

 © 2021 Angelo Raffaele Meo. This open access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.

Journal of Computer Science

Original Research Paper

On the P VS NP Question: A New Proof of Inequality

Angelo Raffaele Meo

Accademia delle Scienze di Torino, Politecnico di Torino, Italy

Article history

Received: 23-09-2020

Revised: 29-04-2021

Accepted: 03-05-2021

Email: raffaele.meo@polito.it

Abstract: The analysis discussed in this study is based on a well-known

NP-complete problem which is called “satisfiability problem or SAT”.

From SAT a new NP-complete problem derives, which is described by a

Boolean function of the number n of the clauses of SAT called “core

function”. In this study a new proof is presented according which the

number of gates of the minimal implementation of core function

increases with n exponentially. Since the synthesis of core function is an

NP-complete problem, this result can be considered as the proof of the

theorem according which P and NP do not coincide.

Keywords: P-NP Question, Complexity, Boolean Functions, Satisfiability,

Polynomial or Exponential Increase

Introduction

In 2009 the author of this paper presented a first proof

of inequality concerning the known P-NP question to the

Academy of Sciences of Turin. Few years later the same

paper was published in the known repository ArXive

(Meo, 2018). After a very long debate in May of 2019 the

Academy of Sciences of Turin has made the decision to

publish that paper (Meo, 2016-2020).

This paper presents a simpler version of that proof

based on some new theorems.

Definitions

A brief description of the definitions and properties

well known among the scientists of modern

computational complexity theory which will be made

reference to, is presented in this section:

 P denotes the class of all the decision problems which

can be solved in polynomial time

 NP denotes the class of all the decision problems f

satisfying the property that the function check(f)

analyzing a witness of the decision problem is

polynomial time decidable

 “P = NP?”, or, in other terms, “Is P a proper subset

of NP?”, is one of the most important open questions

in modern computational complexity theory

A decision problem C in NP is NP-complete if it is in

NP and if every other problem L in NP is reducible to it,

in the sense that there is a polynomial time algorithm

which transforms instances of L into instances of C

producing the same output values.

The importance of NP-completeness derives from the

fact that, if we find a polynomial time algorithm for just

one NP-complete problem, then we can construct

polynomial time algorithms for all the problems in NP

and, conversely, if any single NP-complete problem

does not have a polynomial time algorithm, than no

NP-complete problem has a polynomial time solution.

The analysis discussed in this study will be based on

the following well-known NP-complete problem which is

called “satisfiability problem or SAT”.

Given a Boolean expression containing only the names

of a set of variables (some of which may be complemented),

the operators AND, OR and NOT and parentheses, is there an

assignment of TRUE or FALSE values to the variables

which makes the entire expression TRUE?

It is well known that the problem remains NP-complete

also when all the expressions are written in “conjunctive

normal form” with 3 variables per clause (problem 3SAT).

In this case, the analyzed expressions will be of the type:

 

 

 

11 12 13

21 22 23

1 2 3

 t t t

F x OR x OR x AND

x OR x OR x AND

AND

x OR x OR x



 (1)

where, t is the number of clauses or triplets; each xij is a

variable in complemented or uncomplemented form; each

variable may appear multiple times in that expression.

Usually, the deterministic Turin machine is assumed

as the computational model. In this study analysis will be

developed with reference to a family {Cn} of Boolean

circuits, where Cn has n binary inputs and it produces the

same binary output as the corresponding Turing machine.

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

512

The equivalence between a deterministic Turing

machine M processing some input x belonging to {0,1}n

and an n-input Boolean circuit Cn is well known. It is also

known that the number of gates, or AND, OR, NOT

operators, appearing in circuit Cn, is polynomial in the

running time of the corresponding Turing machine.

The synthesis of the state of art of question PvsNP can

be found in (Fortnow, 2009; Cook, 2006).

The Core Function

In the case of the satisfiability problem with 3

variables for clause, Boolean circuit Cn has n (= t) sets of

inputs which the binary data are applied to. The output of

Cn (with n = t) will take the value TRUE when and only

when, there is an assignment of values TRUE and FALSE

to variables making expression (1) TRUE.

In order to simplify analysis, circuit Cn will be
decomposed into two processing layers as shown in Fig.
1, where, as usual, the number t of triplets plays the role
of symbol n in the standard analysis of complexity
theory. In the following analysis, we shall use the
symbol t when it is necessary to remember the number of
triplets and n in the other cases.

Compatibility of Two Variables

A variable j of triplet i will be defined as “compatible”

with variable k of triplet h when and only when, either:

 The sign sij of the former variable is equal to the sign

shk of the latter variable

 The name <nij1 nij2 …nijm> of the former variable is

different from the name <nhk1 nhk2 …nhkm> of the

latter variable

Fig. 1: Decomposition of Boolean circuit Cn into a compatibility layer and a core layer

Fig. 2: Compatibility cell

 s11 n111 n112 n113…….. n11m st3 nt31 nt32 nt33…….. nt3m

Compatibility layer

c(1,1;2,1) c(1,1;2,2) c(t-1,3;t,3)

Core layer (Core Function)

Output

TRUE ⇔ xij is compatible with xhk

FALSE ⇔ xij is not compatible with xhk
c(i,j;h,k) =

sij nij1 nij2 nij3…… nijm shk nhk1 nhk2 nhk3…… nhkm

Compatibility cell

c(i,j;h,k)

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

513

From that definition it follows that two “not

compatible” variables have different signs and the same

name; therefore, their AND is identically FALSE.

The compatibility layer is composed of 3∙t∙(3∙t-3)/2

identical cells, one for each pair of variables belonging to

different triplets.

As shown in Fig. 2, the inputs of a cell will be the sign

sij and the binary code <nij1 nij2 …nijm> of variable j of

triplet i and the sign shk and the binary code <nhk1 nhk2

…nhkm> of variable k of triplet h. The output of the same

cell c(i,j;h,k) will be TRUE when and only when, the two

variables are compatible between themselves.

Variable c(i,j;h,k) will be called a compatibility

variable or simply a compatibility.

Core Layer

The core layer processes only the 9∙t∙(t-1)/2

compatibility variables c(i,j;h,k) and produces the global

result of computation.

As the circuit Cn, also the global Boolean function

implemented by Cn may be decomposed into two layers

of functions. At the compatibility layer, the function

implemented by a cell may be written as follows (by using

the symbols ∗, + and ! for representing AND, OR and

NOT operators, respectively):

 

1 1 1 1

2 2 2 2

, ; , ! !

 ! !

 ! !

 ! !

ij hk ij hk

ij hk ij hk

ij hk ij hk

ijm hkm ijm hkm

c i j h k s s s s

n n n n

n n n n

n n n n

   

   

   



   

 (2)

The Boolean function implemented by the core layer

will be called the “Core Function” of order t, where t is

the number of triplets. It will be denoted with the symbol

CF(t) (or CF(n)). The core function can be determined by

proceeding as follows.

Consider one selection of variables appearing in Eq. (1),

one and only one for each triplet, for all the triplets. Let:

1 21 , 2 , , ti i ti       (3)

with i1, i2, …., it {1, 2, 3}.

Be the indexes <number of triplet, number of

variable in the triplet> of the selected variables. They

will be called “characteristic indexes”. Let Πk be the

product of all the compatibility variables relative to the

k-th of selections (3):

   

 

1 2 1 3

1

 1, ; 2, 1, ; 3, ...

... 1, ; ,

k

t t

c i i c i i

c t i t i

   

 
 (4)

The core function can be defined as the sum:

k

k  (5)

of the products (4) relative to all the selections (3).

For example, in the case of CF(3), the core function

can be defined as follows:

       

     

     

     

 

     

3 1,1;2,1 1,1;3,1 2,1;3,1

1,1;2,1 1,1;3,2 2,1;3,2

1,1;2,1 1,1;3,3 2,1;3,3

1,1;2,2 1,1;3,1 2,2;3,1

... 22 ...

1,3;2,3 1,3;3,3 2,3;3,3

CF c c c

c c c

c c c

c c c

other products

c c c

   

  

  

  



 

 (6)

It is easy to prove that there is an assignment of values

TRUE or FALSE to variables appearing in Eq. (1) which

make the value of (1) equal to TRUE when and only

when, the core function takes the value TRUE.

Notice that the processing work of the cell of Fig. 2

increases as a polynomial function P(t) of the number of

the variables since the increment of the length of the code

of the name is logarithmic. Therefore, the total processing

work of the compatibility layer increases as:

   9 – 1t t P t  

where, 9∙t∙(t-1)/2 is the total number of the

compatibility cells.

Besides, the problem solved by the core layer is clearly

in NP, because it is easy to verify a witness solution. It

follows that, since the compatibility layer polynomially

reduces an NP-complete problem (3SAT) to the problem

solved by the core layer, the core function describes a new

NP-complete problem.

Some properties of core function have been discussed

in Meo (2008).

Notice that, in order that the circuit represented in Fig.

1 exactly performs the processing work done by 3SAT,

the Boolean function implemented by the core layer may

be an incompletely specified function.

Indeed, assume that:

 , ; , 0c i j l m 

and:

 , ; , 0c i j p q 

This implies that variable <i,j> and variable <l,m>

have the same name and a different sign; similarly, <i,j>

and <p,q> have the same name and a different sign. It

follows that <l,m> and <p,q> have the same name and the

same sign. Therefore, c(l,m;p,q) cannot be equal to 0.

Therefore, all the minterms implying:

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

514

     ! , ; , *! , ; , *! , ; ,c i j l m c i j p q c l m p q

(where, !c denotes the complement of c) are incomplete

specifications of the Boolean function implemented by

the Core Layer of Fig. 1.
However, it is easy to verify that the many incomplete

specifications of the type of the preceding ones are not
useful to simplify and to reduce the costs of
implementation of Boolean function defined by Eq. (4)
and Eq. (5). Therefore, in the following analysis the
chances represented by the incomplete specifications will
be ignored in the analysis of CF(t).

A Theorem of Boolean Monotonic Functions

Let f(x1, x2, ..., xt) be an isotonic Boolean function, that
is a Boolean function which can be implemented with
only AND and OR gates, applied to uncomplemented
literals x1, x2, …, xt. It was believed that the minimum cost
implementation of f(x1, x2,…, xt) always contains only OR
and AND gates, but Razborov (1985) proved that there are
isotonic functions whose minimum cost implementation
contains also NOT gates.

However, there is on upper bound on the
comparison of the costs of the minimum cost
implementations with and without NOT gates. It is
specified by the following theorem.

Theorem 3.1

Let Imin be one of the minimum cost implementations
of the isotonic Boolean function f(x1, x2,..., xh), the cost
being defined as the total number of AND, OR or NOT
gates. Let Cmin be the cost of Imin.

There exists always an implementation J of f

containing only AND and OR gates (in addition, if

necessary, to the NOT operators producing input variables

!x1, !x2, ...,!xh) such that:

  mincos 2t J C h  

where, h is the number of variables.

In order to prove this theorem, let us divide the gates

of implementation Imin of f into different levels and let us

modify Imin as follows.

At level 1 we place the gates all inputs of which

coincide with the complemented or uncomplemented

input variables xi or !xi (where !xi denotes the complement

of variable xi).
Level 2 contains the gates whose inputs coincide with

input variables or outputs of level 1 gates.
In general terms, level q contains the gates whose

inputs coincide with input variables or outputs of levels
less than q.

We can transform Imin into J by deleting NOT gates
and adding new AND or OR gates as follows.

We start from level 1.
For any level 1 AND gate we add an OR gate whose

inputs are the complements of the inputs of the considered
AND gate (Fig. 3). Similarly, for any level 1 OR gate we
add an AND gate whose inputs are the complements of
the corresponding OR gate.

By virtue of such operations, for any output u of the
level 1 gates a new node will be available in the new
circuit we are generating whose value will be !u.

As a second step of processing, for any level 2 AND
gate of implementation Imin we shall add an OR gate
whose inputs are the complements of the inputs of the
corresponding AND gate, in both the cases in which these
inputs coincide with input variables of f or with output of
level 1 gates (Fig. 4).

Fig. 3: The new gates of level 1

Fig. 4: The new gates of level 2

a !b c !a b !c a !b c !a b !c

u !u u !u

a !b u !a b !u a !b u !a b !u

u !v v !v

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

515

 (a) (b)

Fig. 5: (a) A two level subnetwork; (b) The transformation of the subnetwork of (a)

A similar transformation will be applied to all level 2

OR gates.

As an example, the two level subnetwork of Fig. 5a

will be transformed into the subnetwork of Fig. 5b. Notice

that at the outputs of J not only the outputs v and w of Imin

will be available, but also their complements! v and! w.

The preceding operations will be applied to all the

levels of implementation of Imin, in the order of increasing

levels. It is apparent that, if for any input variable xi also

!xi is available, the number of gates of J is less than, or

equal to, twice the number of gates of Imin.

At level 0, before the gates of Fig. 5b, h NOT gates

might be necessary to generate the complemented input

variables !xi. Therefore, h has been added in the statement

of the theorem.

This theorem will be important in order to simplify the

analysis of core function circuits.

Properties of Core Function

It is easy to prove the following properties of core

function.

Property 1

Function defined by Eq. (5) is totally isotone.

Property 2

Any product (4) is a prime implicant of core function

(that is, a Product of Compatibilities (“PoC”) which

implies core function and no other term of it).

Property 3

Since the different selections of each of variables (3)

are 3, the number of prime implicants of core function is

equal to 3t. Each of these prime implicants is essential

(that is, it does not imply a sum of other prime implicants)

and it is the product of t∙(t-1)/2 compatibilities.

Products of Compatibilities

In the next sections, reference will be made to the

following definitions.

Definition of Spurious Compatibilities Pair

A pair of compatibility variables {c(h,k;l,m), c(p,q;r,s)}

is defined as a spurious pair if:

 (h = p and k ≠ q)

or (h = r and k ≠ s)

or (l = p and m ≠ q)

or (l = r and m ≠ s)

For example, the pair {c(1,1;2,1), c(1,2;3,1)} is a

spurious pair since the triplet 1 is associated to two

different indexes of variables (1 and 2).

Definition of Spurious Products of Compatibilities

A spurious Product of Compatibilities (spurious PoC)

is a product of compatibility variables containing the

elements of one or more than one spurious pair.

For example, the PoC:

     1,1;2,1 1,2;3,1 2,1;3,1c c c 

is a spurious PoC since it contains the elements of the

spurious pair:

    1,1;2,1 , 1,2;3,1c c

Definition of Impure Products of Compatibilities

A PoC containing one or more complemented

variables will be defined as an impure PoC. In particular

a term T of CF (that is, a PoC implying CF) which

contains one or more complemented variables, will be

defined as an impure term.

a !b c a !b c !a b !c d !d

u

d

u
!u

v w v !v w !w

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

516

Definition OF Core of a POC

The product of all the uncomplemented variables of T

will be defined as the core of T.

Definition of Mark

Consider a not spurious subset of compatibilities

satisfying the property that all the indexes of triplet

{1,2,…,t} appears at least once in some variable. The

product of the variables of such a subset will defined as a

“mark” of the prime implicant of which it contains a

subset of compatibilities.

For example, in the case of CF(4), the PoC:

     1, ;2, 1, ;3, 1, ;4,M a b c a c c a d   (7)

(where the indexes of triplet are elements of the set

{1,2,3,4} and a, b, c, d are elements of {1,2,3}).

is a mark of the prime implicant:

     

     

1, ;2, 1, ;3, 1, ;4,

2, ;3, 2, ;4, 3, ;4,

P c a b c a c c a d

c b c c b d c c d

  

  
 (8)

since all the indexes of triplet appear at least once in Eq. (7).

Definition of Spurious Mark

A spurious PoC in which all the indexes of triplet

appear at least once will be called a “spurious mark”.

Notice that a spurious mark may be the mark of more than

one prime implicant. For example, in the case of CF(3):

     1,1;2,1 1,1;3,1 1,1;2,2c c c 

is a spurious mark of both the prime implicants:

     1,1;2,1 1,1;3,1 2,1;3,1c c c 

and:

     1,1;2,2 1,1;3,1 2,2;3,1c c c 

An impure PoC whose core is a (possibly spurious) mark

will be a defined as a (possibly spurious) impure mark.

Definition of Extended Prime Implicants

A term T of core function, that is, an implicant of core

function (a product of literals implying core function),

contains all the uncomplemented literals of a prime

implicant. Therefore, it may be defined as an “extended

prime implicant” (only) to remember that it contains all

the compatibilities of a prime implicant.

It may be a spurious extended prime implicant or an

impure extended prime implicant or both a spurious and

impure extended prime implicant.

Notice that an extended prime implicant can be viewed

as a (possibly spurious or impure) mark.

Definition of Remainder

A PoC which is neither a (possibly spurious or impure)

mark nor an (extended) prime implicant will be called a

“remainder”.

A remainder R may be associated to more than one

prime implicant. For example, in the case of CF(3), R =

c(2,1;3,1) is a remainder of the prime implicants:

     

     

     

1 1,1;2,1 1,1;3,1 2,1;3,1

2 1,2;2,1 1,2;3,1 2,1;3,1

3 1,3;2,1 1,3;3,1 2,1;3,1

P c c c

P c c c

P c c c

  

  

  

 (9)

On the definitions of mark and remainder the

following properties are based.

Property 4

A not spurious mark M specifies a corresponding

prime implicant P uniquely. Indeed, if all the indexes of

triplet appear in M, the product (4) is completely defined.

We shall write:

 P I M

to state that P is the prime implicant specified by M.

As already mentioned, a remainder R does not

specify a corresponding prime implicant uniquely. In

the example relative to CF(3) above described, three

prime implicants correspond to R = c(2,1;3,1), as

shown by Eq. (9), since a single index of triplet is

missing in that remainder. In general, if z triplets are

not involved in R, there are 3z different ways of

involving the missing triplets.

Hence the following property follows.

Property 5

A not spurious remainder R in which the indexes of z

triplets are missing corresponds to 3z different prime

implicants.

Finally, the following property can be easily proved.

Property 6

Let P1 and P2 be two PoC’s such that P1∗P2 is equal to

a prime implicant P of core function. Either P1 or P2 is a

mark of P.

The External Core Function

Let Ij be a prime implicant of CF(n). The external

core function relative to Ij, ECF(n, Ij), is defined as the

sum of all the minterms of CF(n) which imply Ij and no

other prime implicant Ik of CF(n) with k ≠ j. (Remember

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

517

that a minterm of a Boolean function F is a product of

all the variables of F, some complemented and some

uncomplemented, implying F).

Of course:

   , !j j k j kECF n I I I  (10)

where all the prime implicants Ij of core function are

involved and !Ik denotes the complement of Ik (i.e., NOT Ik).

The global external core function of order n, or

ECF(n), will be defined as the sum of ECF(n, Ij)’s relative

to all the prime implicants Ij of CF(n):

   ,j jECF n ECF n I  (11)

The importance of external core function derives from

the following theorems.

Their proofs can be found in Meo (2016-2020; 2018;

2008).

Theorem 6.1

Let T be a term (or extended prime implicant) of

CF(n). It may be the product of all the compatibilities

of a prime implicant Ij of CF(n) and other

compatibilities, that is:

jT I X 

where, X is a possibly empty PoC. T can also be written

as T = T(Ij).

All the minterms of T(Ij) contained in ECF(n) are

minterms of ECF(n, Ij).

Theorem 6.2

Let T be a term of CF(n) implying two or more than

two prime implicants of CF(n):

 ,j kT T I I

The number of minterms of T(Ij, Ik) belonging to

ECF(n) is equal to 0.

Theorem 6.3

Let T = T (Ij) = Ij∗X be a term of CF(n) which is

spurious for a single compatibility X.

If NMT(F) denotes the number of minterms of

Boolean function F, the number of minterms of Ij∗X

contained in ECF(n,Ij) is:

        , 1 / 2 ,j j jNMT I X ECF n I NMT ECF n I    (12)

By proceeding in the same way it is possible to

generalize the preceding Theorem 6.3 as follows.

Theorem 6.4

Let:

1 2j mI X X X  

be a spurious term characterized by m spurious

compatibilities.

The number of its minterms contained in ECF(n, Ij) is:

  

     

1 2 ... ,

1 / 2 ,

j m j

m

j

NMT I X X X ECF n I

NMT ECF n I

    

 
 (13)

Theorem 6.5

Let T = T (Ij) be an impure term of CF(n) characterized

by a single impure variable (!X):

 ! .jT I X 

For large values of n, the number of minterms of

ECF(n, Ij) contained in T is:

         ! , 1 / 2 ,j j jNMT I X ECF n I NMT ECF n I    (14)

Theorem 6.6

Let T = T(Ij) be an impure term of CF(n) characterized

by m impure variables:

     1 2! ! !j mT I X X X   

For large values of n, the number of minterms of

ECF(n, Ij) contained in T is:

        , 1 / 2 ,
m

j jNMT T ECF n I NMT ECF n I   (15)

Notice that NMT(ECF(n, Ij)) = NMT(ECF(n, Ik)) for

any j and k. It will be called NMT1(n).

The Reference Architecture

Figure 6 shows the network which will implement

core function. By virtue of Theorem 3.1, it does not

contain NOT gates.

Notice in Fig. 6 that the output of an AND gate

becomes always the input of an OR gate and, conversely,

the output of an OR gate becomes always the input of an

AND gate Indeed, if, for example, the output of an AND

gate A becomes the input of another AND gate B, the two

gates A and B can be merged into a single AND gate

collecting all the inputs of A and B. By virtue of this

operation the total number of gates remains constant or it

is reduced by one unit. However, this hypothesis has not

been applied in the following analysis.

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

518

Fig. 6: The reference architecture

Fig. 7: The primary composite addendum of maximum value

Any input of the OR gate producing the final value of

CF(n) will be called a “Primary Composite Addendum

(PCA)”. Every Fi
will be called a “Primary Composite

Addendum Factor” (PCAF).

If the number of PCA's of the minimum cost

implementation of CF(n) increased with n according to an

exponential law, also the cost of this implementation

would increase according to an exponential law, the cost

being represented by the number of AND gates at the

bottom of Fig. 6.

Therefore, the following analysis refers to the case in

which the number of PCA's of the minimum cost

implementation of CF(n) increases with n according to a

polynomial law. The PCA characterized by the maximum

value among all the values of PCA’s will be called

PCAMAX (Fig. 7). If the best implementation of CF(n) will

F11 F12 F1l

F1 F2 Fk-1 Fk

PCAMAX

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

519

contain a single PCA, this will have the role of PCAMAX.

Notice in Fig. 7 that k-1 products (F1*F2*…*Fk) produce

PCAMAX, where k increases according a polynomial law

but the number of prime implicants of CF(n) contained in

PCAMAX increases exponentially.

The Value of an “AND” Operation

Consider an elementary two inputs AND operation U

applied to Boolean Functions A and B: U = A*B. Let A

and B be specified as sums of their prime implicants.

Some of these implicants are marks or prime implicants

of core function (m1, m2, m3,…); other implicants of A or

B are remainders of core function (r1, r2, r3,…).

The purpose of the considered Boolean product (for

example, one of the k-1 products of Fig. 7) is to produce

new marks and new prime implicants of core function

through elementary products of remainders and other

marks contained in the lists of implicants of A and B.

Not always a mark deriving from the product of a

remainder ri of A by a remainder rj of B becomes a useful

prime implicant of core function. However, the output U

of the product A*B becomes the input of a subnetwork

which will produce the value of core function as its output.

Since this subnetwork contains no NOT gates, its output

can be written as follows:

1 2 1 2* *CF U x U x y y     (16)

where, x1, x2, …, y1, y2, …, are products of variables of

core functions, that is, products of compatibilities. Notice

also that every U*xi and every yj must be an extended

prime implicant of core function.

Analysis of Eq. (16) suggests the following definition:

“The value of a Boolean product val(A*B) is the number

of minterms of ECF contained in the prime implicants of

core function appearing in the result of (16) and deriving

from new marks, that is marks different from those

already available in A or in B.”

In order to identify the best solution from the

viewpoint of the value of the considered AND product,

first consider the following example relative to CF(4):

   1 2 3 1 2 3*a a a b b b   

where:

   

   

   

   

   

   

1

1

2

2

3

3

1,1;4,1 * 2,1;4,1

3.1;4,1 * 2,1;4,1

1,1;4,2 * 2,1;4,2

3,1;4,2 * 2,1;4,2

1,1;4,3 * 2,1;4,3

3,1;4,3 * 2,1;4,3

a c c

b c c

a c c

b c c

a c c

b c c













 (17)

By proceeding as in the above examples and

introducing the value:

     

       

1

2, 1 2

1,1;2,1 * 1,1;3,1 * 2,1;3,1

* 1,1;4,1 * 1,1;4,2 * 3,1;4,1 * 3,1;4,2

, , , 0

x c c c

c c c c

x y y



 

in Eq. (16), it is easy to prove that the best implementation

of this product generates three prime implicants whose

total value is equal to (5/16)∙NMT1. A way to improve

this value consists in adding suitable compatibilities to

remainders appearing in (17) in order that any product ai’

* bj’ * x1 (where x1 = c(1,1;2,1)*c(1,1:3,1)*c(2,1;3,1))

implies CF(4) as in the following example:

     

     

1 1 2 2 3 3

1 1 2 2 3 3

* 1,1;4,1 * 1,1;4,1 * 1,1;4,2

* 3,1;4,1 * 3,1;4,1 * 3,1,4,2

a a a a c a a c c

b b b b c b b c c

    

    
 (18)

The total merit is equal to:

     

   

1 1 2 2 3 3* * *

1 1 / 4 1 / 16 1 4

val a b val a b val a b

NMT

      

   

A better result can be obtained by multiplying ai and

bi by suitable complemented compatibilities in order that

ai * bj is equal to 0 if i<>j. For example:

     

     

1 1 2 2 3 3

1 1 2 2 3 3

*! 2,1;4,1 *! 2,1;4,1 *! 2,1;4,2

*! 2,1;4,1 *! 2,1;4,1 *! 2,1;4,2

a a a a c a a c c

b b b b c b b c c

    

    
 (19)

The total merit of this new AND operation is equal to:

   1 1/ 2 1 / 4 1 4NMT  

In order to prove that Eq. (18) and (19) represent

good solutions, first observe that in a product as

(a1+a2+a3 +…) * (b1+b2+b3 +…) a term ai or bj might be

a remainder or a mark (or a prime implicant). However,

in Appendix 1 it is shown that no mark appearing in the

list of the products of compatibilities ai or bj can be

useful in order to produce an increase of the value of

Boolean product A * B. Therefore, we can assume that

all the ai‘s and the bj‘s are remainders.
Besides, we might hope that a product as (a1+a2) *

(b1+b2) can produce four different marks a1b1, a1b2,
a2b1, a2b2. In Appendix 2 it is shown that four

different marks can derive from that product, but the

total value is very small and it decreases very quickly

with the number n of variables.

Also the total value of the product (a1+a2)*b is very

small and it decreases very quickly with the number n of

variables, as shown in Appendix 3.

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

520

The following proof is devoted to Eq. (18).

Appendixes 1, 2 and 3 show that the best solutions

from the viewpoint of the value are characterized by a

correspondence one-to-one according which a remainder

ai is associated to a single remainder bi and vice versa.

However, the names ai and bj must be corrected and they

must become spurious or impure PoC’s because every

product ai  bj  x1 must imply CF(n).

If the prime implicant I1 deriving from m1 = a1b1 is

different from the prime implicant I2 deriving from m2 =

a2b2, one of the compatibilities of m1 must make

reference to a variable A which does not appear in any of

the compatibilities of I2. Besides, a1 cannot contain all the

compatibilities involving A since, otherwise, it would not

be a remainder, but it would be a mark.

It follows that the product a1 * b2 must produce prime

implicant I1 since it cannot generate I2 or another prime

implicant different from I1. Indeed, we can assume that m1

has a value equal to NMT(n) and, therefore, it is not

spurious and it cannot contain a variable as B which

characterizes prime implicant I2 or another prime implicant.

If a1b2x produces prime implicant I1, either b2 or x must

contain at least one compatibility involving variable A.

The same analysis which has been developed with

reference to product a1b2 can be applied to the product

a2b1. From such an analysis we can prove that either b1

or x must contain at least a compatibility relative to a

symbol A’ different from the symbol A characteristic of

I1. Therefore, the value of mark m2 = a2 * b2 will be equal

to, or less than, (1+1/4)∙NMT1(4).

By applying the same type of analysis it is easy to

prove that, if:

   1 1* 1 4val a b NMT

and:

     1 1 2 2* * 1 1/ 4 1 4 ,val a b a b NMT   

then:

    

   

1 2 3 1 2 3*

1 1/ 4 1/16 1 4 ,

val a a a b b b

NMT

   

   

as shown by Eq. (18).

 The proof of Eq. (19) can be developed in a similar

way. It is simpler.

 This solution is extended to CF(6) in Appendix 4,

where the hypothesis:

     1

2, 1 2

1,1;2,1 * 1,1: 3,1 * 2,1*3,1

, , , 0

x c c c

x y y



 

has been assumed.

Notice that, if Eq. (16) contains only x1 as it is usual in

many examples, x1 may coincide with one of the k primary

composite addendum factors Fj appearing in Fig. 7.

The Best Implementation of the Product A * B

The best implementation of the product of two
Boolean functions A and B (such that A*B*x1 is equal to
one or more than one prime implicants of CF(n)) is
characterized by the maximum value according our
definition of “value of a product”.

According to the statements of Appendixes 1 to 3, we

can assume that the prime implicants of CF(n) by A*B are

the following:

1 1 1

2 2 1

3 3 1

* *

* *

* *

a b x

a b x

a b x



However, also every product ai*bj *x1, with i <> j, must

be a (possibly spurious) prime implicant of CF(n) (solution

1), unless ai*bj = 0 and aj*bi = 0 (solution 2). Equation (18)

and (19) make reference to an example where solution 2 is

better then solution 1 from the viewpoint of the value of the

product. However, it is easy to prove that solution 2 is

always better than solution 1. Indeed, at least two spurious

compatibilities must be added to aj and bj in order that both

ai*bj*x1 and bi*aj*x1 are prime implicants of CF(n), while

a single compatibilty is always sufficient in order that ai*bj

= 0 and bi*aj = 0. Besides, sometimes a single impure

compatibility can make ai*bj = 0 and bi*aj = 0 for a given j

and many different values of i.

For example, in Appendix 4, a single complemented

compatibility (!c(4,1;5,1)) can make a1, a2, a3 compatible

with b4 and b1, b2, b3 compatible with a4, while

compatibility !(2,1;4,1) can make a1, a2, …, a9 compatible

with b10 and b1, b2,…, b9 compatible with a10.

It is very easy to prove that any natural order of the

type adopted in Appendix 4 for generating the new

marks produces the maximum value of the product of

two Boolean functions as F1*F2 or (F1*F2)*F3 of Fig. 7.

It is also easy to prove on the base of analysis of

Appendix 4 that the value of a Boolean product is always

less than or equal to (1+1/2+1/4)n-m∙NMT1(n) where n is

the number of variables of CF(n) and m is the number of

variables (as [1,1], [2,1], [3,1] in the previous examples)

each of which appear in all the prime implicants which

will be generated from that product.

The Value of an “OR” Operation

Theoretically, a mark might derive from the Boolean

sum of two or more than two remainders. For example,

the mark of CF(4):

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

521

     1,1;4,1 2,1;4,1 3,1;4,1m c c c

might derive from the sum of the two remainders:

     1 1,1;4,1 2,1;4,1 ! 1,1;3,1r c c c

and:

   2 3,1;4,1 * 1,1;3,1r c c

Let remainders r1 and r2 be two of the inputs of the OR

gate producing mark m and let U be the output of this OR

gate. Since the circuit producing PCAMAX does not

contain NOT circuits, the value of the circuit producing

CF can be written as follows:

1 2 1 2

1 1 2 1 1 2 2 2 1 2

* *

 * * * *

CF U x U x y y

r x r x r x r x y y

    

       

Since r1 and r2 are remainders, every xi must be a mark.

Besides, either there is a yk = I(m) or one of marks xj

coincides with mark m, in order to produce the relative

implicant. It follows that the production of a mark as the

sum of two remainders is not necessary in order to

generate its relative implicant.

Conclusion

The synthesis of Boolean function CF(n) can be

described as a sequence of Boolean operations finalized

to producing new marks in every step. The most important

of these operations are Boolean AND’s which produce

new marks from remainders or already available marks

with an increase of the value, where the value is defined

by the number of minterms of ECF contained in the output

marks not contained in the input marks.

The simplest operation is the AND of input variables

of the whole network or of already available remainders.

This operation is characterized by a value equal to (or less

than) NMT1(n). The most efficient operation is the AND

of impure or spurious compatibilities of the type described

in Appendix 4, which is characterized by a value equal to

(1+1/2+1/4)n-m∙NMT1(n).

Notice that a single AND gate having i inputs can

perform (i-1) AND operations, but usually these (i-1)

AND operations are associated to i other gates in addition

to the considered AND, that is, the gates (typically, OR

gates) feeding this AND gate. Therefore, it is easy to

verify that the implementation of the X Boolean functions

necessary to synthesize CF(n) requires at least X gates.
Therefore, since the number of minterms of ECF(n)

contained in CF(n) is equal to 3n∙NMT1(n) and the merit

of a gate is always less than or equal to (1+1/2+1/4)(n-m)∙

NMT1(n), the number of gates contained in the

considered network is larger than 3n/((1+1/2+1/4)(n-m) and,

therefore, it increases exponentially with n.

Since the synthesis of core function is an NP-complete

problem, this result is equivalent to proving that P and NP

do not coincide.

One final note: Also the synthesis of the remainders

appearing in all the OR or AND gates requires a number

of gates which increases exponentially with n. The proof

of this property is rather complex and it has been omitted

in this study since it is not necessary.

Appendix 1

In the product A*B of two Boolean functions A = (a1 +

a2 + a3 +….) and B = (b1 + b2 + b3 +…), where the ai’s and

bj’s are prime implicants of function A and B, respectively,

no mark contained in the list of ai‘s and bj‘s is useful in

order to produce an increase of the value of A*B.

Consider the following hypotheses.

Hyp 1

ai is a mark of CF(n) and bj is a remainder implying a1.

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1 ;4,1) is a

mark of CF(4) and bj = c(1,1;3,1)*c(2,1; 4,1) is a

remainder implying ai.

In this case, the product ai*bj coincides with ai and has

the same value.

Hyp 2

ai is a mark of CF(n) and remainder bj does not imply
ai, but ai and bj imply the same prime implicant of CF(n).
For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1; 4,1) and bj
= c(1,1;2,1)*c(3,1;4,1).

In this case, a new mark of CF (4) is generated, but this
new mark imply the same prime implicant of CF(4) as ai.
Therefore, it does not increase the value of ai.

Hyp 3

ai is a mark implying a prime implicant p1 of CF and
bj is a remainder not implying p1.

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,1) and
bj = c(1,1;2,1)*c(1,1;3,2).

In this case, a new mark spurious ai*bj is generated.
This imply the same prime implicant as ai, but its value

is less than val(ai).

Hyp 4

ai is a mark and bj is another mark implying the same
prime implicant of CF(n) implied by ai.

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,1)
(mark of CF(4)) and bj = c(1,1;2,1)*c(1,1;3,1)*c(1,1;4,1).

In this case, val(ai) = val(bj) = val(ai*bj).

Hyp 5

ai is a mark of CF(n) and bj is another mark of CF(n), but

ai and bj imply two different prime implicants of CF(n).

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

522

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,1) and

bj = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,2) are marks of two

different prime implicants of CF(4).

In this case, ai * bj can be viewed as a spurious mark

of both ai and bj, but val(ai*bj) < val(ai), val(ai*bj) <

val(bj), val(ai*bj) < val(ai) + val(bj).

Appendix 2

Consider the product (a1 + a2) * (b1 + b2) relative to

CF(4) where:

     

     

         

         

1

2

1

2

1,1;2,1 * 1,1;3,1 * 1,1;3,2

1,1;2,2 * 1,1;3,2 * 1,1;3,1

 2,1;3,1 * 2,1;4,1 * 3,1;4,1 * 2,2;3,1 * 2,2;4,1

2,2;3,2 * 2,2;4,1 * 3,2;4,1 * 2,1;3,2 * 2,1;4,1

a c c c

a c c c

b c c c c c

b c c c c c









with x = c[1,1]*c[4,1].

The following four marks of CF(4) are generated:

        

        

        

        

1 1 1

2 1 2

3 2 1

4 2 2

* 1,1 , 2,1 , 3,1 , 4,1

* 1,1 , 2,1 , 3,2 , 4,1

* 1,1 , 2,2 , 3,1 , 4,1

* 1,1 , 2,2 , 3,2 , 4,1

m a b involving variables

m a b involving variables

m a b involving variables

m a b involving variables









It is easy to verifly that:

           1 2 3 4 1/ 8 1 4val m val m val m val m NMT    

Therefore, the total value of the considered product is

½∙NMT1(4).

Now consider the following product (a1 + a2) * (b1 +

b2) relative to CF(5), where:

       

       

         

       

       

1

2

1

2

1,1;2,1 * 1,1;3,1 * 1,1;5,1 * 1,1;3,2

1,1;2,2 * 1,1;3,2 * 1,1;5,1 * 1,1;3,1

2,1;3,1 * 2,1;4,1 * 2,1;5,1 * 3,1;4,1 * 3,1;5,1

* 4,1;5,1 * 2,2;3,1 * 2,2;4,1 * 2,2;5,1

2,2;3,2 * 2,2;4,1 * 2,2;5,1 * 3,2;4,1

*

a c c c c

a c c c c

b c c c c c

c c c c

b c c c c









         3,2;5,1 * 4,1;5,1 * 2,1;3,2 * 2,1;4,1 * 2,1;5,1c c c c c

It is easy to verifly that:

1 1 1

2 1 2

3 2 1

4 2 2

*

*

*

*

m a b

m a b

m a b

m a b









are four marks implying four different prime implicants

of CP(5) and that:

           1 2 3 4 1/16 1 5val m val m val m val m NMT    

In more general terms, the product (a1 + a2) * (b1 + b2)

can produce four marks implying four different prime

implicants of CF(n), but the value of one of these marks is:

     11/ 2 1 .n

ival m NMT n 

Therefore, it decreases very quickly with n.

Appendix 3

Consider the following product:

 1 2 *a a b

where, a1, a2 and b are remainders of CF(4) which take

the following values:

   

   

         

1

2

1,1;2,1 * 1,1;3,1

1,1;2,2 * 1,1;3,1

 2,1;3,1 * 2,1;4,1 * 2,2;3,1 * 2,2;4,1 * 3,1;4,1

a c c

a c c

b c c c c c







The considered product generates the following marks

of CF(4):

1 1

2 2

*

*

m a b

m a b





taking the following values:

   

   

1

2

¼ 1 4

¼ 1 4

val m NMT

val m NMT

 

 

In general, the product (a1 + a2) * b where a1, a2 and b

are remainders of CF(n) produces two marks whose total

value is equal to 1/(2n-1)∙NMT1(n).

This value is very small and it decreases very quickly

with n.

Appendix 4

In order to understand how it is possible to generalize

the results of section 8 consider the following Boolean

product (a1 + a2 +…)*(b1 + b2+…) relative to CF(6):

a1 = c(1,1;4,1)*c(1,1;5,1)*c(1,1;6,1)*c(2,1;4,1)*c(2,1;5,1)*

c(2,1;6,1)*c(4,1;5,1)*c(4,1;6,1)*c(5,1;6,1)

b1 = c(3,1;4,1)*c(3,1;5,1)*c(3,1;6,1)*c(2,1;4,1)*c(2,1;5,1)*

c(2,1;6,1)*c(4,1;5,1)*c(4,1;6,1)*c(5,1;6,1)

a2 = c(1,1;4,1)*c(1,1;5,1)*c(1,1;6,2)*c(2,1;4,1)*c(2,1;5,1)*

c(2,1;6,2)*c(4,1;5,1)*c(4,1;6,2)*c(5,1;6,2)*!c(5,1;6,1)

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

523

b2 = c(3,1;4,1)*c(3,1;5,1)*c(3,1;6,2)*c(2,1;4,1)*c(2,1;5,1)*

c(2,1;6,2)*c(4,1;5,1)*c(4,1;6,2)*c(5,1;6,2)*!c(5,1;6,1)

a3 = c(1,1;4,1)*c(1,1;5,1)*c(1,1;6,3)*c(2,1;4,1)*c(2,1;5,1)*

c(2,1;6,3)*c(4,1;5,1)*c(4,1;6,3)*c(5,1;6,3)*!c(5,1;6,1)*

!c(5,1;6,2)

b3 = c(3,1;4,1)*c(3,1;5,1)*c(3,1;6,3)*c(2,1;4,1)*c(2,1;5,1)*

c(2,1;6,3)*c(4,1;5,1)*c(4,1;6,3)*c(5,1;6,3)*!c(5,1;6,1)*

!c(5,1;6,2)

a4 = c(1,1;4,1)*c(1,1;5,2)*c(1,1;6,1)…!c(4,1;5,1)

b4 = c(3,1;4,1)*c(3,1;5,2)*c(3,1;6,1)…!c(4,1;5,1)

a5 = c(1,1;4,1)*c(1,1;5,2)*c(1,1;6,2)…!c(4,1;5,1)*

!c(5,2;6,1)

b5 = c(3,1;4,1)*c(3,1;5,2)*c(3,1;6,2)…!c(4,1;5,1)*

!c(5,2;6,1)

a6 = c(1,1;4,1)*c(1,1;5,2)*c(1,1;6,3)…!c(4,1;5,1)*

!c(5,2;6,1)*!c(5,2;6,2)

b6 = c(3,1;4,1)*c(3,1;5,2)*c(3,1;6,3)…!c(4,1;5,1)*

!c(5,2;6,1)*!c(5,2;6,2)l

a7 = c(1,1;4,1)*c(1,1;5,3)*c(1,1;6,1)…!c(4,1;5,1)*

!c(4,1;5,2)

b7 = c(3,1;4,1)*c(3,1;5,3)*c(3,1;6,1)…!c(4,1;5,1)

*!c(4,1;5,2)

a8 = c(1,1;4,1)*c(1,1;5,3)*c(1,1;6,2)…!c(4,1;5,1)*

!c(4,1;5,2)*!c(5.3;6,1)

b8 = c(3,1;4,1)*c(3,1;5,3)*c(3,1;6,2)…!c(4,1;5,1)*

!c(4,1;5,2)*!c(5,3;6,1)

a9 = c(1,1;4,1)*c(1,1;5,3)*c(1,1;6,3)…!c(4,1;5,1)*

!c(4,1;5,2)*!c(5,3;6,1)*!c(5,3;6,2)

b9 = c(3,1;4,1)*c(3,1;5,3)*c(3,1;6,3)…!c(4,1;5,1)*

!c(4,1;5,2)*!c(5,3;6,1)*!c(5,3;6,2)

First, consider the lines relative to a1, b1, a2, b2, a3,

b3. The merits of the marks produced by those lines are,

respectively:

   

     

     

1 1

2 2

3 3

* 1 1 6

* 1 / 2 1 6

* 1 / 4 1 6

µ a b NMT

µ a b NMT

µ a b NMT

 

 

 

Similarly, the merits of the marks produced by the

lines a4, b4, a5, b5, a6, b6, a7, b7, a8, b8, a9 b9 are:

     

       

       

     

       

       

4 4

5 5

6 6

7 7

8 8

9 9

* 1 / 2 1 6

* 1 / 2 1 / 2 1 6

* 1 / 2 1 / 4 1 6

* 1 / 4 1 6

* 1 / 4 1 / 2 1 6

* 1 / 4 1 / 4 1 6

µ a b NMT

µ a b NMT

µ a b NMT

µ a b NMT

µ a b NMT

µ a b NMT

 

  

  

 

  

  

It follows that the total merit of the nine lines

considered is equal to:

   
2

1 1/ 2 1/ 4 1 6NMT  

The set of the lines a1, b1, …, a9, b9 can be extended as

follows:

a10 = c(1,1;4,2)*c(1,1;5,1)*c(1,1;6,1)*

 c(2,1;4,2)*c(2,1;5,1)*c(2,1;6,1)*

 c(4,2;5,1)*c(4,2;6,1)*c(5,1;6,1)*!c(2,1;4,1)

b10 = c(3,1;4,2)*c(3,1;5,1)*c(3,1;6,1)*

 c(2,1;4,2)*c(2,1;5,1)*c(2,1;6,1)*

 c(4,2;5,1)*c(4,2;6,1)*c(5,1;6,1)*!c(2,1;4,1)

 ……………….

a19 = c(1,1;4,3)*c(1,1;5,1)*c(1,1;6,1)*

 c(2,1;4,3)*c(2,1;5,1)*c(2,1;6,1)*

 c(4,3;5,1)*c(4,3;6,1)*c(5,1;6,1) *

 !c(2,1;4,1)*!c(2,1;4,2)

b19 = c(3,1;4,3)*c(3,1;5,1)*c(3,1;6,1)*

 c(2,1;4,3)*c(2,1;5,1)*c(2,1;6,1)*

 c(4,3;5,1)*c(4,3;6,1)*c(5,1;6,1)*

 !c(2,1;4,1)*!c(2,1;4,2)

It follows that the total merit of the considered lines

a1, b1, …, a10, b10…, a19, b19…, becomes:

   
3

1 1/ 2 1/ 4 1 6NMT  

By proceeding along this line of reasoning, it is easy

to prove that the merit of a Boolean product of the type of

the above presented products is equal to:

   1 1/ 2 1/ 4 1
n m

NMT n


  

where, of course, m is the number of variables (as <1,1>,

<2,1>, <3,1> in the preceding examples) each of which

appears in all the prime implicants which will be

generated from that product.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Cook, S. (2006). The P versus NP problem. In: Carlson,

J., Jaffe, A., & Wiles, A. (Eds.), The Millennium

Prize Problem, (pp. 870104), Providence: American

Mathematical Society. ISBN-10: 082183679X.

Fortnow, L. (2009). The status of the P versus NP

problem. Communications of the ACM, 52(9), 78-86.

https://doi.org/10.1145/1562164.1562186

Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524

DOI: 10.3844/jcssp.2021.511.524

524

Meo, A. R. (2008) Some Theorems Concerning the Core

Function. In: Degano, P., De Nicola R., & Meseguer

J. (Eds.), Concurrency, Graphs and Models, (pp.

778-796). Springer, Berlin, Heidelberg.

 https://doi.org/10.1007/978-3-540-68679-8_48

Meo, A. R. (2016-2020). On the P versus NP question.
Accademia delle Scienze di Torino.

 https://www.accademiadellescienze.it/attivita/editori

a/lavori-di-soci

Meo, A. R. (2018). On the P vs NP question: a proof of

inequality. arXiv preprint arXiv:1802.05484.

 https://arxiv.org/abs/1802.05484

Razborov, A. A. (1985). Lower bounds for the monotone

complexity of some Boolean functions. Soviet

Mathematics-Doklady, 31, 354-357.

 https://ci.nii.ac.jp/naid/10003041149/

https://www.accademiadellescienze.it/attivita/editoria/lavori-di-soci
https://www.accademiadellescienze.it/attivita/editoria/lavori-di-soci

