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Abstract: Magnetic Resonance Imaging (MRI) scanners emit up to 135 

decibels of acoustic noise, which is a major source of discomfort for patients 

and personnel evaluating them during routine medical scans, necessitating 

the development of a method to reduce the acoustic noise generated during 

MRI testing. The goal of this study is to propose a frequency-domain Active 

Noise Control (ANC) method for acoustic noise reduction in MRI and to 

demonstrate its ANC effectiveness on an experimental MRI scanner model 

specifically built for this purpose. In comparison to the standard Least Mean 

Square (LMS) algorithm, we used the Filtered-x Least Mean Square 

(FxLMS) approach with an adaptive variable step-size approach to adjust the 

filter coefficients dynamically, which considerably enhances the ANC 

system's convergence and reduces acoustic noise. The simulation results 

obtained from the MATLAB Simulink model on a pre-recorded 30-sec MRI 

noise signal represented by the step-size variation over time, error and noise 

convergence plots reveal that the adaptive step-size FxLMS (ASFxLMS) 

technique increases noise and error convergence rate significantly more than 

existing ANC algorithms to facilitate its use during MRI scans. Experimental 

results with our functional MRI (fMRI) testbed show approximately 25-dB 

overall noise reduction relative to the noise levels without ANC. 

 

Keywords: Active Noise Cancellation, Adaptive Step-Size Filtered-x Least 

Mean Square, Magnetic Resonance Imaging, MATLAB Simulink 

 

Introduction  

MRI is a highly sophisticated medical screening tool that 

has become an invaluable asset to modern medicine due to 

its ability to conduct in-depth and non-invasive studies of the 

human body (Takkar et al., 2017). Regrettably, the loud 

noise generated during scanning is uncomfortable, may be 

detrimental to patients, and may hinder imaging protocol. 

Specifically, high-intensity acoustic noise may induce 

anxiousness and the small-bore diameter of scanners may 

present difficulties for claustrophobic people. This has 

spiked tremendous interest in enhancing patient comfort 

during MRI tests (Siddiqui et al., 2017).  

Due to the interaction of the electrical current passing 

through the gradient coils in the presence of a static 

magnetic field, Lorentz forces are generated. As the 

current changes polarity, these forces cause the MRI-

supporting structure to rapidly change dynamic stresses 

and deformation. The structure's resulting vibration makes 

it act like a loudspeaker, thus emitting a high level of noise 

into the air (Roozen et al., 2008). The resultant Sound 

Pressure Level (SPL) is proportional to the strength of the 

magnetic field and the parameters involved. On MRI with a 

magnetic field greater than 3T, sound pressure levels greater 

than 130 dB have been measured (Price et al., 2001). 

Previously, several different approaches to noise 

reduction, in general, have been implemented with 

modest effectiveness. Controlling the noise level which is 

generated by the MRI has resulted in an ocean of research 

aimed at characterizing acoustic noise. The classical 

passive approaches to noise reduction involve using 

passive earplugs for sealing off the noise, sequence 

optimization, antiphase noise, and redesigning and 

retrofitting gradient coil hardware (McJury, 2021). The 

use of earphones in patients undergoing general 

anesthesia during MRI considerably minimizes 

involuntary arm and leg movement. Acute changes in 

hearing thresholds have been observed in individuals who 
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were scanned without wearing ear protection. Thus, 

reducing acoustic noise signals during MRI can improve 

patient comfort and the acceptability of the technique. 

However, these attenuate signals across a wide frequency 

range but underperform when applied to low-frequency 

frequencies (Facciolo et al., 2017).  

While passive noise control is based on the absorption of 

noise signals, ANC is based on a fundamentally different 

technique. ANC is founded on an electroacoustic technology 

that negates the primary noise using the superposition 

principle (Kuo et al., 2003). To superimpose and cancel out 

this noise signal, a signal identical in size but out-of-phase 

with the noise signal is generated. Given the fact that the 

properties of the noise source and the path it takes vary over 

time, an adaptive control mechanism is required to minimize 

MRI noise. The coefficients of the filters employed in 

these systems are adjusted to reduce the error signal. 

When higher wavelength signals are present, the active 

way of noise cancellation is more productive than the 

passive approach (Lin et al., 2005).  

ANC has been used to MRI noise earlier       

(Chambers et al., 2007), with observed noise reductions 

of roughly 15 to 25 dB. These investigations, however, 

have the following limitations. To begin with, noise 

reduction tests were conducted using computer models or 

in a laboratory setting, rather than in actual MRI rooms. 

Also, all trials used a headphone system, which precluded 

vocal communication between medical professionals and 

the patient providing a feeling of anxiety and isolation in 

the external auditory environment. Third, none of the 

research evaluated the user's motions. As a result, the 

findings of these investigations were of limited utility to 

medical personnel (Rudd et al., 2012). 

ANC controllers can be generically classified as 

feedback or feedforward. When the filter has access to 

reference noise and the noise associated with this noise 

needs to be reduced, feedforward control is used as 

represented in Fig. 1 (Wu et al., 2014). The error signal is 

used to update the adaptive filter's weights. A feedforward 

system might well be narrowband or broadband in nature. 

On the other hand, a feedback control system simply uses 

one error sensor to provide negative feedback and 

adjusts the weights on the filter accordingly (Kuo et al., 

2006). However, we can also adopt a hybrid technique 

whose advantage lies in its ability to enable the use of 

a lower-order filter to attain the same performance as 

the above two methods. 

Numerous approaches can be used to implement ANC 

filter blocks; Transversal adaptive ANC that makes use of 

an adaptive filter, Finite Impulse Response (FIR), or 

Infinite Impulse Response (IIR) realizations; Frequency 

domain ANC is the fastest since it transfers all signals to 

the frequency domain utilizing Fast Fourier Transform 

(FFT) before doing computations. Sub-band ANC is 

utilized in the case of long tap lengths and for the 

processing of sub-band signals, resulting in a decreased 

computational load and faster convergence; Modal ANC, 

which breaks down the ANC problem, hence lowering 

computation and increasing convergence, as well as ANC 

based on Recursive Least Squares (RLS), among others 

(Lu et al., 2021; Panda and Puhan, 2016).  

The devices used to implement ANC, such as digital 

filters, anti-aliasing filters, Analog-to-Digital Converters 

(ADC), and Digital-to-Analog Converters (DAC), 

contribute to noise as well (Khan et al., 2012). This 

creates a secondary path, which must be estimated to 

produce a correct anti-noise signal. The exact estimation 

of this channel improves the effectiveness of ANC. There 

are two primary strategies for compensating for this 

secondary route. One method is to connect an inverse 

filter, 1/S(z), to the secondary path S(z). The second 

method (Chang et al., 2018) is to include an identical filter 

( )S z in the reference signal path of the LMS algorithm's 

weight update, which actualizes the FxLMS algorithm as 

represented in Fig. 2. 

In the functional domain of the acoustic chamber, the 

conventional FxLMS approach is formulated to reduce the 

specific acoustic modes. The modal FxLMS approach 

obtained x(n) by processing the reference signal by modal 

secondary channels as opposed to physical secondary routes. 

This reduces the signal by modal secondary channels as 

opposed to physical secondary routes. This reduces the 

computational cost of filtering the x(n) with S(z), as well as 

the acoustic potential energy required for overall noise 

reduction. Many variants of FxLMS have been created by 

tweaking the original FxLMS approach (Mazur et al., 2018).  

A fixed step size is employed in the FxLMS method, 

which enables ANC systems to achieve an acceptable 

convergence speed in stationary noise situations, though at a 

slower rate than the filtered-x recursive least squares 

(FxRLS) technique. To obtain a fast-converging algorithm in 

both stationary and nonstationary situations, it may be 

worthwhile to experiment with a variable step size in the 

FxLMS algorithm. If properly developed, an adaptive 

threshold FxLMS algorithm would convergent as 

rapidly as the FxLMS algorithm and monitor the 

stochastic noise environment faster than both FxLMS 

and FxRLS, at the expense of a minor increase in 

processing cost (Zeb et al., 2017). 

Signal processing applications have adopted the 

concept of using various step sizes or user parameters to 

control the rate of convergence of LMS-like algorithms. 

For ANC, researchers have tailored its use for online 

secondary-path modeling (Akhtar et al., 2007), online 

feedback-path modeling (Haseeb et al., 2018), and FIR 

controllers (Akhtar and Mitsuhashi, 2011). 

Continuous advances in the fields of Digital Signal 

Processing (DSP) have created an opportunity to adopt 

ANC to reduce MRI noise using highly advanced 

algorithms that are more dependable and resilient in 
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suppressing noise in real-time. This research aims to measure 

the performance of an acoustic noise cancellation system 

based on adaptive variable step-size FxLMS for noise 

reduction in MRI scanners. A noise processing pipeline was 

constructed and analyzed using the MATLAB Simulink 

(Math Works, USA) framework, which enables an in-depth 

examination of key elements of MRI noise characteristics, 

including noise, error, and convergence. To summarize, the 

existing approaches use optical microphones for sensing 

very expensive sound, and modifying the pulse sequences is 

a complicated process that needs expertise, hence without 

any modification of existing machine hardware and pulse 

sequence, with the help of a very Simple Micro-

Electromechanical System (MEMS) microphones and tiny 

speakers (with less cost) we can achieve the noise reduction 

which is the salient feature of this research. 

Our contributions to the work include: 

 

• We propose a novel ASF LMS algorithm that 

incorporates both residual noise and an adaptive 

variable step-size approach that adjusts automatically 

to minimize error rates 

• Achieve faster convergence in reducing the noise 

decibels and error rate 

• The results achieved through the simulation validate 

the improved performance of our approach in MRI 

acoustic noise reduction 

• The conducted experiment also asserts the superiority 

of our method in reducing the MRI noise reflected in 

the comparison of the results with ANC ON/OFF 

 

 

 

Fig. 1: Narrowband feedforward ANC system 

 

 

 

Fig. 2: FxLMS Algorithm-based ANC system 
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This section of the paper discusses the evolution of 

linear ANC approaches over the last decade and their 

possible applications. There are two fundamental 

methods to ANC systems: Feed forward and feedback 

methods and a hybrid method have been developed by 

combining these two approaches. Nakrani and Patel 

(2012) examined these two techniques for the wide-

band and narrow-band noise scenarios while 

maintaining the filter order and step size constant. It 

was determined that the feedback technique performed 

better in the presence of narrow-band noise, but the 

feed-forward strategy performed well in the presence 

of wide-band noise. 

Das and Panda (2004) suggested a feedback ANC 

strategy based on the Functional Link Artificial Neural 

Networks (FLANN) and the Filtered-S Least Mean 

Square (FSLMS) algorithm. While this approach can 

minimize certain nonlinear noise, the overall noise 

cancellation efficiency for random noise signals is low. 

To address this issue, Luo et al. (2017) offered an 

improved feedback approach based on the wavelet 

packet FxLMS technique that broke down broadband 

noise into many band-limited components that could be 

controlled independently, allowing for fine control 

over chaotic noise suppression and improved random 

noise mitigation. 

While the feedback technique is substantially less 

expensive to construct, it does have certain limitations, 

including comparable stability concerns to IIR filters 

and the 'waterbed effect,' which suggests that it is 

extremely unlikely to suppress noise at all frequencies 

simultaneously. Wu et al. (2018) proposed a method 

for controlling the noise amplifiers in the feedback loop 

caused by the waterbed effect by substituting a real 

symmetric Toeplitz matrix for the scaly leaky factor in 

the leaky FxLMS technique, which ultimately resulted 

in the effective adjustment of the noise amplification 

frequency band. Milani et al. (2010) investigated the 

effectiveness of ANC systems from the standpoint of 

the maximum possible noise attenuation level 

(NALmax) for three types of ANC systems: Feed-

forward, feedback, and hybrid. It was first assessed for 

stochastic and generalized sinusoidal noise signals, 

with the results serving as a guide for selecting the right 

ANC structure for our purposes. 

Lee and Park (2013) developed a technique for 

minimizing MRI noise by identifying the property of 

MRI noise with a high Sound Pressure Level (SPL) and 

proposing an open-loop control method based on the 

noise ensemble average and extra adaptive control for 

lowering the residue generated in practice.            

introduced two new techniques that are enhanced 

versions of FxLMS: The Filtered-X Wilcoxon LMS 

(FxWLMS) and the Filtered-X least mean log square 

(FxLMLS). They are shown to be effective at canceling 

abnormal feedback in the presence of outliers. 

The convergence rate of FxLMS algorithms is 

improved by increasing the step size, but the 

misadjustment is increased. A Variable Step-Size LMS 

(VSS) method is used to achieve both speedy convergence 

and low misadjustment (Lee et al., 2015). Table 1 

summarizes some of the research conducted on acoustic 

noise reduction with their merits and their limitations for 

a better understanding of the topic.  

Materials and Methods 

Among the different adaptive algorithms described for 

diverse ANC techniques discussed in the last section, 

the FxLMS approach is by far the most widely used 

because of its low computer resource requirements and 

practically high performance. The feedforward 

adaptive step-size filtered-x Least Mean Square (AS-

FxLMS) mechanism is used in this research as the ANC 

mechanism to realize noise control in MRI systems. 

Typically, a feedforward control system is used in 

situations that have access to the consistent and 

advanced reference signal. The control system's 

performance is contingent upon the coherence of the 

reference signal and the undesirable acoustic noise. In 

both the time and frequency domain, Fig. 3A depicts a 

narrow-band MRI signal acquired from the MRI 

machine and a larger sequence of interfering narrow 

pulses, while Fig. 3B shows the power spectrum of the 

narrow-band MRI signal with average white noise.  

Another critical component of the FxLMS control 

system is the way the control signal is generated to 

adjust for faulty sound reproduction. After the 

controller calculates the control signal, it is replicated 

using a variety of components such as filters, 

amplifiers, and speakers, each with its unique system 

model. This collection of components is referred to 

together as the secondary path, S(z). The FxLMS 

method was developed to account for secondary path 

dynamics. In the following sub-section, we discuss the 

mathematical representation of the FxLMS algorithm 

and the proposed approach elaborately to better 

understand the working methodology.  

Proposed Adaptive Step-Size FxLMS Algorithm 

(ASFxLMS) 

In the FxLMS technique, a balance is reached between 

the convergence speed, Mean-Square Error (MSE) and 

the filter's capacity to track signals as their properties 

vary when the step-size μ is chosen. Initially, the 
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adaptive filter W has a non-optimal filter coefficient. 

As a result, the system uses a large step size to quickly 

change the weights toward the desired output. As the 

filter reaches the desired steady-state value, the 

algorithm must reduce the step-size μ to reduce the 

excess MSE at the error microphone. The practical 

challenge, on the other hand, is to develop a set of 

criteria for altering the step-size μ so that the adaptive 

filter creates a tiny surplus MSE while maintaining its 

ability to respond quickly to changes in signal 

characteristics (Kozacky and Ogunfunmi, 2014).  

Equation 1 can be used for updating the filter 

coefficients as follows: 

 

( ) ( ) ( ) ( )1n n nw k w k k x n k+
= + −  (1) 

 

The adaptive step size is given by n(k) varied 

separately for each coefficient 'w'. The frequency where 

the gradient estimate switches sign is proportional to the 

criterion for changing the step size as in Eq. 2: 

 

 ( ) ( ) ( )2 2 2e n e n x n k = − −  (2) 

 

It is thus considered based on the assumption that 

e(n)x(n-k) changes sign often, upon which the coefficient 

wn(k) reaches its optimum value where the gradient is zero 

and vice versa. Hence, the step-size n(k) can vary 

between successive values as in Eq. 3: 

 

( )min maxn k    (3) 

 

When the operation is in a steady state, a larger step 

size is used to achieve rapid convergence in the adaptive 

and tracking phases; when the steady-state error is minor, 

a smaller step size is used. 

As some approximation is needed to control step 

size in variable ANC systems, an effective approach 

would be to use the adaptive error signal in the process 

to establish a relation between the error signal and the 

step size to capture the non-linearity in adjusting the 

step size. Thus, we can summarize the operational 

principle as follows: The error is significant during the 

initial iteration stage to accelerate convergence; when 

the error approaches zero, a small step is used to 

produce a reduced steady error. The objective of the 

ASF LMS approach is to construct a non-linear 

relationship between both the step size and the error 

signal for step adjustment.  

The proposed approach uses a single-channel feed-

forward filtered-x ANC system, where e(n) decreases to 

approach zero gradually while converging, thus, when 

e(n) = 0,  becomes 0. While the convergence speed is 

faster with higher , it can also result in oscillations, 

whereas, smaller  can improve the convergence 

accuracy and reduce the steady-state noise but at a 

reduced convergence rate. This can be overcome by 

introducing the arc-tangent function to the above 

approach, where an inverse tangent value tan-1 of the 

error signal e(n) is given by atan(e(n)). The 

convergence speed increases with the step-size increase 

with the increase of α, β, and γ in the error signal. The 

arc-tangent function-based adaptive step size is 

represented as presented by (Gomathi et al., 2016): 

 

( ) ( )( )tann a e n =  (4) 

 

Introducing α, β and γ parameters to account for 

precise variation, Eq. (5) can be rewritten as: 

 

( ) ( )( )tann a e n


  =  (5) 

 

Thus, the proposed ASF LMS algorithm can be 

written as: 

 

( ) ( ) ( ) ( ) ( )1w n w n n e n x n + = +  (6) 

 

using the arc-tangent function to improve the convergence 

speed of the error signal.  

Experimental Setup 

Figure 4 depicts the experimental fMRI testbed. As 

previously stated, MRI noise can be as loud as 130 dB 

SPL. To mask the noise, the control speaker must 

produce that volume of sound. Due to the surrounding 

magnetic field, we are unable to utilize standard 

metallic speakers. Therefore, we utilized a non-

magnetic speaker array that vibrates employing an MRI 

magnetic field. A microphone is placed outside of a 

noise-attenuated channel to specifically record the 

noises of MRI equipment in operation. The signals 

produced by the microphones are utilized to minimize 

the noise output of MRI equipment. For an error 

microphone, we have used a MEMS microphone 

composed of polysilicon and fabricated utilizing 

semiconductor manufacturing procedures, resulting in 

a durable microphone with a large degree of 

reproducibility and stable acoustics. To limit the effect 

of the magnetic field, the MEMS microphones were 

placed at various distances (given in cms) from the bore 

and the audio signal from the mic is sampled. The 

sampling rate is 48 kHz, which is sufficient to cover the 

microphone's frequency range. 
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Fig. 3A: Narrowband MRI signal with noise pulses; 3B.  Power spectrum of narrowband MRI signal 
 

 
 
Fig. 4: fMRI test platform in an insulated glass chamber with 

MEMS microphones, non-magnetic speakers, and 

electromagnets 
 

Results and Discussion 

Simulation Results 

For the experimental approach, real-time ANC 

hardware is not used but is simulated through the code 

implementation on MATLAB Simulink 2021b. We started 

designing the desired ANC set up in a simulated environment 

using MATLAB Simulink prototype design. Thus, we can 

enhance the model's accuracy or adapt to the experimental 

setting from the simulated one based on the results. 

Additionally, we can iterate by modifying our simulated 

environment as we gain a better understanding of the real-

world implementation challenges. This flexibility in the 

design approach made us choose the Simulink-based 

environment for the evaluation of our results. 

The MRI noise signal for this study was acquired from 

a GE 3-Tesla whole-body MRI scanner equipped with a 

diffusion-weighted imaging sequence with the noise 

measurement focused on the scanner bore isocenter, 

which is adjacent to the patient's ears and mouth causing 

the most discomfort during examinations. This pre-

recorded noise signal is provided as the input to the 

Simulink model for processing. For the simulation, the 

sampling frequency considered is 6 kHz with an adaptive 

filter length of 32 bits. For computing error signal α, β, 

and γ for determining the threshold parameters were taken 

to be 0.05, 0.025, and 0.01, respectively. 

The Simulink model design is shown in Fig. 5. We 

developed an FxLMS ANC system, complete with an 

ANC controller and variable step-size blocks. As we can 

design the secondary path later, we suppose that we 

already have an estimation of the secondary path. We 

simulate the error microphone signal as the summation of 

the noise source's primary acoustic path and ANC output's 

secondary acoustic path filters. We design the "LMS 
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Update" block in such a way that the signal collected by 

the error mic is as small as possible. In a Filtered-X model, 

the LMS update is fed the noise source after it has been 

filtered by the secondary path estimate. There is a one-

sample delay between the generation of the new filter 

parameters and their usage by the LMS filter to prevent an 

algebraic loop. 

This model has been designed to work in real-time in 

line with the MRI noise signal fed to it. The noise signal 

file is converted into data samples and analyzed by the 

FxLMS block to filter out the noise amplitudes and reduce 

the error values. The adaptive step process is used to 

dynamically vary the step-size  and fed it back to the 

LMS update block along with the error signal to make 

corrections to the model. This helps in attaining faster 

convergence of the model in real-time reducing the noise 

signal amplitude and the error. The model attains the peak 

performance where the error and noise levels are 

normalized in a short time, making it more suitable for 

experimental scenarios where the noise signal captured by 

microphones can be fed to the model and the resulting 

filtered noise can be provided over the speakers in the 

examination room. 

The evaluated simulation results achieved for a 30-sec 

segment of the pre-recorded MRI noise file are presented 

in Fig. 6-10. Figure 6 and 7 represent the original noise 

signal and the filter noise signal with reduced amplitude 

peaks. From Fig. 8, it can be shown how the adaptive step-

size algorithm works in conjunction with the FxLMS 

algorithm to maintain the step-size to an optimal value to 

achieve faster convergence while keeping up with the 

convergence accuracy. Figure 9 shows the error signal 

convergence over a 30 sec sample period and it is 

inferred that the error value is normalized after the 

initial fluctuations to offer better convergence 

accuracy. Figure 10 shows the noise signal 

convergence graph that has a substantial convergence 

rate in filtering out the MRI noise to about 21 decibels 

at the end of the sample period, better than other 

research works discussed in this study.  

Experimental Results 

For the experimental setup to test the effectiveness of 

the FxLMS approach on a real-time MRI noise signal, we 

designed a cylindrical contraption acting as the fMRI test 

platform that imitates the fMRI bore. For this fMRI test 

platform, experimental findings from applying the FxLMS 

with single-tone noises from the MRI machine are shown. 

The glass chamber is surrounded by glass wool for 

insulation. Inside the glass chamber, an array of 

permanent magnets which produces 0.5 Tesla are placed 

and its effect on the process of noise reduction is analyzed. 

Another array of dynamic magnets is attached to the outer 

surface of the glass chamber Four electromagnets are 

attached and energized separately. A real-time MRI noise 

signal from the GE 3T MRI machine is provided as input 

through the three primary speakers. The acoustic noise is 

captured by the MEMS microphone that provides the 

reference signal to the Simulink model where the FxLMS 

algorithm is used to filter out the unwanted noise using an 

adaptive step-size approach where the noise gets 

attenuated until the error signal captured from the error 

microphone placed at the other end of the glass chamber 

falls below a threshold level. 

 

 

 

Fig. 5: ASFxLMS Simulink model design
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Fig. 6: Original MRI noise signal 

 

 
 
Fig. 7: Filtered noise signal 

 

 

 

Fig. 8. Step-size variation over time 

 
 
Fig. 9: Error signal convergence 
 

 
 
Fig. 10: Noise level convergence 
 
Table 2 shows the sound levels in dB for both ANC ON and 

OFF with varying horizontal and combinations of 

energization of the electromagnets. Electromagnet 1 is 

energized first and readings are taken. Then Electromagnet 1 

and Electromagnet 2 are energized and the effect is studied. 

Electromagnets 1,2 and 3 are energized and the effect is 

analyzed. Finally, all four electromagnets are energized 

which produces 424 Gauss and the effect of this magnetic 

field is studied. It is found that the presence of a magnetic 

field does not affect the process of noise reduction. Hence an 

overall of 25 dB is obtained. The line plots for analysing the 

ANC for varying positions of the reference microphone from 

the speakers at different levels of electromagnets are studied 

in Fig. 11-14. It can be inferred from the figures that the 

acoustic noise is reduced by a few decibels to about 25 

decibels with ANC ON depending on the positioning of the 

reference microphone. It was also found that there was not 

any discernible difference in the noise levels with 

electromagnetic coils energized in any particular 

sequence, which implies that they have no impact on the 

acoustic noise in our experimental fMRI testbed as does the 
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MEMS microphone positioning. We can also deduce 

from the experiment that as the distance of the 

reference microphone from the MRI noise source is 

increased in equal steps, the acoustic noise increases 

with ANC OFF which can be visualized from the 

upward trajectory of the acoustic noise levels with the 

increased vertical distance of the microphone from the 

reference point. However, with ANC ON, it can be seen 

that the MRI noise levels are reduced further as the 

vertical distance of the microphone from the reference 

point is increased. This produces a considerable noise 

attenuation performance with ANC ON.  
 
Table 1: Comparison of related literature in acoustic noise reduction 

Author(s) (Year) Technique used Research Merits Limitations 

Narasimhan et al. Variable step-size Griffiths’ The convergence rate of the Largely insensitive to measurement 

(2010) LMS (VGLMS) algorithm is used. feedforward and feedback ANC is faster. noise power. 

Jiao et al. (2013) A novel gradient adaptive step size Achieves good adaptation and performance. Suppress frequencies in the bandwidth 

 LMS adaptive filter which utilizes two ranges of 10-30 MHz 
 adaptive filters to estimate gradients 

 accurately is used. 

Huang et al. (2013) Variable step-size filtered-x LMS Better convergence rate is achieved More computations are required for 

 (VSS-FXLMS) the algorithm is in nonstationary situations. better efficiency. 

 proposed for a typical narrowband 

 active noise control system. 

Zhou et al. (2015) Normalized frequency-domain Has good performance for SαS impulsive Suffer from signal-dependent noise  
 block FxLMS (NFB-FxLMS) noise attenuation. Also, does not require and low signal-to-noise ratio. 

 technique for active vehicle interior parameter selection and complex gradient 

 noise control. computation. 

Gomathi et al. FxLMS algorithm with variable step Convergence speed and noise reduction of On an average, only 13 dB noise 

(2016) size to improve the convergence of the variable step algorithm is superior. reduction is achieved. 

 ANC system has been proposed. 

Lee et al.  (2017) Use a domain transform algorithm, Overall, 35-dB noise reduction in It has a fundamental frequency with its 

 which is time to frequency based on the 80-1600 Hz range. higher harmonics. 
 on discrete Fourier series, is 

 developed with the same level of 

 computational complexity. 

Zhang et al. (2019) Normalized frequency-domain Faster convergence rate and lower Filter length should be sufficient. 

 block FxLMS (NFB-FxLMS) steady-state error in the entire  

 algorithm is proposed for the active frequency band. 

 vehicle interior noise control. 

Meng and Chen An enhanced GMACFxLMS Achieve faster convergence rate and High impulse noise input is needed  
(2020) algorithm (EGMACFxLMS) with better noise reduction performance. to get better noise reduction. 

 amplitude constraint of error 

 signal and input signal is used. 

 
Table 2: Acoustic noise measurement in decibels with ANC ON and OFF concerning the positioning of the microphone and energization of the electromagnets 

Position of  Electromagnet 1  Electromagnet 1 and  Electromagnet 1,2,3, Electromagnet 1,2,3, 

microphone  energized (101 G)  2 energized (202 G)  energized (312 G)  4 energized (424 G) 

Horizontal length Vertical length -------------------------------------------- ------------------------------------------- ------------------------------------ ----------------------------------- 

of the microphone of the microphone Sound level Sound level Sound level Sound level Sound level 

from the reference from the reference when ANC when ANC when ANC when ANC when ANC 

point (cm) point (cm) is OFF (dB) is ON (dB) is OFF (dB) is ON (dB) is OFF (dB) is ON (dB) is OFF (dB) is ON (dB) 

0 5.0 72.0 69.5 70.4 65.5 71.0 67.5 72.0 68.5 

 5.5 76.0 67.3 74.0 65.3 76.0 67.3 75.0 67.3 

 6.0 77.7 69.3 77.9 69.7 77.7 69.3 75.7 69.3 

 6.5 85.0 79.3 85.2 79.6 85.1 78.7 85.4 78.1 

1 5.0 74.9 75.3 74.9 75.2 74.7 72.9 74.9 75.2 

 5.5 74.3 72.1 74.9 72.6 75.5 73.4 74.9 72.6 

 6.0 77.8 68.2 77.5 68.9 77.5 68.8 77.5 68.9 

 6.5 85.1 69.2 85.7 67.5 86.3 69.8 85.7 67.5 

2 5.0 75.5 75.5 76.8 75.3 76.4 75.6 76.8 75.3 

 5.5 73.7 72.2 74.0 72.5 74.3 72.8 74.0 72.5 

 6.0 75.8 68.7 76.1 69.0 76.4 69.3 76.1 69.0 

 6.5 83.0 74.6 83.3 74.9 83.6 75.2 83.3 74.9 

3 5.0 75.8 75.1 76.1 75.4 76.4 75.7 76.1 75.4 

 5.5 74.8 73.5 75.1 73.8 75.4 74.1 75.1 73.8 

 6.0 76.0 74.3 76.3 74.6 76.6 74.9 76.3 74.6 

 6.5 81.5 75.3 81.8 75.6 82.1 75.9 81.8 75.6 

4 5.0 76.0 77.9 76.3 78.2 76.6 78.5 76.3 78.2 

 5.5 75.0 77.0 75.3 77.3 75.6 77.6 75.3 77.3 

 6.0 76.8 78.7 77.1 79.0 77.4 79.3 77.1 79.0 

 6.5 80.0 78.4 80.3 78.7 80.6 79.0 80.3 78.7 

5 5.0 77.0 77.8 77.3 78.1 77.6 78.4 77.3 78.1 

 5.5 75.0 78.2 75.3 78.5 75.6 78.8 75.3 78.5 

 6.0 75.8 78.8 76.1 79.1 76.4 79.4 76.1 79.1 

 6.5 78.6 79.9 78.9 80.2 79.2 80.5 78.9 80.2 

6 5.0 79.5 79.5 79.8 79.8 80.1 80.1 79.8 79.8 

 5.5 80.2 73.5 80.5 73.8 80.8 74.1 80.5 73.8 

 6.0 80.4 69.2 80.7 69.5 81.0 69.8 80.7 69.5 

 6.5 80.5 68.5 80.8 68.8 81.1 69.1 80.8 68.8 

7 5.0 81.6 63.2 81.9 63.5 82.2 63.8 81.9 63.5 

 5.5 82.2 61.6 82.5 61.9 82.8 62.2 82.5 61.9 

 6.0 83.4 58.3 83.7 58.6 84.0 58.9 83.7 58.6 

 6.5 84.1 59.9 84.4 60.2 84.7 60.5 84.4 60.2 

about:blank
about:blank
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Fig. 11: MRI noise measurement without and with ANC and electromagnet 1 energized 
 

 
 

Fig. 12: MRI noise measurement without and with ANC and electromagnet 1, 2 energized 
 

 
 

Fig. 13: MRI noise measurement without and with ANC and electromagnet 1, 2, 3 energized 
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Fig. 14: MRI noise measurement without and with ANC and electromagnet 1, 2, 3, 4 energized 

 

Conclusion 

To conclude the work, the simulation results 

provide ample evidence to show that our approach to 

acoustic noise reduction based on ASF´s LMS 

algorithm provides a substantial reduction in acoustic 

noise with a faster convergence rate of noise and error 

signals without compromising on the convergency time 

and accuracy. As the MRI noise was reduced 

significantly at a shorter time, this approach was also 

presented experimentally with the fMRI testbed 

hardware arrangement with electromagnets, MEMS 

microphone, and speaker array to practically examine 

the performance of the proposed algorithm during MRI 

scans. These experimental results were consistent with 

the simulation results, demonstrating that the ASF´s 

LMS approach has an extremely high convergence rate 

and a maximum of 25 dB acoustic noise reduction on 

average. Motivated by the success of this approach, we 

plan to extend the MRI acoustic noise reduction 

research to include non-linear ANC procedures and 

compare their performance with existing research.  
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