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Abstract: The analysis discussed in this study is based on a well-known 

NP-complete problem which is called “satisfiability problem or SAT”. 

From SAT a new NP-complete problem derives, which is described by a 

Boolean function of the number n of the clauses of SAT called “core 

function”. In this study a new proof is presented according which the 

number of gates of the minimal implementation of core function 

increases with n exponentially. Since the synthesis of core function is an 

NP-complete problem, this result can be considered as the proof of the 

theorem according which P and NP do not coincide.  
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Introduction 

In 2009 the author of this paper presented a first proof 

of inequality concerning the known P-NP question to the 

Academy of Sciences of Turin. Few years later the same 

paper was published in the known repository ArXive 

(Meo, 2018). After a very long debate in May of 2019 the 

Academy of Sciences of Turin has made the decision to 

publish that paper (Meo, 2016-2020). 

This paper presents a simpler version of that proof 

based on some new theorems.  

Definitions 

A brief description of the definitions and properties 

well known among the scientists of modern 

computational complexity theory which will be made 

reference to, is presented in this section: 

 

 P denotes the class of all the decision problems which 

can be solved in polynomial time 

 NP denotes the class of all the decision problems f 

satisfying the property that the function check(f) 

analyzing a witness of the decision problem is 

polynomial time decidable 

 “P = NP?”, or, in other terms, “Is P a proper subset 

of NP?”, is one of the most important open questions 

in modern computational complexity theory 

 

A decision problem C in NP is NP-complete if it is in 

NP and if every other problem L in NP is reducible to it, 

in the sense that there is a polynomial time algorithm 

which transforms instances of L into instances of C 

producing the same output values.  

The importance of NP-completeness derives from the 

fact that, if we find a polynomial time algorithm for just 

one NP-complete problem, then we can construct 

polynomial time algorithms for all the problems in NP 

and, conversely, if any single NP-complete problem 

does not have a polynomial time algorithm, than no    

NP-complete problem has a polynomial time solution. 

The analysis discussed in this study will be based on 

the following well-known NP-complete problem which is 

called “satisfiability problem or SAT”. 

Given a Boolean expression containing only the names 

of a set of variables (some of which may be complemented), 

the operators AND, OR and NOT and parentheses, is there an 

assignment of TRUE or FALSE values to the variables 

which makes the entire expression TRUE? 

It is well known that the problem remains NP-complete 

also when all the expressions are written in “conjunctive 

normal form” with 3 variables per clause (problem 3SAT). 

In this case, the analyzed expressions will be of the type: 
 

 

 

 

11 12 13

21 22 23

1 2 3

   

    

   t t t

F x OR x OR x AND

x OR x OR x AND

AND

x OR x OR x



 (1) 

 
where, t is the number of clauses or triplets; each xij is a 

variable in complemented or uncomplemented form; each 

variable may appear multiple times in that expression. 

Usually, the deterministic Turin machine is assumed 

as the computational model. In this study analysis will be 

developed with reference to a family {Cn} of Boolean 

circuits, where Cn has n binary inputs and it produces the 

same binary output as the corresponding Turing machine. 
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The equivalence between a deterministic Turing 

machine M processing some input x belonging to {0,1}n 

and an n-input Boolean circuit Cn is well known. It is also 

known that the number of gates, or AND, OR, NOT 

operators, appearing in circuit Cn, is polynomial in the 

running time of the corresponding Turing machine. 

The synthesis of the state of art of question PvsNP can 

be found in (Fortnow, 2009; Cook, 2006). 

The Core Function 

In the case of the satisfiability problem with 3 

variables for clause, Boolean circuit Cn has n (= t) sets of 

inputs which the binary data are applied to. The output of 

Cn (with n = t) will take the value TRUE when and only 

when, there is an assignment of values TRUE and FALSE 

to variables making expression (1) TRUE. 

In order to simplify analysis, circuit Cn will be 
decomposed into two processing layers as shown in Fig. 
1, where, as usual, the number t of triplets plays the role 
of symbol n in the standard analysis of complexity 
theory. In the following analysis, we shall use the 
symbol t when it is necessary to remember the number of 
triplets and n in the other cases. 

Compatibility of Two Variables 

A variable j of triplet i will be defined as “compatible” 

with variable k of triplet h when and only when, either: 
 

 The sign sij of the former variable is equal to the sign 

shk of the latter variable  

 The name <nij1 nij2 …nijm> of the former variable is 

different from the name <nhk1 nhk2 …nhkm> of the 

latter variable 

 

 
 

Fig. 1: Decomposition of Boolean circuit Cn into a compatibility layer and a core layer 

 

 
 

Fig. 2: Compatibility cell 

 s11 n111 n112 n113…….. n11m  . . . . . . . . . . . . . . . . . st3 nt31 nt32 nt33…….. nt3m 

Compatibility layer 

c(1,1;2,1) c(1,1;2,2) c(t-1,3;t,3) 

Core layer (Core Function) 

Output 

TRUE ⇔ xij is compatible with xhk 

FALSE ⇔ xij is not compatible with xhk 
c(i,j;h,k) = 

sij nij1 nij2 nij3…… nijm  shk nhk1 nhk2 nhk3…… nhkm 

Compatibility cell 

c(i,j;h,k) 
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From that definition it follows that two “not 

compatible” variables have different signs and the same 

name; therefore, their AND is identically FALSE. 

The compatibility layer is composed of 3∙t∙(3∙t-3)/2 

identical cells, one for each pair of variables belonging to 

different triplets. 

As shown in Fig. 2, the inputs of a cell will be the sign 

sij and the binary code <nij1 nij2 …nijm> of variable j of 

triplet i and the sign shk and the binary code <nhk1 nhk2 

…nhkm> of variable k of triplet h. The output of the same 

cell c(i,j;h,k) will be TRUE when and only when, the two 

variables are compatible between themselves. 

Variable c(i,j;h,k) will be called a compatibility 

variable or simply a compatibility. 

Core Layer 

The core layer processes only the 9∙t∙(t-1)/2 

compatibility variables c(i,j;h,k) and produces the global 

result of computation. 

As the circuit Cn, also the global Boolean function 

implemented by Cn may be decomposed into two layers 

of functions. At the compatibility layer, the function 

implemented by a cell may be written as follows (by using 

the symbols ∗, + and ! for representing AND, OR and 

NOT operators, respectively):  

 

 

1 1 1 1

2 2 2 2

, ; , ! !

 ! !

 ! !

 ! !

ij hk ij hk

ij hk ij hk

ij hk ij hk

ijm hkm ijm hkm

c i j h k s s s s

n n n n

n n n n

n n n n

   

   

   



   

 (2) 

 

The Boolean function implemented by the core layer 

will be called the “Core Function” of order t, where t is 

the number of triplets. It will be denoted with the symbol 

CF(t) (or CF(n)). The core function can be determined by 

proceeding as follows. 

Consider one selection of variables appearing in Eq. (1), 

one and only one for each triplet, for all the triplets. Let: 

 

1 21 , 2 , , ti i ti        (3) 

 

with i1, i2, …., it {1, 2, 3}. 

Be the indexes <number of triplet, number of 

variable in the triplet> of the selected variables. They 

will be called “characteristic indexes”. Let Πk be the 

product of all the compatibility variables relative to the 

k-th of selections (3): 

 

   

 

1 2 1 3

1

 1, ;  2, 1, ;  3, ...

... 1, ;  ,  

k

t t

c i i c i i

c t i t i

   

 
  (4) 

 

The core function can be defined as the sum: 

k

k    (5) 

 
of the products (4) relative to all the selections (3). 

For example, in the case of CF(3), the core function 

can be defined as follows: 
 

       

     

     

     

 

     

3 1,1;2,1 1,1;3,1 2,1;3,1

1,1;2,1 1,1;3,2 2,1;3,2

1,1;2,1 1,1;3,3 2,1;3,3

1,1;2,2 1,1;3,1 2,2;3,1

...  22 ...

1,3;2,3 1,3;3,3 2,3;3,3

CF c c c

c c c

c c c

c c c

other products

c c c

   

  

  

  



 

  (6) 

 
It is easy to prove that there is an assignment of values 

TRUE or FALSE to variables appearing in Eq. (1) which 

make the value of (1) equal to TRUE when and only 

when, the core function takes the value TRUE. 

Notice that the processing work of the cell of Fig. 2 

increases as a polynomial function P(t) of the number of 

the variables since the increment of the length of the code 

of the name is logarithmic. Therefore, the total processing 

work of the compatibility layer increases as: 
 

   9  –  1t t P t    

 
where, 9∙t∙(t-1)/2 is the total number of the 

compatibility cells. 

Besides, the problem solved by the core layer is clearly 

in NP, because it is easy to verify a witness solution. It 

follows that, since the compatibility layer polynomially 

reduces an NP-complete problem (3SAT) to the problem 

solved by the core layer, the core function describes a new 

NP-complete problem. 

Some properties of core function have been discussed 

in Meo (2008). 

Notice that, in order that the circuit represented in Fig. 

1 exactly performs the processing work done by 3SAT, 

the Boolean function implemented by the core layer may 

be an incompletely specified function. 

Indeed, assume that: 

 

 , ; , 0c i j l m   

 

and: 

 

 , ; , 0c i j p q   

 

This implies that variable <i,j> and variable <l,m> 

have the same name and a different sign; similarly, <i,j> 

and <p,q> have the same name and a different sign. It 

follows that <l,m> and <p,q> have the same name and the 

same sign. Therefore, c(l,m;p,q) cannot be equal to 0. 

Therefore, all the minterms implying: 
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     ! , ; , *! , ; , *! , ; ,c i j l m c i j p q c l m p q  

 
(where, !c denotes the complement of c) are incomplete 

specifications of the Boolean function implemented by 

the Core Layer of Fig. 1. 
However, it is easy to verify that the many incomplete 

specifications of the type of the preceding ones are not 
useful to simplify and to reduce the costs of 
implementation of Boolean function defined by Eq. (4) 
and Eq. (5). Therefore, in the following analysis the 
chances represented by the incomplete specifications will 
be ignored in the analysis of CF(t).  

A Theorem of Boolean Monotonic Functions 

Let f(x1, x2, ..., xt) be an isotonic Boolean function, that 
is a Boolean function which can be implemented with 
only AND and OR gates, applied to uncomplemented 
literals x1, x2, …, xt. It was believed that the minimum cost 
implementation of f(x1, x2,…, xt) always contains only OR 
and AND gates, but Razborov (1985) proved that there are 
isotonic functions whose minimum cost implementation 
contains also NOT gates. 

However, there is on upper bound on the 
comparison of the costs of the minimum cost 
implementations with and without NOT gates. It is 
specified by the following theorem. 

Theorem 3.1 

Let Imin be one of the minimum cost implementations 
of the isotonic Boolean function f(x1, x2,..., xh), the cost 
being defined as the total number of AND, OR or NOT 
gates. Let Cmin be the cost of Imin. 

There exists always an implementation J of f 

containing only AND and OR gates (in addition, if 

necessary, to the NOT operators producing input variables 

!x1, !x2, ...,!xh) such that: 
 

  mincos  2t J C h    

 
where, h is the number of variables. 

In order to prove this theorem, let us divide the gates 

of implementation Imin of f into different levels and let us 

modify Imin as follows. 

At level 1 we place the gates all inputs of which 

coincide with the complemented or uncomplemented 

input variables xi or !xi (where !xi denotes the complement 

of variable xi). 
Level 2 contains the gates whose inputs coincide with 

input variables or outputs of level 1 gates. 
In general terms, level q contains the gates whose 

inputs coincide with input variables or outputs of levels 
less than q. 

We can transform Imin into J by deleting NOT gates 
and adding new AND or OR gates as follows. 

We start from level 1. 
For any level 1 AND gate we add an OR gate whose 

inputs are the complements of the inputs of the considered 
AND gate (Fig. 3). Similarly, for any level 1 OR gate we 
add an AND gate whose inputs are the complements of 
the corresponding OR gate. 

By virtue of such operations, for any output u of the 
level 1 gates a new node will be available in the new 
circuit we are generating whose value will be !u. 

As a second step of processing, for any level 2 AND 
gate of implementation Imin we shall add an OR gate 
whose inputs are the complements of the inputs of the 
corresponding AND gate, in both the cases in which these 
inputs coincide with input variables of f or with output of 
level 1 gates (Fig. 4). 

 

 
 

Fig. 3: The new gates of level 1 
 

 
 

Fig. 4: The new gates of level 2 

a !b c !a b !c a !b c !a b !c 

u !u u !u 

a !b u !a b !u a !b u !a b !u 

u !v v !v 
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 (a) (b) 

 
Fig. 5: (a) A two level subnetwork; (b) The transformation of the subnetwork of (a) 

 

A similar transformation will be applied to all level 2 

OR gates. 

As an example, the two level subnetwork of Fig. 5a 

will be transformed into the subnetwork of Fig. 5b. Notice 

that at the outputs of J not only the outputs v and w of Imin 

will be available, but also their complements! v and! w. 

The preceding operations will be applied to all the 

levels of implementation of Imin, in the order of increasing 

levels. It is apparent that, if for any input variable xi also 

!xi is available, the number of gates of J is less than, or 

equal to, twice the number of gates of Imin. 

At level 0, before the gates of Fig. 5b, h NOT gates 

might be necessary to generate the complemented input 

variables !xi. Therefore, h has been added in the statement 

of the theorem. 

This theorem will be important in order to simplify the 

analysis of core function circuits.  

Properties of Core Function 

It is easy to prove the following properties of core 

function. 

Property 1 

Function defined by Eq. (5) is totally isotone. 

Property 2 

Any product (4) is a prime implicant of core function 

(that is, a Product of Compatibilities (“PoC”) which 

implies core function and no other term of it). 

Property 3 

Since the different selections of each of variables (3) 

are 3, the number of prime implicants of core function is 

equal to 3t. Each of these prime implicants is essential 

(that is, it does not imply a sum of other prime implicants) 

and it is the product of t∙(t-1)/2 compatibilities. 

Products of Compatibilities 

In the next sections, reference will be made to the 

following definitions. 

Definition of Spurious Compatibilities Pair 

A pair of compatibility variables {c(h,k;l,m), c(p,q;r,s)} 

is defined as a spurious pair if: 

 

 (h = p and k ≠ q) 

or (h = r and k ≠ s) 

or  (l = p and m ≠ q) 

or  (l = r and m ≠ s) 

 

For example, the pair {c(1,1;2,1), c(1,2;3,1)} is a 

spurious pair since the triplet 1 is associated to two 

different indexes of variables (1 and 2). 

Definition of Spurious Products of Compatibilities 

A spurious Product of Compatibilities (spurious PoC) 

is a product of compatibility variables containing the 

elements of one or more than one spurious pair. 

For example, the PoC: 
 

     1,1;2,1 1,2;3,1 2,1;3,1c c c   

 
is a spurious PoC since it contains the elements of the 

spurious pair: 
 

    1,1;2,1 , 1,2;3,1c c  

 

Definition of Impure Products of Compatibilities 

A PoC containing one or more complemented 

variables will be defined as an impure PoC. In particular 

a term T of CF (that is, a PoC implying CF) which 

contains one or more complemented variables, will be 

defined as an impure term.  

a !b c a !b c !a b !c d !d 

u 

d 

u 
!u 

v w v !v w !w 



Angelo Raffaele Meo / Journal of Computer Science 2021, 17 (5): 511.524 

DOI: 10.3844/jcssp.2021.511.524 

 

516 

Definition OF Core of a POC 

The product of all the uncomplemented variables of T 

will be defined as the core of T. 

Definition of Mark 

Consider a not spurious subset of compatibilities 

satisfying the property that all the indexes of triplet 

{1,2,…,t} appears at least once in some variable. The 

product of the variables of such a subset will defined as a 

“mark” of the prime implicant of which it contains a 

subset of compatibilities. 

For example, in the case of CF(4), the PoC: 
 

     1, ;2, 1, ;3, 1, ;4,M a b c a c c a d     (7) 

 
(where the indexes of triplet are elements of the set 

{1,2,3,4} and a, b, c, d are elements of {1,2,3}). 

is a mark of the prime implicant: 
 

     

     

1, ;2, 1, ;3, 1, ;4,

2, ;3, 2, ;4, 3, ;4,

P c a b c a c c a d

c b c c b d c c d

  

  
 (8) 

 
since all the indexes of triplet appear at least once in Eq. (7). 

Definition of Spurious Mark 

A spurious PoC in which all the indexes of triplet 

appear at least once will be called a “spurious mark”. 

Notice that a spurious mark may be the mark of more than 

one prime implicant. For example, in the case of CF(3): 
 

     1,1;2,1 1,1;3,1 1,1;2,2c c c   

 

is a spurious mark of both the prime implicants: 

 

     1,1;2,1 1,1;3,1 2,1;3,1c c c   

 

and: 

 

     1,1;2,2 1,1;3,1 2,2;3,1c c c   

 

An impure PoC whose core is a (possibly spurious) mark 

will be a defined as a (possibly spurious) impure mark. 

Definition of Extended Prime Implicants 

A term T of core function, that is, an implicant of core 

function (a product of literals implying core function), 

contains all the uncomplemented literals of a prime 

implicant. Therefore, it may be defined as an “extended 

prime implicant” (only) to remember that it contains all 

the compatibilities of a prime implicant.  

It may be a spurious extended prime implicant or an 

impure extended prime implicant or both a spurious and 

impure extended prime implicant. 

Notice that an extended prime implicant can be viewed 

as a (possibly spurious or impure) mark. 

Definition of Remainder 

A PoC which is neither a (possibly spurious or impure) 

mark nor an (extended) prime implicant will be called a 

“remainder”. 

A remainder R may be associated to more than one 

prime implicant. For example, in the case of CF(3), R = 

c(2,1;3,1) is a remainder of the prime implicants: 

 

     

     

     

1 1,1;2,1 1,1;3,1 2,1;3,1

2 1,2;2,1 1,2;3,1 2,1;3,1

3 1,3;2,1 1,3;3,1 2,1;3,1

P c c c

P c c c

P c c c

  

  

  

  (9) 

 

On the definitions of mark and remainder the 

following properties are based. 

Property 4 

A not spurious mark M specifies a corresponding 

prime implicant P uniquely. Indeed, if all the indexes of 

triplet appear in M, the product (4) is completely defined. 

We shall write: 

 

 P I M  

 

to state that P is the prime implicant specified by M. 

As already mentioned, a remainder R does not 

specify a corresponding prime implicant uniquely. In 

the example relative to CF(3) above described, three 

prime implicants correspond to R = c(2,1;3,1), as 

shown by Eq. (9), since a single index of triplet is 

missing in that remainder. In general, if z triplets are 

not involved in R, there are 3z different ways of 

involving the missing triplets.  

Hence the following property follows.  

Property 5 

A not spurious remainder R in which the indexes of z 

triplets are missing corresponds to 3z different prime 

implicants. 

Finally, the following property can be easily proved. 

Property 6 

Let P1 and P2 be two PoC’s such that P1∗P2 is equal to 

a prime implicant P of core function. Either P1 or P2 is a 

mark of P. 

The External Core Function 

Let Ij be a prime implicant of CF(n). The external 

core function relative to Ij, ECF(n, Ij), is defined as the 

sum of all the minterms of CF(n) which imply Ij and no 

other prime implicant Ik of CF(n) with k ≠ j. (Remember 
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that a minterm of a Boolean function F is a product of 

all the variables of F, some complemented and some 

uncomplemented, implying F). 

Of course: 
 

   , !j j k j kECF n I I I    (10) 

 
where all the prime implicants Ij of core function are 

involved and !Ik denotes the complement of Ik (i.e., NOT Ik). 

The global external core function of order n, or 

ECF(n), will be defined as the sum of ECF(n, Ij)’s relative 

to all the prime implicants Ij of CF(n): 
 

   ,j jECF n ECF n I    (11) 

 
The importance of external core function derives from 

the following theorems. 

Their proofs can be found in Meo (2016-2020; 2018; 

2008). 

Theorem 6.1 

Let T be a term (or extended prime implicant) of 

CF(n). It may be the product of all the compatibilities 

of a prime implicant Ij of CF(n) and other 

compatibilities, that is: 

 

jT I X   

 

where, X is a possibly empty PoC. T can also be written 

as T = T(Ij). 

All the minterms of T(Ij) contained in ECF(n) are 

minterms of ECF(n, Ij). 

Theorem 6.2 

Let T be a term of CF(n) implying two or more than 

two prime implicants of CF(n): 

 

 ,j kT T I I  

 

The number of minterms of T(Ij, Ik) belonging to 

ECF(n) is equal to 0. 

Theorem 6.3 

Let T = T (Ij) = Ij∗X be a term of CF(n) which is 

spurious for a single compatibility X. 

If NMT(F) denotes the number of minterms of 

Boolean function F, the number of minterms of Ij∗X 

contained in ECF(n,Ij ) is: 

 

        , 1 / 2 ,j j jNMT I X ECF n I NMT ECF n I     (12) 

 

By proceeding in the same way it is possible to 

generalize the preceding Theorem 6.3 as follows. 

Theorem 6.4 

Let: 
 

1 2j mI X X X    

 
be a spurious term characterized by m spurious 

compatibilities.  

The number of its minterms contained in ECF(n, Ij) is: 
 

  

     

1 2 ... ,

1 / 2 ,

j m j

m

j

NMT I X X X ECF n I

NMT ECF n I

    

 
  (13) 

 

Theorem 6.5 

Let T = T (Ij) be an impure term of CF(n) characterized 

by a single impure variable (!X): 
 

 ! .jT I X   

 
For large values of n, the number of minterms of 

ECF(n, Ij) contained in T is: 
 

         ! , 1 / 2 ,j j jNMT I X ECF n I NMT ECF n I     (14) 

 

Theorem 6.6 

Let T = T(Ij) be an impure term of CF(n) characterized 

by m impure variables: 
 

     1 2! ! !j mT I X X X     

 
For large values of n, the number of minterms of 

ECF(n, Ij) contained in T is: 
 

        , 1 / 2 ,
m

j jNMT T ECF n I NMT ECF n I    (15) 

 
Notice that NMT(ECF(n, Ij)) = NMT(ECF(n, Ik)) for 

any j and k. It will be called NMT1(n). 

The Reference Architecture 

Figure 6 shows the network which will implement 

core function. By virtue of Theorem 3.1, it does not 

contain NOT gates. 

Notice in Fig. 6 that the output of an AND gate 

becomes always the input of an OR gate and, conversely, 

the output of an OR gate becomes always the input of an 

AND gate Indeed, if, for example, the output of an AND 

gate A becomes the input of another AND gate B, the two 

gates A and B can be merged into a single AND gate 

collecting all the inputs of A and B. By virtue of this 

operation the total number of gates remains constant or it 

is reduced by one unit. However, this hypothesis has not 

been applied in the following analysis.  
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Fig. 6: The reference architecture 

 

 
 

Fig. 7: The primary composite addendum of maximum value 

 

Any input of the OR gate producing the final value of 

CF(n) will be called a “Primary Composite Addendum 

(PCA)”. Every Fi 
will be called a “Primary Composite 

Addendum Factor” (PCAF). 

If the number of PCA's of the minimum cost 

implementation of CF(n) increased with n according to an 

exponential law, also the cost of this implementation 

would increase according to an exponential law, the cost 

being represented by the number of AND gates at the 

bottom of Fig. 6. 

Therefore, the following analysis refers to the case in 

which the number of PCA's of the minimum cost 

implementation of CF(n) increases with n according to a 

polynomial law. The PCA characterized by the maximum 

value among all the values of PCA’s will be called 

PCAMAX (Fig. 7). If the best implementation of CF(n) will 

F11 F12 . . . . . F1l 

F1 F2 Fk-1 Fk 

PCAMAX 
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contain a single PCA, this will have the role of PCAMAX. 

Notice in Fig. 7 that k-1 products (F1*F2*…*Fk) produce 

PCAMAX, where k increases according a polynomial law 

but the number of prime implicants of CF(n) contained in 

PCAMAX increases exponentially.  

The Value of an “AND” Operation 

Consider an elementary two inputs AND operation U 

applied to Boolean Functions A and B: U = A*B. Let A 

and B be specified as sums of their prime implicants. 

Some of these implicants are marks or prime implicants 

of core function (m1, m2, m3,…); other implicants of A or 

B are remainders of core function (r1, r2, r3,…). 

The purpose of the considered Boolean product (for 

example, one of the k-1 products of Fig. 7) is to produce 

new marks and new prime implicants of core function 

through elementary products of remainders and other 

marks contained in the lists of implicants of A and B. 

Not always a mark deriving from the product of a 

remainder ri of A by a remainder rj of B becomes a useful 

prime implicant of core function. However, the output U 

of the product A*B becomes the input of a subnetwork 

which will produce the value of core function as its output. 

Since this subnetwork contains no NOT gates, its output 

can be written as follows: 

 

1 2 1 2* *CF U x U x y y       (16) 

 

where, x1, x2, …, y1, y2, …, are products of variables of 

core functions, that is, products of compatibilities. Notice 

also that every U*xi and every yj must be an extended 

prime implicant of core function. 

Analysis of Eq. (16) suggests the following definition: 

“The value of a Boolean product val(A*B) is the number 

of minterms of ECF contained in the prime implicants of 

core function appearing in the result of (16) and deriving 

from new marks, that is marks different from those 

already available in A or in B.”  

In order to identify the best solution from the 

viewpoint of the value of the considered AND product, 

first consider the following example relative to CF(4): 

 

   1 2 3 1 2 3*a a a b b b     

 

where: 

 

   

   

   

   

   

   

1

1

2

2

3

3

1,1;4,1 * 2,1;4,1

3.1;4,1 * 2,1;4,1

1,1;4,2 * 2,1;4,2

3,1;4,2 * 2,1;4,2

1,1;4,3 * 2,1;4,3

3,1;4,3 * 2,1;4,3

a c c

b c c

a c c

b c c

a c c

b c c













 (17) 

By proceeding as in the above examples and 

introducing the value: 

 

     

       

1

2, 1 2

1,1;2,1 * 1,1;3,1 * 2,1;3,1

* 1,1;4,1 * 1,1;4,2 * 3,1;4,1 * 3,1;4,2

, , , 0

x c c c

c c c c

x y y



 

 

 

in Eq. (16), it is easy to prove that the best implementation 

of this product generates three prime implicants whose 

total value is equal to (5/16)∙NMT1. A way to improve 

this value consists in adding suitable compatibilities to 

remainders appearing in (17) in order that any product ai’ 

* bj’ * x1 (where x1 = c(1,1;2,1)*c(1,1:3,1)*c(2,1;3,1)) 

implies CF(4) as in the following example: 

 

     

     

1 1 2 2 3 3

1 1 2 2 3 3

* 1,1;4,1 * 1,1;4,1 * 1,1;4,2

* 3,1;4,1 * 3,1;4,1 * 3,1,4,2

a a a a c a a c c

b b b b c b b c c

    

    
  (18) 

 

The total merit is equal to: 

 

     

   

1 1 2 2 3 3* * *

1 1 / 4 1 / 16 1 4

val a b val a b val a b

NMT

      

   
 

 

A better result can be obtained by multiplying ai and 

bi by suitable complemented compatibilities in order that 

ai * bj is equal to 0 if i<>j. For example: 

 

     

     

1 1 2 2 3 3

1 1 2 2 3 3

*! 2,1;4,1 *! 2,1;4,1 *! 2,1;4,2

*! 2,1;4,1 *! 2,1;4,1 *! 2,1;4,2

a a a a c a a c c

b b b b c b b c c

    

    
 (19) 

 

The total merit of this new AND operation is equal to: 

 

   1 1/ 2 1 / 4 1 4NMT    

 

In order to prove that Eq. (18) and (19) represent 

good solutions, first observe that in a product as 

(a1+a2+a3 +…) * (b1+b2+b3 +…) a term ai or bj might be 

a remainder or a mark (or a prime implicant). However, 

in Appendix 1 it is shown that no mark appearing in the 

list of the products of compatibilities ai or bj can be 

useful in order to produce an increase of the value of 

Boolean product A * B. Therefore, we can assume that 

all the ai‘s and the bj‘s are remainders. 
Besides, we might hope that a product as (a1+a2) * 

(b1+b2) can produce four different marks a1b1, a1b2, 
a2b1, a2b2. In Appendix 2 it is shown that four 

different marks can derive from that product, but the 

total value is very small and it decreases very quickly 

with the number n of variables. 

Also the total value of the product (a1+a2)*b is very 

small and it decreases very quickly with the number n of 

variables, as shown in Appendix 3. 
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The following proof is devoted to Eq. (18). 

Appendixes 1, 2 and 3 show that the best solutions 

from the viewpoint of the value are characterized by a 

correspondence one-to-one according which a remainder 

ai is associated to a single remainder bi and vice versa. 

However, the names ai and bj must be corrected and they 

must become spurious or impure PoC’s because every 

product ai  bj  x1 must imply CF(n). 

If the prime implicant I1 deriving from m1 = a1b1 is 

different from the prime implicant I2 deriving from m2 = 

a2b2, one of the compatibilities of m1 must make 

reference to a variable A which does not appear in any of 

the compatibilities of I2. Besides, a1 cannot contain all the 

compatibilities involving A since, otherwise, it would not 

be a remainder, but it would be a mark. 

It follows that the product a1 * b2 must produce prime 

implicant I1 since it cannot generate I2 or another prime 

implicant different from I1. Indeed, we can assume that m1 

has a value equal to NMT(n) and, therefore, it is not 

spurious and it cannot contain a variable as B which 

characterizes prime implicant I2 or another prime implicant. 

If a1b2x produces prime implicant I1, either b2 or x must 

contain at least one compatibility involving variable A. 

The same analysis which has been developed with 

reference to product a1b2 can be applied to the product 

a2b1. From such an analysis we can prove that either b1 

or x must contain at least a compatibility relative to a 

symbol A’ different from the symbol A characteristic of 

I1. Therefore, the value of mark m2 = a2 * b2 will be equal 

to, or less than, (1+1/4)∙NMT1(4). 

By applying the same type of analysis it is easy to 

prove that, if: 
 

   1 1* 1 4val a b NMT  

 
and: 
 

     1 1 2 2* * 1 1/ 4 1 4 ,val a b a b NMT     

 
then: 

 

    

   

1 2 3 1 2 3*

1 1/ 4  1/16 1 4 ,

val a a a b b b

NMT

   

   
 

 
as shown by Eq. (18). 

 The proof of Eq. (19) can be developed in a similar 

way. It is simpler. 

 This solution is extended to CF(6) in Appendix 4, 

where the hypothesis: 
 

     1

2, 1 2

1,1;2,1 * 1,1: 3,1 * 2,1*3,1

, , ,  0

x c c c

x y y



 
 

 
has been assumed.  

Notice that, if Eq. (16) contains only x1 as it is usual in 

many examples, x1 may coincide with one of the k primary 

composite addendum factors Fj appearing in Fig. 7.  

The Best Implementation of the Product A * B 

The best implementation of the product of two 
Boolean functions A and B (such that A*B*x1 is equal to 
one or more than one prime implicants of CF(n)) is 
characterized by the maximum value according our 
definition of “value of a product”. 

According to the statements of Appendixes 1 to 3, we 

can assume that the prime implicants of CF(n) by A*B are 

the following: 

 

1 1 1

2 2 1

3 3 1

* *

* *

* *

a b x

a b x

a b x



 

 

However, also every product ai*bj *x1, with i <> j, must 

be a (possibly spurious) prime implicant of CF(n) (solution 

1), unless ai*bj = 0 and aj*bi = 0 (solution 2). Equation (18) 

and (19) make reference to an example where solution 2 is 

better then solution 1 from the viewpoint of the value of the 

product. However, it is easy to prove that solution 2 is 

always better than solution 1. Indeed, at least two spurious 

compatibilities must be added to aj and bj in order that both 

ai*bj*x1 and bi*aj*x1 are prime implicants of CF(n), while 

a single compatibilty is always sufficient in order that ai*bj 

= 0 and bi*aj = 0. Besides, sometimes a single impure 

compatibility can make ai*bj = 0 and bi*aj = 0 for a given j 

and many different values of i.  

For example, in Appendix 4, a single complemented 

compatibility (!c(4,1;5,1)) can make a1, a2, a3 compatible 

with b4 and b1, b2, b3 compatible with a4, while 

compatibility !(2,1;4,1) can make a1, a2, …, a9 compatible 

with b10 and b1, b2,…, b9 compatible with a10.  

It is very easy to prove that any natural order of the 

type adopted in Appendix 4 for generating the new 

marks produces the maximum value of the product of 

two Boolean functions as F1*F2 or (F1*F2)*F3 of Fig. 7. 

It is also easy to prove on the base of analysis of 

Appendix 4 that the value of a Boolean product is always 

less than or equal to (1+1/2+1/4)n-m∙NMT1(n) where n is 

the number of variables of CF(n) and m is the number of 

variables (as [1,1], [2,1], [3,1] in the previous examples) 

each of which appear in all the prime implicants which 

will be generated from that product. 

The Value of an “OR” Operation 

Theoretically, a mark might derive from the Boolean 

sum of two or more than two remainders. For example, 

the mark of CF(4): 
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     1,1;4,1 2,1;4,1 3,1;4,1m c c c  

 

might derive from the sum of the two remainders: 

 

     1 1,1;4,1 2,1;4,1 ! 1,1;3,1r c c c  

 

and: 

 

   2 3,1;4,1 * 1,1;3,1r c c  

 

Let remainders r1 and r2 be two of the inputs of the OR 

gate producing mark m and let U be the output of this OR 

gate. Since the circuit producing PCAMAX does not 

contain NOT circuits, the value of the circuit producing 

CF can be written as follows: 

 

1 2 1 2

1 1 2 1 1 2 2 2 1 2

* *

 * * * *  

CF U x U x y y

r x r x r x r x y y

    

       
 

 

Since r1 and r2 are remainders, every xi must be a mark. 

Besides, either there is a yk = I(m) or one of marks xj 

coincides with mark m, in order to produce the relative 

implicant. It follows that the production of a mark as the 

sum of two remainders is not necessary in order to 

generate its relative implicant.  

Conclusion 

The synthesis of Boolean function CF(n) can be 

described as a sequence of Boolean operations finalized 

to producing new marks in every step. The most important 

of these operations are Boolean AND’s which produce 

new marks from remainders or already available marks 

with an increase of the value, where the value is defined 

by the number of minterms of ECF contained in the output 

marks not contained in the input marks. 

The simplest operation is the AND of input variables 

of the whole network or of already available remainders. 

This operation is characterized by a value equal to (or less 

than) NMT1(n). The most efficient operation is the AND 

of impure or spurious compatibilities of the type described 

in Appendix 4, which is characterized by a value equal to 

(1+1/2+1/4)n-m∙NMT1(n). 

Notice that a single AND gate having i inputs can 

perform (i-1) AND operations, but usually these (i-1) 

AND operations are associated to i other gates in addition 

to the considered AND, that is, the gates (typically, OR 

gates) feeding this AND gate. Therefore, it is easy to 

verify that the implementation of the X Boolean functions 

necessary to synthesize CF(n) requires at least X gates. 
Therefore, since the number of minterms of ECF(n) 

contained in CF(n) is equal to 3n∙NMT1(n) and the merit 

of a gate is always less than or equal to (1+1/2+1/4)(n-m)∙ 

NMT1(n), the number of gates contained in the 

considered network is larger than 3n/((1+1/2+1/4)(n-m) and, 

therefore, it increases exponentially with n. 

Since the synthesis of core function is an NP-complete 

problem, this result is equivalent to proving that P and NP 

do not coincide.  

One final note: Also the synthesis of the remainders 

appearing in all the OR or AND gates requires a number 

of gates which increases exponentially with n. The proof 

of this property is rather complex and it has been omitted 

in this study since it is not necessary.  

Appendix 1 

In the product A*B of two Boolean functions A = (a1 + 

a2 + a3 +….) and B = (b1 + b2 + b3 +…), where the ai’s and 

bj’s are prime implicants of function A and B, respectively, 

no mark contained in the list of ai‘s and bj‘s is useful in 

order to produce an increase of the value of A*B. 

Consider the following hypotheses. 

Hyp 1 

ai is a mark of CF(n) and bj is a remainder implying a1. 

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1 ;4,1) is a 

mark of CF(4) and bj = c(1,1;3,1)*c(2,1; 4,1) is a 

remainder implying ai. 

In this case, the product ai*bj coincides with ai and has 

the same value. 

Hyp 2 

ai is a mark of CF(n) and remainder bj does not imply 
ai, but ai and bj imply the same prime implicant of CF(n). 
For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1; 4,1) and bj 
= c(1,1;2,1)*c(3,1;4,1). 

In this case, a new mark of CF (4) is generated, but this 
new mark imply the same prime implicant of CF(4) as ai. 
Therefore, it does not increase the value of ai. 

Hyp 3 

ai is a mark implying a prime implicant p1 of CF and 
bj is a remainder not implying p1. 

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,1) and 
bj = c(1,1;2,1)*c(1,1;3,2). 

In this case, a new mark spurious ai*bj is generated. 
This imply the same prime implicant as ai, but its value 

is less than val(ai). 

Hyp 4 

ai is a mark and bj is another mark implying the same 
prime implicant of CF(n) implied by ai. 

For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,1) 
(mark of CF(4)) and bj = c(1,1;2,1)*c(1,1;3,1)*c(1,1;4,1). 

In this case, val(ai) = val(bj) = val(ai*bj). 

Hyp 5 

ai is a mark of CF(n) and bj is another mark of CF(n), but 

ai and bj imply two different prime implicants of CF(n). 
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For example, ai = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,1) and 

bj = c(1,1;2,1)*c(1,1;3,1)*c(2,1;4,2) are marks of two 

different prime implicants of CF(4). 

In this case, ai * bj can be viewed as a spurious mark 

of both ai and bj, but val(ai*bj) < val(ai), val(ai*bj) < 

val(bj), val(ai*bj) < val(ai) + val(bj).  

Appendix 2 

Consider the product (a1 + a2) * (b1 + b2) relative to 

CF(4) where: 

 

     

     

         

         

1

2

1

2

1,1;2,1 * 1,1;3,1 * 1,1;3,2

1,1;2,2 * 1,1;3,2 * 1,1;3,1

 2,1;3,1 * 2,1;4,1 * 3,1;4,1 * 2,2;3,1 * 2,2;4,1

2,2;3,2 * 2,2;4,1 * 3,2;4,1 * 2,1;3,2 * 2,1;4,1

a c c c

a c c c

b c c c c c

b c c c c c









 

 

with x = c[1,1]*c[4,1]. 

The following four marks of CF(4) are generated: 

 

        

        

        

        

1 1 1

2 1 2

3 2 1

4 2 2

*  1,1 , 2,1 , 3,1 , 4,1

*  1,1 , 2,1 , 3,2 , 4,1

*  1,1 , 2,2 , 3,1 , 4,1

*  1,1 , 2,2 , 3,2 , 4,1

m a b involving variables

m a b involving variables

m a b involving variables

m a b involving variables









 

 

It is easy to verifly that: 

 

           1 2 3 4 1/ 8 1 4val m val m val m val m NMT      

 
Therefore, the total value of the considered product is 

½∙NMT1(4). 

Now consider the following product (a1 + a2) * (b1 + 

b2) relative to CF(5), where: 

 

       

       

         

       

       

1 

2

1 

2

1,1;2,1 * 1,1;3,1 * 1,1;5,1 * 1,1;3,2

1,1;2,2 * 1,1;3,2 * 1,1;5,1 * 1,1;3,1

2,1;3,1 * 2,1;4,1 * 2,1;5,1 * 3,1;4,1 * 3,1;5,1

* 4,1;5,1 * 2,2;3,1 * 2,2;4,1 * 2,2;5,1

2,2;3,2 * 2,2;4,1 * 2,2;5,1 * 3,2;4,1

*

a c c c c

a c c c c

b c c c c c

c c c c

b c c c c









         3,2;5,1 * 4,1;5,1 * 2,1;3,2 * 2,1;4,1 * 2,1;5,1c c c c c

 

 
It is easy to verifly that: 

 

1 1 1

2 1 2

3 2 1

4 2 2

*

*

*

*

m a b

m a b

m a b

m a b









 

 

are four marks implying four different prime implicants 

of CP(5) and that: 

           1 2 3 4 1/16 1 5val m val m val m val m NMT      

 

In more general terms, the product (a1 + a2) * (b1 + b2) 

can produce four marks implying four different prime 

implicants of CF(n), but the value of one of these marks is: 

 

     11/ 2 1 .n

ival m NMT n   

 

Therefore, it decreases very quickly with n.  

Appendix 3 

Consider the following product: 

 

 1 2 *a a b  

 

where, a1, a2 and b are remainders of CF(4) which take 

the following values: 

 

   

   

         

1

2

1,1;2,1 * 1,1;3,1

1,1;2,2 * 1,1;3,1

 2,1;3,1 * 2,1;4,1 * 2,2;3,1 * 2,2;4,1 * 3,1;4,1

a c c

a c c

b c c c c c







 

 

The considered product generates the following marks 

of CF(4): 

 

1 1

2 2

*

*

m a b

m a b




 

 

taking the following values: 

 

   

   

1

2

¼ 1 4

¼ 1 4

val m NMT

val m NMT

 

 
 

 

In general, the product (a1 + a2) * b where a1, a2 and b 

are remainders of CF(n) produces two marks whose total 

value is equal to 1/(2n-1)∙NMT1(n). 

This value is very small and it decreases very quickly 

with n.  

Appendix 4 

In order to understand how it is possible to generalize 

the results of section 8 consider the following Boolean 

product (a1 + a2 +…)*(b1 + b2+…) relative to CF(6): 

 

a1 = c(1,1;4,1)*c(1,1;5,1)*c(1,1;6,1)*c(2,1;4,1)*c(2,1;5,1)* 

c(2,1;6,1)*c(4,1;5,1)*c(4,1;6,1)*c(5,1;6,1) 

b1 = c(3,1;4,1)*c(3,1;5,1)*c(3,1;6,1)*c(2,1;4,1)*c(2,1;5,1)* 

c(2,1;6,1)*c(4,1;5,1)*c(4,1;6,1)*c(5,1;6,1) 

a2 = c(1,1;4,1)*c(1,1;5,1)*c(1,1;6,2)*c(2,1;4,1)*c(2,1;5,1)* 

c(2,1;6,2)*c(4,1;5,1)*c(4,1;6,2)*c(5,1;6,2)*!c(5,1;6,1) 
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b2 = c(3,1;4,1)*c(3,1;5,1)*c(3,1;6,2)*c(2,1;4,1)*c(2,1;5,1)* 

c(2,1;6,2)*c(4,1;5,1)*c(4,1;6,2)*c(5,1;6,2)*!c(5,1;6,1) 

a3 = c(1,1;4,1)*c(1,1;5,1)*c(1,1;6,3)*c(2,1;4,1)*c(2,1;5,1)* 

c(2,1;6,3)*c(4,1;5,1)*c(4,1;6,3)*c(5,1;6,3)*!c(5,1;6,1)*

!c(5,1;6,2) 

b3 = c(3,1;4,1)*c(3,1;5,1)*c(3,1;6,3)*c(2,1;4,1)*c(2,1;5,1)* 

c(2,1;6,3)*c(4,1;5,1)*c(4,1;6,3)*c(5,1;6,3)*!c(5,1;6,1)*

!c(5,1;6,2) 

a4 = c(1,1;4,1)*c(1,1;5,2)*c(1,1;6,1)…!c(4,1;5,1) 

b4 = c(3,1;4,1)*c(3,1;5,2)*c(3,1;6,1)…!c(4,1;5,1) 

a5 = c(1,1;4,1)*c(1,1;5,2)*c(1,1;6,2)…!c(4,1;5,1)* 

!c(5,2;6,1) 

b5 = c(3,1;4,1)*c(3,1;5,2)*c(3,1;6,2)…!c(4,1;5,1)* 

!c(5,2;6,1) 

a6 = c(1,1;4,1)*c(1,1;5,2)*c(1,1;6,3)…!c(4,1;5,1)* 

!c(5,2;6,1)*!c(5,2;6,2) 

b6 = c(3,1;4,1)*c(3,1;5,2)*c(3,1;6,3)…!c(4,1;5,1)* 

!c(5,2;6,1)*!c(5,2;6,2)l 

a7 = c(1,1;4,1)*c(1,1;5,3)*c(1,1;6,1)…!c(4,1;5,1)* 

!c(4,1;5,2) 

b7 = c(3,1;4,1)*c(3,1;5,3)*c(3,1;6,1)…!c(4,1;5,1) 

*!c(4,1;5,2) 

a8 = c(1,1;4,1)*c(1,1;5,3)*c(1,1;6,2)…!c(4,1;5,1)* 

!c(4,1;5,2)*!c(5.3;6,1) 

b8 = c(3,1;4,1)*c(3,1;5,3)*c(3,1;6,2)…!c(4,1;5,1)* 

!c(4,1;5,2)*!c(5,3;6,1) 

a9 = c(1,1;4,1)*c(1,1;5,3)*c(1,1;6,3)…!c(4,1;5,1)* 

!c(4,1;5,2)*!c(5,3;6,1)*!c(5,3;6,2) 

b9 = c(3,1;4,1)*c(3,1;5,3)*c(3,1;6,3)…!c(4,1;5,1)* 

!c(4,1;5,2)*!c(5,3;6,1)*!c(5,3;6,2) 

 

First, consider the lines relative to a1, b1, a2, b2, a3, 

b3. The merits of the marks produced by those lines are, 

respectively: 

 

   

     

     

1 1

2 2

3 3

* 1 1 6

* 1 / 2 1 6

* 1 / 4 1 6

µ a b NMT

µ a b NMT

µ a b NMT

 

 

 

 

 

Similarly, the merits of the marks produced by the 

lines a4, b4, a5, b5, a6, b6, a7, b7, a8, b8, a9 b9 are: 

 

     

       

       

     

       

       

4 4

5 5

6 6

7 7

8 8

9 9

* 1 / 2 1 6

* 1 / 2 1 / 2 1 6

* 1 / 2 1 / 4 1 6

* 1 / 4 1 6

* 1 / 4 1 / 2 1 6

* 1 / 4 1 / 4 1 6

µ a b NMT

µ a b NMT

µ a b NMT

µ a b NMT

µ a b NMT

µ a b NMT

 

  

  

 

  

  

 

 

It follows that the total merit of the nine lines 

considered is equal to: 

   
2

1 1/ 2 1/ 4  1 6NMT    

 

The set of the lines a1, b1, …, a9, b9 can be extended as 

follows: 

 

a10 = c(1,1;4,2)*c(1,1;5,1)*c(1,1;6,1)* 

 c(2,1;4,2)*c(2,1;5,1)*c(2,1;6,1)* 

 c(4,2;5,1)*c(4,2;6,1)*c(5,1;6,1)*!c(2,1;4,1) 

b10 = c(3,1;4,2)*c(3,1;5,1)*c(3,1;6,1)* 

 c(2,1;4,2)*c(2,1;5,1)*c(2,1;6,1)* 

 c(4,2;5,1)*c(4,2;6,1)*c(5,1;6,1)*!c(2,1;4,1) 

 ………………. 

a19 = c(1,1;4,3)*c(1,1;5,1)*c(1,1;6,1)* 

 c(2,1;4,3)*c(2,1;5,1)*c(2,1;6,1)* 

 c(4,3;5,1)*c(4,3;6,1)*c(5,1;6,1) * 

 !c(2,1;4,1)*!c(2,1;4,2) 

b19 = c(3,1;4,3)*c(3,1;5,1)*c(3,1;6,1)* 

 c(2,1;4,3)*c(2,1;5,1)*c(2,1;6,1)* 

 c(4,3;5,1)*c(4,3;6,1)*c(5,1;6,1)* 

 !c(2,1;4,1)*!c(2,1;4,2) 

 

It follows that the total merit of the considered lines 

a1, b1, …, a10, b10…, a19, b19…, becomes: 

 

   
3

1 1/ 2 1/ 4 1 6NMT    

 

By proceeding along this line of reasoning, it is easy 

to prove that the merit of a Boolean product of the type of 

the above presented products is equal to: 

 

   1 1/ 2 1/ 4  1
n m

NMT n


    

 

where, of course, m is the number of variables (as <1,1>, 

<2,1>, <3,1> in the preceding examples) each of which 

appears in all the prime implicants which will be 

generated from that product. 
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