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Abstract: Classic dynamic data structures maintains itself subject to 

sequence S of operations and answer queries using the latest version of the 

data structure. Retroactive data structures are those which allow making a 

modification or a query in any version of this data structure through its 

timeline. These data structures are used in some geometric problems and in 
problems related with graphs, such as the minimum path problem in 

dynamic graphs. This work presents how to implement a data structure to a 

fully retroactive version of a priority queue through persistent self-balanced 

binary search trees in polylogarithmic time. We use these data structures to 

improve the performance merging two versions of partially retroactive 

priority queues. The empirical analysis showed that the average performance 

of the proposed algorithm is better in terms of processing times than the other 

algorithms, despite the high constants in its complexity. 
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Introduction 

Considering the computational evolution and the 
miniaturization of hardware components, software 
should be able to support a large volume of data and an 
expressive number of operations. In some applications, 
it is necessary to maintain the history of operations 

performed and a change in one of these operations can 
create a cascade effect in this historical sequence of 
events. For example, supposing that one discovered a 
wrong measure received from a sensor and needs to 
update this measure given by the sensor. Once the 
measure from this device changes, all the information 
previously extracted from the next measures needs to 
be changed as well. A way to deal with all this different 
information is performing a rollback on all measures 
and re-extracting the information about the new 
measure. This process is sometimes non-optimal. The 
notion of retroactive data structures was created by 

(Demaine et al., 2007). 
In the literature, there are two types of temporal data 

structures: Persistent and retroactive. In both types, it is 

possible to perform updates and queries to the past. The 

difference between these two types of data structures is 

what happens when an operation is performed. In 

persistent data structures, a new version of this structure 

is built, deriving from the modified parts of the 

operation. As an example of this structure, we have the 

version control software, such as git, which allows 
creating a new branch in a main timeline of the project, 

changing only some parts of the entire project. 

The other type of data structure is the retroactive one. 

Retroactive data structure is defined by (Demaine et al., 

2007) as data structures that efficiently support 

modifications to the historical sequence of operations 

performed on the structure. In retroactive data 

structures, we are interested in studying and optimizing 

the cascade effect created by changing an operation in 

the past of the data structure. 

In a priority queue, the standard operations are: 
 

 Push(x): Add a value x to the data structure 

 Pop(): Delete the minimum value in the data structure 

 GetPeak(): Return the minimum value in the priority 

queue 

 

These operations can be easily handed in O(lg (n)) 

time using binary heaps. However, in the retroactive 

version of this data structure, we need to be able to 

execute the following operations: 

 

 Insert(t, Push(x)): Add a value x to the data structure 

at time t 

 Insert(t, Pop()): Insert a deletion removing the 

minimum value in the data structure at time t 



JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915 

DOI: 10.3844/jcssp.2020.906.915 

 

907 

 Delete(t, Push(x)): Delete the operation Push(x) 

performed at time t 

 Delete(t, Pop()): Delete the operation Pop() 
executed at time t 

 GetPeak(t): Return the minimum value in the 

priority queue at time t 

 

In a partial retroactive data structure, the query 

operations, such as GetPeak(t), will always run with t = 

 (i.e., at the present time). 

The operations in the retroactive version of the priority 

queue are a bit harder to handle, once a modification in the 

past can create a cascade effect, changing the timelines of 

each element in the data structure. 

Demaine et al. (2007) proposed retroactive versions, 
partial and full, to some data structures such as stacks, 

queues, union-finds and priority queues. In that occasion 

he proposed a fully retroactive priority queue in 

 lgO m m  time per update, where m is the size of the 

timeline in which the data structure is implemented. 
Years later, Demaine et al. (2015) presented an 

optimized solution that allows performing the update 

operations in O(lg2m) time, using a data structure called 

checkpoint tree. This new approach also supports the 

operation of determining the time at which an element 

was deleted from the data structure in O(lg2m) time. 

However, we could not find any paper about 
implementing and testing these data structures. We use the 
theoretical knowledge presented by Demaine’s articles to 
implement and to test the fully retroactive priority queue 
and fill this lack of implementations of retroactive data 
structures. In this article we perform a slight modification 

in the original algorithm proposed to get the fully 
retroactive priority queue in poly-logarithmic time using 
fully persistent self-balanced binary search trees. 

Related Works 

In computing, a persistent data structure is one that 

always preserves the previous version of itself when it is 

modified. This term was introduced by (Driscoll et al., 

1989). A data structure is called partially persistent when 

any version of the data structure can be accessed, but 

only the newest version can be modified. A data 

structure is called fully persistent when we are able to 

modify any version of the data structure. There is also 
the notion of confluent persistent data structures, which 

are structures created by merging two different versions 

of the same data structure. Data structures that are not 

persistent are called ephemeral (Kaplan, 2018). A 

practical example of using persistent data structures is 

the planar point location problem proposed by    

(Sarnak and Tarjan, 1986). In this problem, we have a 

set P of n non-intersect polygons P = {p0, p1,, pn} 

and we need to answer q queries. In each of these 

queries, we need to answer, given a point v = (x, y), 

the index of a polygon which contains point v, or 

answer if the point is not contained in any polygon. 
Using persistent binary search trees, the algorithm 

proposed by (Sarnak and Tarjan, 1986) consumes 

O(n)-space and O(lg (n))-time complexity. 

The literature considers two types of retroactivity: 

Partial and full. Partial retroactivity allows the user to 

know how changes made in the past currently affect the 

structure. Fully retroactive data structures allow the user to 

make queries and updates both in the past and in the 

present (Demaine et al., 2007). There is also a concept of 

non-oblivious retroactive, introduced by (Tangwongsan 

and Blelloch, 2007), which are structures that allow the 
user to know, after an update in the past, the first instant at 

which this data structure will become inconsistent. 

Partially retroactive data structures are more efficient and 

less complex than fully retroactive data structures. 

The notion of retroactive data structure helps to 

solve problems, such as dynamic shortest path problem 

(Sunita and Garg, 2018) and geometric problems, such 

as cloning Voronoi diagrams (Dickerson et al., 2010) and 

nearest neighbor search (Goodrich and Simons, 2011). 

Demaine et al. (2015) proposed a fully retroactive 

priority queue that consumes O(lg2m) per update, 

improving the previous lower bound of  lgO m m  

time per operation. The data structure also supports the 

operation of determining the time at which an element 

was deleted from the data structure in O(lg2m). 

Chen et al. (2018) sets a nearly optimal separation 
between partially and fully retroactive data structures. 

The authors used some conjectures to prove that the 

upper bounds between partially and fully retroactive data 

structures is n << m , where n is the size of data 

structure and m is the number of operations in the 

timeline, by showing a new transformation with 

multiplicative overhead nlgm. They also proved a lower 

bound of  
 1 1

lg ,
o

n m m


 . 

Henzinger and Wu (2019) sets upper and lower 
bounds for fully retroactive graph problems, such as 
graph connectivity, minimum spanning forest and 
maximum degree. They also proposed an algorithm 
for incremental fully retroactive connectivity in Õ(1) 
time per operation. 

Fully Retroactive Priority Queue in 

Polylogarithmic Time 

It is possible to transform a time-fusible data 

structure, with a logarithmic multiplicative cost, using 

a technique called hierarchical checkpointing. Two 
data structures E1 and E2 are called time-fusible if 

they represent the same data structure in consecutive 

disjoint times. 
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In other words, let 
1E

I = [l1, r1] be the time range 

corresponding to E1 and 
2E

I = [l2, r2] be the time range 

related to data structure E2. Thus, these data structures 

are time-fusible if r1 < l2 e r1 +1 = l2. The union of these 

data structures generates another data structure Ef = 

E1E2, which covers the range 
fE

I = [l1, r2]. 

With this definition, it is possible to generate a binary 

tree in the data structure timeline, in which each node 

represents a continuous time range in this timeline. This 

transformation was denoted by (Demaine et al., 2015) as 

hierarchical checkpointing 

To create a data structure using this technique, the first 

step consists in building the checkpoint tree - a binary 

search tree in which each node maintains a partially 

retroactive data structure containing all the updates made 

to its sub-trees. This tree is similar to the segment tree. 
In a segment tree, each node represents a 

continuous time range [l, r], starting at time l and 

ending at time r. Each node from this segment tree 

will contain a partial retroactive priority queue and 

two auxiliary sets: Qnow, containing the elements 

inside the priority queue, considering the operations 

performed between l and r and Qdel containing the 

elements removed by some operation in this temporal 

range. Sets Qnow and Qdel are given by the partial 

retroactive data structure inside a certain node. 

If a priority queue is empty when an operation Pop at 
time t is performed, then this operation will insert a key 

with infinity value in Qdel. That is equivalent to inserting 

a value  at time t and immediately removing it. 

Figure 1 shows the representation of a checkpoint 

tree. The set Q[l, r] represents the priority queue which 
covers all the operations carried out in the time range [l, 

r], in the data structure timeline. In this case, the data 
structure has a timeline of size 16 and a query is being 

performed in the structure at time 11. The green nodes 
represent the ones inside the time range in this query and 

the leaf nodes represent the operations conducted 
through the timeline. In the leaves, D represents that a 

delete operation was performed, whereas the numbers 
represent the insertions. In a checkpoint-tree, the leaf 

nodes also represent a data structure in a single point, 
that is, Q[i,i] for all the i inside the timeline range. 

Figure 2 shows how each node keeps the 
information about the operations carried out. Each 

node contains two sets, Qnow and Qdel, as 
aforementioned. Thus, to obtain the range Q[1,11] 

(equivalent to a fully retroactive priority queue at time 
11), we need to obtain Q[1,8]  Q[9,10]  Q[11,11]. 

Algorithm to Merge Two Partially Retroactive 

Priority Queues 

Demaine et al. (2015), it is possible to merge two 

partially retroactive priority queues. Consider two time-

fusible priority queues Q1 and Q2 (that is, with time 

range [l1, r1] and [l2, r2] that r1+1 = l2). We can thus 

generate a priority queue Q3 merging Q1 and Q2 covering 
the range [l1, r2]: 

 

 

 

3, 2, 1, 2,

3,  1, 1, 2,

 max  

  min  

now now now del

del del now delg

Q Q A Q Q

Q Q D Q Q

   

   
 

 

where, A = |Q1,now  Q2,del| - |Q2,del|, D = |Q2,del| and max-

C{S} denote the greatest C elements in S, as min-C{S} 

represents the smallest C elements in set S. In the 

algorithm, these sets are only merged when a query 

operation is performed. 

After defining the sets, it is possible to write 

Algorithm 1, which returns the union of these partially 

retroactive priority queues (Demaine et al., 2015). In 
this Algorithm, getSplitKey(D,T) returns a value x, in 

which all the subsets of T should be divided and the 

number of values smaller or equal to x are equal to D. 

This function can be implemented in logarithmic time 

in the size of the set generated by the union of Q1,now 

and Q2,del using a binary search. 

 

Algorithm 1 Algorithm to merge two partially retroactive 

priority queues 

1: procedure Merge(Q1, Q2) 

2:  D  |Q2,del| 

3:  T  {Q1,now  Q2,del} 

4:  x  getSplitKey(D,T) 

5:  Q3,now  Q2,now  T>x 

6:  Q3,del  Q1,del  T  x 

7:  return Q3 

8: end procedure 

 

Given a set T and a key x, a data structure, able to 

divide this set into two sets T1 = Tx and T2 = T>x, is 

necessary. It is possible to use a balanced binary search 

tree to keep the sets Qnow and Qdel. In a balanced binary 

search tree, it is possible to divide this tree into two trees 

as mentioned previously. 

Figure 3 depicts the two first nodes merged in a query 

related at time 11 in the priority queue presented in 

Figure 1. The blue and red elements respectively 

correspond to sets Qnow and Qdel from partial priority 

queue Q[1,8], while the yellow and purple elements are 

the elements inside Qnow and Qdel from partial priority 

queue Q[9,10]. The blue and purple elements are united by 

operation {Q[1,8],now  Q[9,10],delg, being that the smaller D 
= |Q[9,10],del| are inserted in a new set Qdel, while the other 

ones are inserted in Qnow. 

The elements inside Q[1,8],del and Q[9,10],now (yellow 

and red elements, respectively) are not affected by the 

union operation, since none of the elements inside set 
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Q[1,8],del can be recovered when these time ranges are 

merged. Likewise, the elements inside priority queue 

Q[9,10],now cannot be erased by a deletion operation that 

occurred prior to its insertion. 

 

 
 

Fig. 1: Example of a checkpoint tree generated from a priority queue. Source: The authors 

 

 

 
Fig. 2: Query example in a checkpoint tree. Source: The authors 

 

 
 

Fig. 3: Example of merging two nodes in a checkpoint tree. Source: The Authors 

Q[1,16] 

Q[1,8] Q[1,16] 

Q[1,4] Q[9,12] Q[13,16] 

Q[1,2] Q[3,4] Q[5,6] Q[7,8] 

Q[5,8] 

Q[9,10] Q[11,12] Q[13,14] Q[15,16] 

D D 97 D D D 10 7 1 8 4 23 18 D 13 6 

1              2              3              4              5             6              7              8             9            10            11            12           13           14             15           16 



JoseWagner de Andrade Junior and Rodrigo Duarte Seabra / Journal of Computer Science 2020, 16 (7): 906.915 

DOI: 10.3844/jcssp.2020.906.915 

 

910 

 
 

Fig. 4: Example of merging two nodes in a checkpoint tree (continuation). Source: The Authors 

 

 
 
Fig. 5. Persistence example using the path-copying 
 

Figure 4, the same operation is performed, yet 

considering that Q[1,8] and Q[9,10] were merged by the 

previous operation. We thus merge Q[1,10] with Q[11,11]. 

Now, the blue and red blocks are the elements inside 
Qnow and Qdel from Q[1,10] and the yellow and purple 

elements are related to partially retroactive priority 

queue Q[11,11]. Thus, it is possible to obtain the 

minimum element in data structure Q1,11 getting the 

smallest value inside Qnow after merging these three 

nodes from the checkpoint tree. 

Using the implementation of a standard binary search 

tree without any modification for each set, we lose the 

information about a tree after a division by a value x. A 

technique in a binary search tree. Source: The Authors. 

possible solution could be copying the entire tree and, 
after this operation, performing the division in this 

new copied tree. However, this solution consumes 

linear time in the size of the tree. To optimize this 

solution, we can use a persistent version of a tree, 

which creates a new version from a tree by only 

modifying the nodes affected by the division. 

Persistent Cartesian Tree 

To perform the queries using the approach 
aforementioned, it is necessary to implement a data 
structure that keeps the versions of a binary search tree. 
There are some methods to transform a data structure 
into its persistent version. 

In this implementation, we used a persistent 

version of the randomized binary search Cartesian tree 

(Martínez and Roura, 1998). The tree was made 

persistent using the path-copying technique (Driscoll et al., 

1989). In other words, for each node from the root to the 

modified node, a copy is created and the modifications 

are made to this copy. 
Figure 5 presents the visual representation of an 

insertion operation in a binary search tree. The example 
shows the insertion of element 13 in the tree. The 
operation begins with a standard insertion in a binary 
search tree. That is, if the x value inserted is lower than 
the current node; we recursively go to the left child, 
otherwise, to the right child, repeating this operation 
until the current node is not empty. 

In the example, an insertion in a standard binary 

search tree would follow path {10, 15, 12} to insert 

element 13. In the persistent version, this operation 

follows the same path, but these nodes are copied to 
create a new version of this tree. When a copy is made, 

all the attributes of a previous node are copied, including 

the left and right child of this node. For example, in Fig. 

5, node 10 is initially copied and the pointers to the left 

and right child of this new node point to {5, 15}, 

respectively (blue dashed edges). After analyzing the 
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node value, the algorithm recursively calls the insertion 

function to the right, creating a new blue node with value 

15 (black edge). Note that, after creating this new node, 
one of the blue dashed edges was replaced with a black 

edge by the recursive call. That is, all the blue dashed 

edges represent connections between distinct versions of 

the data structure, while the black ones are edges 

between vertices created in the same version. Using this 

technique, a new version of the data structure going 

through the tree height can be created. 
Algorithm 2 shows how to implement a node copy p. 

In a copy, all the attributes from this node are duplicated. 
The function update(p) updates and returns the node, 
updating information about the maximum, minimum and 
the size of the sub-tree rooted in p. 
 
Algorithm 2 Function to copy a node 

1 pTreapNode copy(pTreapNode p) { 

2  pTreapNode cpy = new TreapNode(p->key, p->data); 

3  cpy->l = p->l; 

4  cpy->r = p->r; 
5  return update(cpy); 

6 } 

 
Algorithm 3 shows the function that implements the 

split of a binary search tree t, by a value key, generating 

trees a = tkey and b = t>key. Therefore, if the current tree 

is null, this implies that the split function reached the end 

and the split generated in this state generates two empty 

trees. If the tree is not empty, the root of this sub-tree 

will be modified by a split operation and thus, it is 

necessary to copy this node (line 7). 

 

Algorithm 3 Split operation in a persistent binary search 

tree 

1 void split(pTreapNode t, K key, 

2  pTreapNode anda, pTreapNode andb) { 

3 

4 if (!t) { 

5  a = b = NULL; 

6  return; 

7  } 

8  pTreapNode aux; 
9  t = copy(t); 

10 if (key < t->key) { 

11  split(t->l, key, a, aux); 

12  t->l = aux; 

13  b = update(t); 

14  } 

15  else { 

16  split(t->r, key, aux, b); 

17  t->r = aux; 

18  a = update(t); 

19  } 

20 } 

 
 
Fig. 6: Example of a split operation by a value x in a binary 

search tree. Source: The Authors 

 

Figure 6 shows the representation of a split operation 

in a sub-tree rooted at node t by a value x. In the case 

shown, value x is higher than the value in the root of the 

tree and the figure therefore refers to the operations 

performed between lines 13 to 16 from Algorithm 3. 

Initially, the split function is called recursively to the 

right child of the tree, returning two pointers, aux and 

b. The values inside the tree rooted in aux are lower 

than value x of the division of the tree; however, higher 
than the values inside the current tree; thus, aux 

becomes the right child of this tree. The sub-tree rooted 

in b is correct after the recursive call. Finally, the sub-

tree rooted in t after the split is assigned to a; thus, a 

contains all the values lower or equal to x while b 

contains all the values higher than x. Symmetrically this 

algorithm is implemented when value x is lower than the 

value in the current sub-tree. 

Algorithm 4 shows how to perform an insertion in a 

randomized binary search tree. In this tree, besides its pair 

key/value, each element contains, a variable that represents 

its balancing. This kind of tree is also is commonly called 

Treap (tree + heap  Treap), because it combines the 
search properties from a binary search tree with the 

balancing properties from a binary heap. In a binary heap, 

every child element from a node is lower than this node. 

This condition should be maintained to keep the heap 

property. This data structure is called Cartesian tree as well. 

In Algorithm 4, the heap condition is kept by the 

auxiliary variable y, which keeps the balancing of the tree 

through this property. In other words, let (x, y) be a pair 

related to a value x in the tree and y a randomly selected 
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value, we want to keep the heap property in the tree using 

the y values in a binary search tree related to its x values. 

 

Algorithm 4 Insertion operation in a persistent 

Cartesiantree 

1 pTreapNode insert(pTreapNode t, pTreapNode it) { 

2  t = copy(t); 

3  if(!t) { 
4  t = it; 

5  } 

6  else if(it->y < t->y) { 

7  split(t, it->key, it->l, it->r); 

8  t = it; 

9  } 

10  else { 

11  if(it->key < t->key) t->l = insert(t->l, it); 

12  else t->r = insert(t->r, it); 

13  } 

14  return update(t); 

15 } 

 

Since it is a persistent Cartesian-tree, the first step 

consists in copying all the nodes in the path between the 
tree root and the element inserted. In line 3, we have the 

base case, when the sub-tree root is null and, thus, the sub-

tree root is the current element. After this, we need to treat 

the tree heap property. That is, if the priority of the current 

inserted element is lower than the priority of the current 

sub-tree root, this means that the currently inserted element 

cannot descend further into the tree. Therefore, the sub-tree 

is divided by the key of the inserted node and the current 

node is defined as the root of the two trees generated by the 

division. Otherwise, the insertion of the new element 

follows the normal operations of a common binary tree. 
Algorithm 5 shows the implementation of a function 

to merge two binary self-balanced search trees, l and r, 

in which the highest value from tree l is lower than the 

lowest value from r. When a merge operation occurs, 

there are two possibilities: 
 

 Use tree l as parent from tree r 

 Use tree r as parent from tree l 
 

After defining the merging policies, recursively calls 

are made until l and r are not empty. However, the 

definition of a static policy to merge the sub-trees can 

generate a completely unbalanced tree. 
 

Algorithm 5 Merge operation in two binary search trees. 

1 pTreapNode merge(pTreapNode l, pTreapNode r) { 

2  if (!l || !r) { 

3  return l ? l : r; 

4  } 
5  int m = getSize(l), n = getSize(r); 

6  if(rand() % (m + n) < m) { 

7  l = copy(l); 
8  l->r = merge(l->r, r); 

9  return update(l); 
10  } 

11  else { 

12  r = copy(r); 

13  r->l = merge(l, r->l); 

14  return update(r); 

15  } 

16 } 
 

In a fully persistent Cartesian tree, besides variable y 
used to maintain the heap property, the proportional 

probability of the size of the tree is used to define the 

policy used in this iteration. Therefore, two different 

executions of joining the same trees can yield different 

results, but maintaining an amortized logarithmic height 

in both cases. Line 6 of Algorithm 5 shows the 

probabilistic choice of policy, as presented. In the 

algorithm, the rand function returns a random integer. 

Figure 7 shows the union of two trees L and R, in 

which the highest value of L is lower than x, while the 

lowest value from R is higher than x. The blue node is 

the root resulting from the merging operation, which 
could be a node from L or a node from R. The larger the 

number of nodes in a tree, the greater the expected value 

of its height is. For this reason, the algorithm is more 

likely to root the tree with the most nodes. 
 

 
 
Fig. 7: Example merging of two binary search trees. Source: 

The Authors 
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The merging function eventually allows creating a 

delete function of an element in a Cartesian-tree. Due 

to the persistent nature of the structure, it is necessary 

to copy all the way to the removal of the node, which 

is performed by checking line 3 in Algorithm 6. 

 

Algorithm 6 Delete operation in a persistent 

Cartesiantree 

1 pTreapNode erase(pTreapNode t, K key) { 

2  t = copy(t); 

3  if (t->key == key) { 

4  t = merge(t->l, t->r); 

5  } 

6  else { 

7  if(key < t->key) t->l = erase(t->l, key); 

8  else t->r = erase(t->r, key); 

9  } 

10  return update(t); 

11 } 

 

Empirical Analysis 

After the implementation, this data structure was 

tested under some data sets. In these data sets, the 

operations are executed consistently. In other words, any 

operation in the timeline is consistent and can be 

executed. For example, we do not execute an operation 

Pop in an empty data structure. The data sets were 

generated such that every possible operation had the 

same chance of being executed. These data sets have a 

fixed temporal timeline of 105, i.e., all data structure 

versions exist in a time interval between 1 and 105 and 

all the operations were chosen randomly. 

These tests were executed using an Intel Core i5-

4200U CPU@1.60GHz x 4 processor and 8 gigabytes of 

memory. For measuring the results, we used the gtest 

tool, to obtain the empirical time complexity and 

valgrind, to get the memory consumption for each of the 

implementations. 

All the algorithms used in this article can be found at 

https://github.com/juniorandrade1/Master/blob/master/sr

c/Priority_Queue/ and the data sets can be found at 

https://github.com/juniorandrade1/Master/tree/master/tes

ts/Datasets/Priority_Queue. 

We use this pre-generated data sets to test the 

performance of three different implementations of a 

fully retroactive priority queue. The first 
implementation is the one proposed here, using 

checkpoint-tree and persistent binary search trees 

based on (Demaine et al., 2015) work. The second is 

the implementation of an algorithm proposed by 

(Demaine et al., 2007), which used a square-root 

decomposition technique with the partial retroactive 

priority queue to perform all updates and queries at 

time   lgO m n . The third implementation is a 

brute force algorithm; when a GetPeak(t) operation is 

performed, all the edges added at time t < t are added 

to the graph and, later, a standard shortest path 

algorithm is executed in this graph. 

Figure 8 shows the tests performed comparing the 

performance among three different implementations of 

the fully retroactive priority queue. 

 

 

 
Fig. 8: Performance test using random test cases. Source: The Authors 

https://github.com/juniorandrade1/
https://github/
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Fig. 9: Memory consumption in a fully retroactive priority queue. Source: The Authors 

 

The brute-force algorithm is faster than the second 

one in the first 1500 operations and, after that, the 

second algorithm is faster. This occurs because the 

constants in the brute-force algorithm are lower than the 

constants in the second algorithm. Also, the 

insertion/deletions in the bruteforce algorithm are faster 
than in the retroactive approach. Conversely, the 

GetPeak(t) operations is slower than the algorithm that 

uses the square-root technique. 

The first algorithm has a stable performance when the 

number of operations increase and also performed better 

than the other two algorithms, on average. This 

algorithm only presented a worse performance in very 

few cases, whereby the large implicit constant in the 

algorithm complexity made the poly-logarithmic 

algorithm slower as compared to the other ones. 

Figure 9 shows the memory consumption when the 

tests were performed. 
The brute force algorithm presented a very small 

memory consumption compared to the other two 

algorithms. The brute force algorithm maintains the 

operations performed ordered, consuming a long time 

when the queries are executed, but consuming a small 

amount of memory. The algorithm Retroactivity- m  
proposed by Demaine et al. (2007) consumes a large 

amount of memory because, besides storing m  partial 

retroactive priority queues, when an update operation is 

performed, the inserted object will be added in m  

partial retroactive priority queues, in the worst case. 

The poly-logarithmic algorithm proposed by   

(Demaine et al., 2015) maintains a checkpoint-tree 

which, in the worst case, modifies lg (m) partial priority 

queues. This explains the difference of memory 

consumption in these two algorithms. 

Conclusion 

This article presents an implementation to the fully 

retroactive priority queue using the checkpoint-tree 

technique proposed by Demaine et al. (2015) and fully 

persistent self-balanced binary search tree. The 

algorithm implemented in C++ using checkpoint-tree 

and persistent binary search trees performed better than 

the algorithm implemented using the square-root 

technique in terms of time complexity. 

Using the persistent self-balanced binary search 
tree allowed implementing an algorithm to merge two 

partially retroactive priority queues without losing 

information about the trees before executing the 

operations. 

In future researches, we intend to measure the 

influence of using other types of persistent binary search 

trees when merging two partially retroactive priority 

queues and also propose some applications in which we 

can use the poly-logarithmic retroactive priority queue 

along with the checkpoint tree idea. 
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