lock 

Person E5 

Create Release Transfer 

Create Release Transfer 

Coins 

Person 

Transfer Receive Process 

Permitted Transfer Prohibited Receive Release Transfer 
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Lock 

5 

4 

9 

10 
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8 
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2 
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3 

Control System 

E1 

Push 

Locked 

Coin 

Coin 

Un-locked 

Push 

Initial 
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the journalist, as well as talk with the secretary and 

secretary entering or leaving jointly performed by the 

director and the secretary. The interview is interrupted 

when the secretary enters the room until he or she leaves. 

A sequencing of these actions is defined by the state 

diagram Fig. 7, which also represents the order of actions 

of the company director. 
Figure 8 shows the S model of the interview example. 

The manager and the journalist enter the area of the 
interview (circles 1 and 2) where they engage in a 
handshake, (3) then interact with each other in the 
interview (4 and 5). The secretary enters the area (6) and 
he or she is joined by the director (7), interrupting the 
interview. The director and the secretary engage in 
conversation (8). Then the director returns to the 
interview (9) and the secretary exits (10).  

The S description of Fig. 8 represents a typical 
interaction process. The director, journalist and secretary 
appear in the domain of the model along with the processes 
of handshaking, the interview and the conversation between 
the director and the secretary. Such a picture is atemporal 
because it places different scenes within the interview 
process side by side. The different scenes can be viewed as 
changes in the sense that each scene plays its role in the 
“theater” of the S plot. S does not exist as a real system, but 
it does embed potentialities of real scenes interwoven 
together without any time order. This does not imply 
the absence of the structure of sequentiality, because 
the flow (arrows) indicates a type of before and after 
relationship. The relationship is atemporal (similar to 
relationships such as “3, 4, 5” and “point, line, 
square,” which embed some atemporal ordering; e.g., 
placing 3 before 4 has nothing to do with time). 

The D Model  

To simplify the turnstile example, we skipped 

important semantics related to the divisions of S to 

produce D as events. However, in the interview example, 

we have to tie the static (timeless) S to unfolding scenes, 

which we call changes, to (time) events.  

We can view S as a collection of small scripts and the 

modeler’s role is to identify consistent long scripts that 

may be constructed from the collection of short scripts. 
This can be achieved by slicing S into specific changes 

(identifying processes), hence producing the D model. 

The changes are timeless because S is atemporal. They 

emerge from the slicing of S and constitute different 

subdiagrams (machines/things). Each slice (change) is a 

scene that has its position in the series of changes, thus 

creating a chronology of changes by its relative position, 

not by its time of creation. A change here means 

variation in the sense of a difference from the rest of the 

furniture (all things occupying S) in the modelled domain 

(e.g., slices of an apple produced by a multicutter are 
borne at the same instance but different from each other 

in position). Modeling discourse requires this variation to 

establish pieces that allow the modeler to go beyond the 

static S and weave the model from these changes. Note 

that changes are states that are produced in a systematic 

way. A state is one scene in S.  

Accordingly, 10 changes (states) are identified in the 

S model of the interview example Fig. 9: 

 

1. The director and the journalist enter the meeting 

room. 

2. They shake hands. 
3. They start the interview. 

4. They process the interview. 

5. The secretary enters. 

6. The director leaves the interview to meet the 

secretary. 

7. The director and the secretary converse. 

8. The director returns to the interview. 

9. The secretary leaves. 

10. The director and the journalist end the interview. 
 

 
 

Fig. 7: Model of an interview (adapted from Bochmann, 2015) 

Talk with 

secretary 

Secretary goes 

Bye 

Secretary 

comes in 

Shake 

hands 

Interview 

talk 
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Fig. 8: S model of the interview 
 

 
 

Fig. 9: D model of the interview 
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The TM flow in S dictates the order of changes: C1  

C2, then C2  C3, then C3  C4, then C4  C5 OR C4 

 C5, etc. This produces the chronology of changes shown 

in Fig. 10. Accordingly, we cannot view S as either a space 

or a time, but rather a frame for changes relative to each 

other; thus, order can be imposed (i.e., “before,” “after,” and 

“simultaneously”). It is possible that S includes several 

independent components of the chronology of changes 

that are not connected by flows or triggering. We 
assume that S has only one such chronology of changes 

(a graph with only one component). 

Philosophically, the chronology of changes/states looks 

like a picture of the Aristotelian notion of what things 

should be (form). If the journalist and director meet (coming 

in), it is expected that they shake hands and then start the 

interview. If the secretary’s interruptions are permitted, then 

it is expected that the director will talk with her and then 

return to the interview. The order of actions is a structural 

order, not a temporal order. The scenario is a template 

(form) of potential series of states/changes in the 

world. Accordingly, the chronology of Fig. 10 is a 

timeless order that reflects the rules governing the 

order of elements in TM actions. 

Time  

Figure 10 (changes and their chronology) reflects, in 

philosophy, the so-called B-series (of time), which is the 

series of all changes ordered in terms of logical relations 

such as “earlier than,” “simultaneously,” and “later 

than.” The S structure covers multiple epochs of change 

that encroach on each other. At this point, after 
identifying all changes, we can insert time in the model, 

thereby creating events. Changes are potential (physical) 

events. For every event there is an accompanying change 

(a change is called a fact in philosophy, but philosophical 

facts may include time, thus mixing up time and events). 

Time is necessary to exclude an unreasonable sequence 

or duration of changes. Figure 11 shows the chronology 

of events in the interview example.  

Thus, time is a mechanism that realizes (makes 

practical) plots of events. In our example, time physically 

realizes the changes in terms of “adequate starts and 

durations” (e.g., the interview occurs within an acceptable 
period instead of over many days; Fig. 12. The “after” is a 

relation between changes, but an “acceptable period” is a 

time-based imposition projected over the relation (e.g., the 

interview slice comes after the handshaking slice by minutes 

but not after, say, a day). Time brings practicality to changes 

in the model. Hence, the mere insertion of time in a change 

is a physical event specifying the start and duration of each 

change to make them fit together as a physical realization. 

Additionally, with the introduction of time in the 

chronology of events, we can invent events such as the 

start time and end time for the whole chronology of 
events. Note that we cannot create a “start change” 

because all changes start simultaneously; hence, the start 

change precedes all changes. If we cut a watermelon in 

two slices, then both pieces are created simultaneously. 

However, we can create a start event.  

Assume that Δ is a basic thimac (i.e., a thimac with 
no subthimac); for example, a single action such as 

create, process, release, transfer, or receive. Let ▲ 

denote the time thimacs of basic thimacs. Assume that σ 

is the smallest unit of time taken by any ▲. Accordingly, 

the σs are mapped to the positive integers: 

 

σ1, σ2, σ3,… 

 

We will assume that each event is mapped to 

consecutive σs that represent its start, duration and end time. 

The aim is to align events with respect to each other such 

that each occupies one or more σ. Any event will require 

multiple consecutive σs. We can conclude that an event has 

a unique time (hence, an event is unique) and a change may 

have different events and hence different times (different 

events over the same change). 

 

 

 
Fig. 10: Chronology of changes in the interview example 

 

 

 
Fig. 11: Chronology of events in the interview example 

 

 
 
Fig. 12: Differences of realization of chronologies of changes 

(top) and events (bottom; e.g., The director leaves the 
interview to talk to the secretary, then comes back to 
the interview is an acceptable model of changes, but 
not of events.) 
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It is obvious that events are never repeated. 

Repeatability is a shorthand notation for events that have 

identical changes. Thus, E3 (interviewing) denotes a set 

of events E3
1, E3

2,…, E3
n such that C (E3

1) = C (E3
2) … = 

C(E3
n). Saying “the sun rises every day” is a way of 

saying “the sun rose today, yesterday, before, or after,” 

etc. The different events have the same change (sun 

rising) and differ only in their time subthimac.  

A repeated single type of event (e.g., two knocks on a 

door) indicates two consecutive events with the same 

change. Events can be constructed from small 

consecutive events. In general, if Ei happens before Ej, 

then it is not possible that Ei follows Ej.  

Changes also cannot be repeated except through 

events. The arrows in the chronology of changes indicate 

flow of things (note the difference in the type of arrows 
between Fig. 10 of changes and Fig. 11 of events). An 

apple that is decaying is a single change and a single 

event involving flow of decay (e.g., creating more 

bacteria), not a repeated change or event of decay. Thus, 

C9  C3 does not mean a repeat of C3 but the flow of the 

director back to C3. E9  E3 means the occurrence of 

event of type E3 (has the same change as a previous event 

of type E3).  

Re-examining the interview example, Bochmann 

(2015) described the model in Fig. 7 as a Labelled 

Transition System (LTS). An LTS contains a finite 

number of states and a finite number of transitions that 

are labelled. Each label represents a certain interaction of 

the modeled object with its environment and the 

transition diagram defines the order in which these 
interactions may be performed. LTSs seem to be an 

active area of research. A very recent work involves LTS 

decompositions and their solvability by Petri nets 

(Devillers et al., 2019). According to (Fares et al., 2013), 

formal specification languages introduce entities, usually 

called processes, which offer similar operators and 

define their operational semantics based on an LTS.  

The aim of re-modeling this example is to develop a 

better understanding of the formal LTS approach through 

TM modeling. However, the result provided an 

opportunity to exhibit some of the TM features, 

especially those that correspond to state-based modeling.  

For example, in the LTS diagram Fig. 7, the secretary 

comes in then to reach the state where the director and 

the secretary engage in talk and this talk seems to be 

repeated (reflexive arrow). This repeatability of the state 
of talk between the director and the secretary, according 

to the TM model, is flow-based repetition (C9 to C3 and 

C9 and C5 in Fig. 10). According to (Bochmann, 2015), 

“In this example (and when using LTS models, in 

general), one uses a state-oriented modeling approach 

where the actions are modeled as transitions and not as 

‘activities’ or ‘states’. In fact, these transitions here 

represent collaborations between several agents.”  

A transition is represented as an arrow that indicates 

what activity can be executed next. A transition is 

triggered by an event. There is no direct definition of 

what an event is in LTS. In LTS, kinds of events are 

given as messages, changes of the values of variables and 

events that trigger time (e.g., timeout). Therefore, to 

understand an event, we have to look at what a message 

is, what a change is and what triggering time means.  

Returning to the repeatability of talk with the 

secretary in Fig. 7, it seems to involve time, but the 

window of time is separate. Accordingly, “talking to the 

secretary” involves many transitions that lead to the same 

state. However, transitions are triggered by events. At 
this point, it is not possible to understand the semantics 

of this part of the LTS diagram, especially regarding the 

timing aspects. A similar statement applies to the 

reflexive arrow over the interview.  

On the other hand, the TM modeling seems to provide a 

simple description of the interviewing process as follows: 

  

1. Description in terms of the S model with atemporal 

flows specified by five actions 

2. The D model identifies the states or changes. Hence, 

we can construct the atemporal chronology of states 
3. The behavior model model applies time to states to 

build the temporal chronology of events 

 

Each of the notions of a thimac, machine, thing, 

action, flow, change or state, event and time has its own 

precise definition and ways of participating in the 

models. For example, an event is a change plus time. A 

change is a scene as a subdiagram of S. The subdiagram 

of S is constructed from TM actions, which are create, 

process, release, transfer and receive.  

A Traffic Light Control Re-modeled  

This section applies TM modeling to a larger project 

involving engineering design, which brings the analysis 

closer to the typical state machines in the literature.  
Wagner et al. (2006) designed a traffic light control at 

a level crossing of a railway and a road. In this example, 

there is only one rail line, but the trains may come from 

either direction. Three sensors detect the trains: L (left), M 

(middle) and R (right). The output of the system is a red 

lamp that should be switched on if the train approaches 

sensor L (if coming from left) and should be switched off if 

the train leaves the sensor at M. Similar actions should be 

performed if the train comes from the right. The state 

diagram Fig. 13 to model the system is described in 

Table 1, where X is either L or R. (Wagner et al., 
2006) stated that using state diagrams is a way to 

rethink design software, in which most of the usual 

control-flow coding is avoided and the FSM concept 

takes a predominant part in the design process.  
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According to (Wagner et al., 2006), FSM introduces “a 

concept of a state as information about its past history” 

(Italics added). Other mentions of the notion of state include 

“The history of input changes required for clear 

determination of the state machine behavior is stored in an 
internal variable State” (Wagner et al., 2006). In the given 

example, the each state is clearly identified.  

Figure 14 shows the S model of this railway example. 

The train comes from the left (1) to enter the left-middle 

area (2), triggering the red light (3 and 4). It continues 

to the middle area (5), then to the middle-right area (6) 

to trigger the green light (7 and 8). Then, the train 

leaves (9) to the right.  

Additionally, the train may come from the right area 

(10) to the middle right area to trigger the red light (11 

and 12). It continues to the middle area (13), then to the 
middle-left area (14) to trigger the green light (15 and 

16). It exits to the left area (16).  

Figure 15 shows the D model. The changes in the 

figure are identified according to (Wagner et al., 2006) 

given states as follows: 

 

 Change 1 (C1): The train is at the L sensor. This 

change is captured by the L sensor when the transfer 

of the train starts from the L to the L-M area, as 

shown in C1 in Figure 15. This is what (Wagner et al., 

2006) call state 001 Table 1 

 Change 2 (C2): Now the train is completely in the L-M 

area. The L sensor now creates a signal to turn the light 

red, which (Wagner et al., 2006) call state 011 Table 1 

 Change 3 (C3): The train is at the M sensor. This is 

what (Wagner et al., 2006) call state 011 Table 1. It 

is not clear what the role of the sensor is, except 

perhaps communicating the value 011 

 Change 4 (C4): The train moves to the M-R area 

to trigger turning the light green and continues to 

the R area. This is what (Wagner et al., 2006) call 

state 100 Table 1 
 

Similarly, changes C5, C6, C7 and C8 occur when the 

train comes from the right. Note that: 

 

 C1 and C5 are of state type 001 

 C2 and C6 are of state type 010 

 C3 and C7 are of state type 011 

 C4 and C8 are of state type 100 

 C5 and C10 are of state type 101 
 
Note also the roles of the L sensor: 
 
(a) Recognizing that the train is coming from the left  

(b) Sending a signal to turn the light red  
 
The R sensor’s roles are as follows: 

 

(a) Send a signal to turn the light green  

(b) Signal that the train is going to the left  
 
The R and L sensors play similar roles.  
 
Table 1: State model of the train example (adapted from 

Wagner et al., 2006) 

Description  State  Code  

No train  No train  000  
On X  Coming  001  
Between X and M  Approaching  010  
On M  Present  011  
Between M and X  Leaving  100  
On X  Going  101 

 

 

 
Fig. 13: State model of the train example (adapted from Wagner et al., 2006) 
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X_HIGH & M_LOW X_ LOW & M_ HIGH 

X_LOW & M_LOW X_LOW & M_LOW 

X_HIGH & M_LOW 

2 

Coming 
3 

Approaching 

6 

Going 

5 

Leaving 

1 

No train 
4 

Present 



Sabah Al-Fedaghi / Journal of Computer Science 2020, 16 (7): 891.905 

DOI: 10.3844/jcssp.2020.891.905 

 

902 

 
 

Fig. 14: S model of the railway crossing 

 

 
 

Fig. 15: D model of the railway 

 

From the TM perspective, the locations of the sensors 

are problematic in (Wagner et al., 2006) description of 

the problem. For example, according to the TM model, 

the L sensor should be located at the end of the L-M area 

(transfer from L to L-M) furthest from the M area. Thus, 

the sensor functions as follows: 

 

1. As soon as the front of the train enters (transfer) the 

L-M area, the sensor recognizes the train is “On L” 

Table 1 

2. As soon as the end of the train enters the L-M area, 

the sensor signals “between L and M” 

 

However, when the train comes from the right, leaving 

the M area and entering the M-L area, the sensor 

should be located at the end of the M-L area closest to 

the M area.  

An additional observation of the FSM modeling of 

the train example is that when the states are converted to 

events, care should be taken in possible conflicts in 
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behaviors (or sub-behaviors) of the system. For example, 

in (Wagner et al., 2006) state machine, to avoid allowing 

trains to come from the left and right simultaneously, 

they equated states C0 (train from left) with C6 (train 

from right) and made them one state. Because only one 
state is active, no conflict occurs. However, the 

orientation (direction) of the two is different so the two 

states are not identical.  

We will not elaborate further on such problems, 

focusing instead on contrasting the semantics of FSM in 

terms of the TM modeling.  
Figure 16 shows the succession of changes. As stated 

previously, generating changes is analogous to cutting S 
into pieces in the sense that the changes are born 
simultaneously. The cutting is a timeless process. 
When we use a multicutter, say for an apple, then all 
pieces stay in their positions relative to each other 
after the cutting process. Each piece is a change in the 
total apple. The slices’ positions relative to each other 
may be taken as a base to order them and we call the 
succession a chronology of changes. The whole order 
is timeless: A change is “before” or “after” another 
change only in the selected ordering. This is what 
happens when we construct the D model. In the 
chronology of changes in Fig. 16, we note that we can 
start the chronology (timeless ordering) of changes at 
C1 or C6. Note that if we introduce a “no train” event, 
say, C0 = “no train” (as Wagner et al., 2006) as a 
change (state), then C0 is adjacent to all changes 
because they are created simultaneously. This would 
disturb the diagram of the chronology of changes. 

Again, the chronology of states (e.g., state machine) 
creates a picture of what things should be (form). If a train is 
coming, then things progress as follow: The train crosses the 
area before arrival and then it arrives. Next, it moves away. 
The order is a structural not temporal. It is a template (form) 
of a potential series of motions in the world. Accordingly, 
the actions or stages in the TM machine Fig. 1 are just 
changes or states and their chronology is a timeless order 
that reflects laws of order over elementary states. Of course, 
it is possible that a thing flows from release back to process, 
but this is not what things should be.  

To develop the behavior of the system, all changes 

are converted to events Fig. 17. The events diagram can 

be justified as a construction process that involves time.  
 In the analogy mentioned previously, suppose that 

we want to cut the apple into 10 pieces. We first cut one 

piece, then cut a second piece from the rest of the apple 

and so on. Although the result is identical to the 

simultaneous multicutting process, each piece now has a 

temporal stamp that is either born before or after. Because 

we are in the time context, we can declare the starting time 

of the cutting process as Event 0 (E0). E0 is followed 

exclusively by E1 or E6. Thus, we arrive at the behavior of 

the system shown in Fig. 17. Now, E1 and E6 cannot occur 

simultaneously. Wagner et al. (2006) “no train” event can 

be amended to the end or beginning of the train flows.  

 
 
Fig. 16: Chronology of changes in the railway example 
 

 
 
Fig. 17: B model of the railway 
 

Accordingly, we can declare that a state is a (timeless) 

change. The change is a discrete snapshot of a portion 

(subdiagram) of the grand thimac. Because it is a change, 

the notion of state is a pre-events snapshot. The change or 

state is a sub-thimac and the order of changes or states does 

not need the notion of time. For example, the state “On M” 

in the train example is a thimac and its machine is: 

 
Middle. Transfer (input).Receive.Process.Release. 

Transfer (output) 

 

That is, the corresponding machine is the flow of the 

train inside the middle area. “On M” is just a name for 

the thimac. Hence, each of the five actions in M can 

represent an elementary state. Accordingly, the TM Fig. 1 

is a state machine with five elementary states. 

Conclusion  

This paper aims to establish a precise definition of the 

notion of state and state machines. State is the main notion 
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of a state machine, in which events drive state changes. The 

analysis of these concepts is based on a new modeling 

methodology called the Thinging Machine (TM) and we 

considered a number of examples of existing models.  

The TM model seems to provide richer descriptions 

of the situations in the given examples with clear 

meaning of what a state (change) is. It can be used as a 

semantic base for the state diagram. The state machine is 

obviously a thimac without time and the order of the 

states is a timeless order. This order is isomorphic to the 

time order of states with time.  
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