

 © 2020 Zirije Hasani. This open access article is distributed under a Creative Commons Attribution (CC-BY) 3.0

license.

Journal of Computer Science

Original Research Paper

Anomaly Detection Algorithms for Streaming Data:

Performance Comparison

Zirije Hasani

Faculty of Computer Science, University "Ukshin Hoti", Prizren, Kosovo

Article history

Received: 19-04-2020

Revised: 03-07-2020

Accepted: 17-07-2020

Email: zirije.hasani@uni-prizren.com

Abstract: Today’s most of the data are streaming time-series data, where

is very important anomaly detection over this data because gives

significant information of possible critical situations. Detecting anomalies

in big streaming data is yet difficult task because we have to process them

in real time, even before they are stored and instantly alarm on potential

threats. For real time streaming data is important the algorithm used for

anomaly detection to be robust with low processing time, eventually at

the cost of the accuracy. The aim of this paper is to measure the

performance of such algorithms and them to compare with our previously

proposed algorithm HW-GA with other existing methods as ARIMA,

Moving Average and Holt Winters. The algorithms are implemented in R

system and tested on the three Numenta datasets, with known anomalies

and own e-dnevnik dataset with unknown anomalies. Evaluation is done

by comparing achieved results (the algorithm execution time and CPU

usage). As a result of this research we may say that our algorithm HW-

GA outperforms others algorithm that we have compared by showing less

CPU usage and execution time. Our continues interest is to monitor the

streaming log data that are generating in the national educational network

(e-dnevnik) that acquires a massive number of online queries and to

detect anomalies in order to scale up performance, prevent network

downs, alarm on possible attacks and similar.

Keywords: Time Series Data, Big Streaming Data, Anomaly Detection,

Numenta, E-dnevnik

Introduction

The focus of researches nowadays is on anomaly

detection in real time Big Data. The amount of data is

bigger and bigger every day, the data are produced by

different equipment like sensors, manufactory

equipment, web applications, etc.

The speed of anomaly detection algorithm is very

important when we have to deal with real time data.

Anomaly detection algorithm proposal for real time

big data is not an easy task due to the fact that many

researchers tend to show that their solution is better. In

the previous research (Hasani et al., 2018) we have

proposed an algorithm for detecting anomalies in large

real-time data. There we have tested the accuracy of the

algorithm, comparing it to several other algorithms that

we singled out from previous research such as ARIMA

(Kasunic et al., 2011), Moving Average and Holt

Winters (Ekberg et al., 2011).

In this work the idea is to test the performance of

the proposed algorithm HW-GA and compare it with

other algorithms which are used for finding anomalies

in large amounts of data. We are going to compare

different algorithm such as HW-GA, ARIMA,

MovingAverage, Holt Winter, etc.

Anomaly detection in real time Big Data is actual

because the amount of data is increasing every day.

There are three characteristics of large amount of data:

Volume, veracity and variety of data. Hence the need for

performance testing in order to meet the speed

characteristic of large amounts of data. It is a vast field

of research because it involves algorithms from

different disciplines. Before selecting the correct

algorithm for anomaly detection is important to specify

firstly the data that will be analyzed in order to know

how we make the algorithm selection.
The comparative methods will use this study in order

to draw conclusions regarding comparative performance.

Zirije Hasani / Journal of Computer Science 2020, 16 (7): 950.955

DOI: 10.3844/jcssp.2020.950.955

951

Experiments, statistical analysis and visualization were

managed in R, a free software environment for statistical

computing and graphics.

To test the algorithm there will be used benchmark and

real time data. The NUMENTA benchmark (Lavin and

Ahmad, 2015) database will be used and real time data

from e-dnevnik application which is electronic education

system in North Macedonia.

The paper has the following structure: In the second

section is related work; in the third section is shown the

benchmark datasets that are sed for experimental work,

in the fourth section are shown the algorithms that are

used for testing; the fifth section describe the comparison

of algorithms performance; six section discuss the results

and conclusion from this research.

Related Work

As our continuous research in this area (Hasani,

2017a) we have compared many algorithms as MAD,

RunMAD, Boxplot, Twitter ADVec, DBSCAN, Moving

Range Technique, Statistical Control Chart Techniques,

ARIMA and Moving Average, to find which one is

faster. During this study the most important aspect which

we have considered in order to find anomaly detection

algorithm suitable for future implementation in the

online environment was the execution time (complexity),

the CPU usage and the satisfactory quality of algorithm

(measured through TP- True Positive, FP-False Positive,

FN-False Negative, TN-True Negative anomalies found).

As a result of this research are selected the best

algorithms ARIMA and Moving Average are compared

with our proposed algorithm (Hasani et al., 2018) and

Holt Winters where we have tested the correctness of our

algorithm in our previous research (Hasani et al., 2018)

and now in this research we are going to test the

performance/speed and CPU usage of our algorithm.

The benchmark Numenta Anomaly Benchmark

(NAB) (Lavin and Ahmad, 2015) is proposed, this

benchmark is used in our research. Numenta Anomaly

Benchmark (NAB), this benchmark provides a

controlled and repeatable environment of open-source

tools to test and measure anomaly detection algorithms

on streaming data. The perfect detector would detect all

anomalies as soon as possible, trigger no false alarms,

work with real-world time-series data across a variety of

domains and automatically adapt to changing statistics.

Zhang et al. (2019) propose an online and

unsupervised anomaly detection algorithm for streaming

data using an array of sliding windows and the Probability

Density-based Descriptors (PDDs) (based on these

windows). The experimental results and performances are

presented based on the Numenta anomaly benchmark.

Boldt et al. (2020) investigate to what extent sequence-

based Markov models can be used for anomaly detection

by means of the end-users’ control sequences in the video

streams, i.e., event sequences such as play, pause, resume

and stop. This anomaly detection approach is further

investigated over three different temporal resolutions in

the data, more specifically: 1 h, 1 day and 3 days. The

proposed anomaly detection approach supports anomaly

detection in ongoing streaming sessions as it recalculates

the probability for a specific session to be anomalous for

each new streaming control event that is received.

Falcão et al. (2019) they evaluate experimentally a

pool of twelve unsupervised anomaly detection algorithms

on five attacks datasets. Results allow elaborating on a

wide range of arguments, from the behavior of the

individual algorithm to the suitability of the datasets to

anomaly detection. They identify the families of

algorithms that are more effective for intrusion detection

and the families that are more robust to the choice of

configuration parameters.

Zhu et al. (2018) propose a real-time anomaly

detection framework with low computational complexity

and high efficiency. They propose Histogram of

Magnitude Optical Flow (HMOF) which capture the

motion of video patches. They show that HMOF is more

sensitive to motion magnitude and more efficient to

distinguish anomaly information. Experimentally they

show that the framework outperforms state-of-the-art

methods and can reliably detect anomalies in real-time.

Yuanyan et al. (2018) this paper introduces the extreme

value theory and proposes a data streams anomaly detection

algorithm based on self-set threshold with extreme value

theory (ESOD). They say that the proposed algorithm an

update the threshold in real time in order to adopt it for real

time streams. In their results that say that their algorithm has

good usability and high efficiency.

Jankov et al. (2017) presents the implementation of a

real-time anomaly detection system over data streams.

They implement their algorithm in Java and C++ and in

this paper, they provide technical details about the data

processing pipelines. They detect anomalies in real time

streaming data produced by manufactory equipment.

Also, Wang et al. (2019) in their work show the
anomaly detection with K-Means clustering algorithm in
both batch and real time environment. Their method is

dedicated to diagnose potential problems for offshore
rotating machinery. Their experiments are compared
with the conventional signal analysis method.

Starting from this research related to the works done

before, we have identified a research gap related to the

analysis of speed of anomaly detection algorithms HW-GA.

Benchmark Datasets

The experiments are done by real data and

benchmarks. The real data from e-dnevnik and NAB

benchmark (Lavin and Ahmad, 2015). The aim of the

experiments is to test the performance of HW-GA

algorithm and to camper it with other algorithms.

Zirije Hasani / Journal of Computer Science 2020, 16 (7): 950.955

DOI: 10.3844/jcssp.2020.950.955

952

Table 1: Part of benchmark data used for experiments

HotGym CPU utilization Nyctaxi Rtime e-dnevnik
--- -- ------------------------------- ----------------------------------
timestamp kw_wnwrgy_consumption timestamp metric_value timestamp value timestamp value

7/2/2010 0:00 21.2 4/10/2014 0:04 93.1456 7/1/2014 0:00 10844 6/13/2016 0:00 6413
7/2/2010 1:00 16.4 4/10/2014 0:24 94.5935 7/1/2014 0:30 8127 6/13/2016 0:00 345

7/2/2010 2:00 4.7 4/10/2014 0:44 93.5210 7/1/2014 1:00 6210 6/13/2016 0:00 354

Fig. 1: e-dnevnik two-week data

Fig. 2: Anomalies in e-dnevnik data

NAB contains datasets with a real world, labeled

data files across multiple domains and the associated

anomaly detectors applicable for the streaming data.

We use three NAB datasets, HotGym (the energy

consumption in one gym center in Australia), CPU

utilization and NycTaxi (the number of rides for NYC

taxi), as also our e-dnevnik. Parts of the datasets are

in the Table 1.

Jun 12

2018

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Jun 14 Jun 16 Jun 18 Jun 20 Jun 22 Jun 24

Jun 12

2018

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

Jun 14 Jun 16 Jun 18 Jun 20 Jun 22 Jun 24

Zirije Hasani / Journal of Computer Science 2020, 16 (7): 950.955

DOI: 10.3844/jcssp.2020.950.955

953

The datasets contain a timestamp and single value

based on the log. The first two have real and next two

integer values. Known anomalies are detected by human

inspection and confirmed by HTM algorithm in all three

NAB datasets, while in the e-dnevnik dataset anomalies

are not known.

In Fig. 1 is presented a sequence of data analyzed

from e-dnevnik. They are data with seasonality, is the

working period from 07:00 to 19:00 and not the

working period 19: 00-07: 00. If there is an increase

in demand during the non-working period, it is

calculated as an anomaly. Figure 1 shows the data for

the two-week period.

In Fig. 2 are shown with red circles what means one

anomaly in our real data and the algorithms tend to pick

them in the result.

Algorithms used for Testing

In statistics and econometrics and in particular in

time series analysis, an Autoregressive Integrated

Moving Average (ARIMA) (Kasunic et al., 2011) model

is a generalization of an Autoregressive Moving Average

(ARMA) model. Both of these models are fitted to time

series data either to better understand the data or to

predict future points in the series (forecasting) Moving

average. In time series analysis, the Moving-Average

(MA) model is a common approach for modeling

univariate time series. Together with the autoregressive

(AR) model, the moving-average model is a special case

and key component of the more general ARMA and

ARIMA models of time series, which have a more

complicated stochastic structure.

HW-GA algorithm: The Adaptive Algorithm for

Anomaly Detection. In Fig. 3 the positive feedback

optimization method for continuous adaptation of the

anomaly detection parameters is shown. The method is

composed of four different stages.

First is the annotation of the anomalies in the training

dataset. The anomaly annotation is defined as a time

interval where an anomaly is located. The annotation is

done by a human or an oracle.

The second stage is the computation of anomaly

detection parameters for our algorithm using GAs, i.e.,

computation of HW or TDHW parameters, together with

δ, k and n. GAs have been successfully applied to solve

optimization problems, both for continuous (whether

differentiable or not) and discrete functions. This enables

us to find near-optimal values of the anomaly detection

parameters very successfully.

The third stage is the actual anomaly detection engine

based on the computed optimal parameters from the

second stage. This stage outputs the detected anomalies

with our proposed algorithm.

The fourth stage is the human acknowledgment of the

output data and classify the output data into TP (true

positive), False Positive (FP) and False Negative (FN).

The result of the verification/acknowledgment stage is

then used again in the second stage for further

optimization of the anomaly detection parameters.

Performance Comparison of Anomaly

Detection Algorithms

In real time analytic is very important the speed

because it have to deal with real time data. Our

proposed algorithm HW GA (Hasani et al., 2018) is

tested for correctness but not for performance. In this

paper we test the performance of our algorithm and

compare it with other selected algorithms from

previous research.

Fig. 3: Model for HW-GA method for anomaly detection

Data set

Parameters GA

optimization

Anomaly interval

Data set Data streams

Anomaly detection

Verifying by human
Output

Zirije Hasani / Journal of Computer Science 2020, 16 (7): 950.955

DOI: 10.3844/jcssp.2020.950.955

954

Table 2: Experimental results from CPU usage and execution time

 E-dnevnik>40000 NYcTaxi-1441 HotGYM-169 CPU usage-3653

 ------------------------------- ------------------------------- ----------------------------- -----------------------------

 Execution CPU Execution CPU Execution CPU Execution CPU

Algorithms time (seconds) Usage time (seconds) Usage time (seconds) Usage time (seconds) Usage

HW GA 3.36 27% 1.20 9.8% 1.69 9.9% 0.32 12%

HW calc. MASE 12.17 43% 1.28 11.3% 1.47 14.6% 5.66 18%

HW def. MASE(k) 5.77 39% 1.44 10.4 1.21 10.4% 5.04 17.9%

HW def. MASE(k,n) 5.98 45% 1.22 10.6% 1.37 10.5 5.51 18%

ARIMA 3.52 32% 1.21 3% 0.73 2.3% 4.07 17.6%

MA 23.38 65% 1.27 7.6% 0.53 3.2% 14.38 22%

Our proposed algorithm (HW GA) (Hasani et al.,

2018) with GA optimized parameters (α, β, γ, δ, k, n) and

with improved MASE(α,β,γ,δ,k,n) is compared with ARIMA,

MA (implemented in our previous work (Hasani, 2017a),

HW where smoothing parameters are calculated by

formula and default MASE (HW calc.MASE), HW by

default smoothing parameters (optimized in R) and default

MASE (HW def.MASE), HW by default smoothing

parameters and improved MASEk,n (HW def.MASE(k,n)).

Algorithms evaluation focus on execution response time

and CPU usage. These two parameters are measured in the

running time of the algorithms. The algorithms are

implemented in R language and we have added in the code

in the star of the algorithm the timer and in the end of the

algorithm it shows the time taken to finish the algorithm, on

the other side the CPU usage is monitored in real time when

the algorithm is running how much CPU it use.

These parameters are important for us because, in the

future, the algorithm HW-GA have to work in the real-

time environment. Other criteria should be robustness,

flexibility, scalability and simplicity to implement in our

online infrastructure (Hasani et al., 2015; Hasani, 2017b).

Table 2 show the execution time and CPU usage for

six algorithms which are compared between them HW-

GA with others. The experiments are done in real data and

benchmark data as a described above. From the result we

can see that in real data e-dnevnik data the execution time

is faster in HW-GA 3.36 sec compared to other which is

larger also the CPU usage is smaller in real data. The

Execution time depends also from the amount of data to

be tested this affects also the CPU usage but when it is

compared to HW-GA it shows better results.

In real data the last algorithm MA show the larger

CPU usage 65% but is not the same situation which

benchmark data, but this happen because the amount of

data in e-dnevnik real data is larger than 40000 where in

others is much smaller (NYcTaxi-1441 records,

HotGYM-169 records, CPU usage-3653 records).

Results and Discussion

The results from experiments are shown in Table 2

from where we can see that CPU usage depends from the

number of records in one dataset. In general, two smaller

datasets of NYcTaxi and HotGYM the execution time is

smaller compared to CPU usage which have more than

three thousand records. This is for benchmark dataset but

the real dataset from e-dnevnik have larger amount of

data more than 40 thousand and here we can see that

CPU usage is larger compared to others. The other thing

that we can see is that ARIMA and MA in general in all

datasets have smaller CPU usage this because they are

not complicated algorithms compared to HW-GA but

related to correctness they are not good.

If we compare HW-GA with Holt Winters and

their modifications we made the CPU usage is smaller

in all datasets.

The result we get from experiments for execution

time we can say that when the dataset is larger our

algorithm HW-GA show better results compared to

smaller datasets. For example, the execution time in e-

dnevnik dataset for HW-GA is 3.36 sec all others have

more than 5 sec execution time. The worse result show

MA with 23.38 sec execution time on e-dnevnik dataset.

On two smaller datasets NYcTaxi and HotGYM our

algorithm good execution time 1.2 and 1.69 sec on these

two datasets. Also, the others algorithm is these two

small benchmark datasets outperform well.

On the other side the third benchmark dataset CPU-

Usage which have more than 3 thousand records our

algorithm has performed much better than others with

execution time 0.32 sec. When it is compared with

others the difference is very large more than 5 sec. The

worst case is with MA with 14.38 sec execution time.

Based on these facts that we describe here we can say

that our algorithm outperforms others algorithm in both

measurements parameters (execution time and CPU

usage) and better results are shown with large amount of

data which is very important for Big Data.

Conclusion

The researchers are focused now mainly in anomaly

detection in real time Big Data because the amount of

data is growing every day.

This paper covers this problem and our previously

proposed algorithm HW-GA for real time anomaly

detection is compared with other existing methods by

measuring the performance. As a conclusion from our

experiment, we may say that HW-GA is efficient

Zirije Hasani / Journal of Computer Science 2020, 16 (7): 950.955

DOI: 10.3844/jcssp.2020.950.955

955

concerning execution time and CPU usage. Our algorithm

has smaller CPU usage and less execution time compared

to other algorithm. The results are shown in Table 2.

As a result of this research we can say that our

algorithm outperforms others algorithm in both

measurements parameters (execution time and CPU

usage) and better results are shown with large amount of

data which is very important for Big Data.

In or Continuous Work

In our continuous work, we are building an
infrastructure for anomaly detection in the big log files
in real-time that contains computational, storage,
scalability and real-time challenge. To make proper
choice of infrastructure we have done extensive
investigation reported in (Hasani et al., 2015; Hasani,
2017b). We have found infrastructure appropriate,
because it is possible to modify it when needed by
adding various other components or scale up or down by
adding (duplicate, triplicate) some of its existing
components. Ongoing experiments are motivated by
need to use such an infrastructure for anomaly detection
in big log data generated by load balancers of servers in
Faculty of Computer Sciences and Engineering (FINKI).

The next phase of our research is to modify the
proposed algorithm in order to add more parameters
into the optimization procedure with Genetic
Algorithms in order to see if it will give better
performance. Also, we plane to implement this
algorithm in our proposed infrastructure (Hasani,
2017b) and to test it in real time environment.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of

the other authors have read and approved the manuscript

and no ethical issues involved.

References

Boldt, M., Borg, A., Ickin, S., & Gustafsson, J. (2020).

Anomaly detection of event sequences using multiple

temporal resolutions and Markov chains. Knowledge

and Information Systems, 62(2), 669-686.

Ekberg, J., Ylinen, J., & Loula, P. (2011, December).

Network behaviour anomaly detection using Holt-

Winters algorithm. In 2011 International Conference

for Internet Technology and Secured Transactions

(pp. 627-631). IEEE.

Falcão, F., Zoppi, T., Silva, C. B. V., Santos, A., Fonseca,

B., Ceccarelli, A., & Bondavalli, A. (2019, April).

Quantitative comparison of unsupervised anomaly

detection algorithms for intrusion detection. In

Proceedings of the 34th ACM/SIGAPP Symposium

on Applied Computing (pp. 318-327).

Hasani, Z. (2017a, June). Robust anomaly detection

algorithms for real-time big data: Comparison of

algorithms. In 2017 6th Mediterranean Conference

on Embedded Computing (MECO) (pp. 1-6). IEEE.

Hasani, Z. (2017b, April). Implementation of

infrastructure for streaming outlier detection in big

data. In World Conference on Information Systems

and Technologies (pp. 503-511). Springer, Cham.

Hasani, Z., Jakimovski, B., Kon-Popovska, M., & Velinov,

G. (2015). Real time analytic of SQL queries based on

log analytic. ICT Innovations, 78-87.

Hasani, Z., Jakimovski, B., Velinov, G., & Kon-

Popovska, M. (2018, November). An Adaptive

Anomaly Detection Algorithm for Periodic Data

Streams. In International Conference on Intelligent

Data Engineering and Automated Learning (pp.

385-397). Springer, Cham.

Jankov, D., Sikdar, S., Mukherjee, R., Teymourian, K.,

& Jermaine, C. (2017, June). Real-time high

performance anomaly detection over data streams:

Grand challenge. In Proceedings of the 11th ACM

International Conference on Distributed and Event-

based Systems (pp. 292-297).

Kasunic, M., McCurley, J., Goldenson, D., & Zubrow, D.

(2011). An investigation of techniques for detecting

data anomalies in earned value management data.

CARNEGIE-MELLON UNIV PITTSBURGH PA

SOFTWARE ENGINEERING INST.

Lavin, A., & Ahmad, S. (2015, December). Evaluating

Real-Time Anomaly Detection Algorithms--The

Numenta Anomaly Benchmark. In 2015 IEEE 14th

International Conference on Machine Learning and

Applications (ICMLA) (pp. 38-44). IEEE.

Moving Average, https://cran.r-

project.org/web/packages/smooth/vignettes/sma.h

tml

Wang, Z., Zhou, Y., & Li, G. (2019, November).

Anomaly detection for machinery by using Big Data

Real-Time processing and clustering technique. In

Proceedings of the 2019 3rd International

Conference on Big Data Research (pp. 30-36).

Yuanyan, L., Xuehui, D., & Yi, S. (2018, November).

Data streams anomaly detection algorithm based on

self-set threshold. In Proceedings of the 4th

International Conference on Communication and

Information Processing (pp. 18-26).

Zhang, L., Zhao, J., & Li, W. (2019). Online and

Unsupervised Anomaly Detection for Streaming

Data Using an Array of Sliding Windows and

PDDs. IEEE Transactions on Cybernetics.

Zhu, H., Liu, B., Lu, Y., Li, W., & Yu, N. (2018,

December). Real-time Anomaly Detection with

HMOF Feature. In Proceedings of the 2018 the 2nd

International Conference on Video and Image

Processing (pp. 49-54).

https://cran.r-project.org/web/packages/smooth/vignettes/sma.html
https://cran.r-project.org/web/packages/smooth/vignettes/sma.html
https://cran.r-project.org/web/packages/smooth/vignettes/sma.html

