

 © 2022 Marius Orlowski. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.

 Journal of Computer Science

Original Research Paper

An Empirical Criterion for Transitive Closure

Marius Orlowski

Department of Electrical and Computer Engineering, Virginia Polytechnic Institute and State

University, Blacksburg, USA

Article history

Received: 23-03-2022

Revised: 07-09-2022

Accepted: 02-12-2022

Email: m.orlowski@vt.edu

Abstract: The paper establishes a simple and computationally economical

criterion for determining whether a given adjacency matrix represents a

transitive closure or not. The criterion is based on a new iterative method for

finding the transitive closure adjacency matrix. This method is equivalent to

but computationally more efficient than the traditional Boolean sum of

successive powers of the original adjacency matrix to determine the transitive

closure matrix. However, it is computationally less efficient than the

Warshall algorithm and the recent more advanced algorithms. Nevertheless,

in many cases, in which a given matrix is different from the transitive closure,

but may not differ much, a few of the proposed looping steps may suffice to

find the transitive closure, avoiding the computational burden of the best-in-

class algorithms. Thus, the criterion and the recursive relation are apt in

complementing the extant methods to establish an efficient evaluation engine

for the determination of the transitive closure.

Keywords: Transitive Closure, Graph Theory, Warshall Algorithm,

Search Algorithms

Introduction

Many scientific and technical problems can be
represented as directed or undirected graphs. As a result,
developing methods for tackling graph problems is both
practically and theoretically interesting. In many applications
of the graph theory, the determination of the transitive
closure is a common technique. On a sequential computer
architecture, the well-known Floyd algorithm (Warshall,
1962; Floyd, 1962) solves the problem in O (n3) steps, where
n is the dimension of the corresponding adjacency matrix.

Many computational tasks require an efficient
determination of the transitive closure of a given graph. In
computer science, for example, the concept of transitive
closure amounts to the construction of a data structure that
renders it possible to find an answer to reachability inquiries.

The transitive closure algorithms are also used in the
construction of parser automata in compilers. Since,
practically, all actual recursive searches are transitive,
effective transitive closure computation has recently been
identified as an important subclass of problems in analyzing
recursive database queries (Cormen et al., 2009). Compiler
construction for parsing automata also uses transitive closure
operations (Aho et al., 2008). All-pairs shortest routes
problems, in which the shortest paths between arbitrary
vertex pairs must be discovered (Aho et al., 2008), are, too,
intimately connected with transitive closure. Today, the
fundamental challenge of transitive closure algorithms is the
numerical efficiency of their algorithms.

A directed graph is an ordered pair G (V, E) where V

is the set of vertices and E is the set of edges between pairs

of vertices. The transitive closure G* connects vertices u

and v if and only if there is a path in G from u to v.

The Warshall method (Warshall, 1962; Floyd, 1962) or

repeated breadth-first search (Cormen et al., 2009) or depth-

first search (Even, 2011) can be used to solve the problem.
Frequently, one may encounter an adjacency matrix that

is assumed to be already the transitive closure or to be
extremely close to transitive closure in several scenarios. In
the case of existing algorithms, the full algorithm must run
its course, regardless of its computational efficiency, to
establish the transitive closure, as the final result. This is a
computationally intensive process, particularly, for a large
adjacency matrix.

However, the adjacency matrix at hand may already

represent a transitive closure. Nevertheless, to confirm it, one

would have to apply one of the transitive closure algorithms.

For a large matrix this is very time-consuming.

Therefore, it would be useful to avail oneself of a

criterion that provides a simple, computationally efficient

calculation that allows one to determine upfront whether

a particular adjacency matrix already reflects the

transitive closure. The paper provides such, numerically

very efficient, criterion which for a large class of cases

obviates the need to use unreduced and time-consuming

algorithms to determine a transitive closure for a given

graph, cutting, thus, the numerical burden drastically.

Marius Orlowski / Journal of Computer Science 2022, 18 (12): 1232.1236

DOI: 10.3844/jcssp.2022.1232.1236

1233

The Powering of Graph Methods and

Warshalll Algorithms

The basic method for determination of the transitive

closure consists in by taking the adjacency matrix A of a

given graph and raising it to the nth power, where n is the

number of vertices in G. Raising the adjacency matrix A

to the kth power, is equivalent to adding exactly the edges

which represent paths of length k in the original graph.

Since the longest path may be only of length n, the

addition of all power matrixes is equivalent to adding

paths of all lengths that are possible in a given graph.

The "powering of graph" method states therefore that

to determine the transitive closure Z* it is sufficient to

fulfill Eq. (1) (Nuutila, 1998):

2* ... nZ A A A= + + (1)

using Boolean operations OR (+) and AND (.) and A. Aj =

Aj+1. The computation time for Eq. (1) is O (n4) bit operations.

The well-known algorithms (Warshall, 1962, Floyd 1962)

reduce the number of operations from O (n4) to O (n3). Given

an adjacency n  n matrix with matrix elements a(i,j), the

Warshall algorithm, given in Eq. (2), determines the

adjacency matrix Z* by the following operations on the

matrix elements (Warshall, 1962):

1 (,): (,) (,). (,) 1 , ,p p p pa s r a s r a s I a I r s r l n+ = +   (2)

For convenience, the sign “ between the matrix elements

will be suppressed in the following. The algorithm constructs

a sequence of adjacency matrices Wo,…Wn, where Wo=A

and each ¸Wk represents all paths of G containing no

intermediate vertices of greater length than k. Consequently,

Wn=Z*. Recently, because of increased interest in

hierarchical and recursive queries in databases transitive

closure algorithms attracted more research and resulted in

more advanced algorithms based on accelerated algorithms

for matrix multiplication, (Alman and Williams, 2021;

Duan et al, 2022).

Materials and Methods

In this purely mathematical investigation, no materials

have been used and the standard methods of linear algebra

have been employed.

Results and Discussion

Proposed Recursive Matrix Relation for

Transitive Closure

This study proposes a novel recursive matrix relation

to calculate the transitive closure for a given directed

graph, represented by the adjacency matrix A by

generating a sequence of matrices Zk:

1 20,k k k kZ A Z Z Z Z k In n+
 = = +  =   (3)

where, for a real number x  , the notation of ⌈x⌉, the so-

called ceiling function, is implemented to determine the

nearest larger integer. It can be readily proven that Z⌈ln2n⌉

must represent the transitive closure matrix Z*.

Proof: Any matrix Zk, from Eq. (3) computed after k

iterations for k>1, can be written in the following form:

2 12

2 22 1

0 0 0 0

1 1

...
k

mm
k k

k

k k

Z Z Z Z Z
−

−

= =

= + + + +  (4)

There jm are integers resulting from Eq. (3) By way of

illustration, for three explicit iterations one obtains the

following three equations:

1 0 0 0Z Z Z Z= + 

2 1 1 1Z Z Z Z= + 

3 2 2 2Z Z Z Z= + 

Resulting in:

2 3 4 5 6 7 8

3 0 0 0 0 0 0 0 03 6 9 10 8 4Z W Z Z Z Z Z Z Z= + + + + + + +

Thus, the coefficients are m2=3, m3=6, m4=9, m5=10,

m6=8, m7=4, and m1=m8=1, where the subscript of

parameter m denotes the power of the matrix Zo
j.

It should be noted that under the logic OR represented

symbolically here by "+" the operation A+A must

return A and by extension
n

i
A A= or any integer n or

more generally:

0 0 01

n k k k

i
Z NZ Z

=
= = (5)

for any k, 2 N, and therefore the exact values of the

coefficients mj do not matter. Therefore, Eq. (4) is

equivalent to:

2

01

k l

k l
Z Z

=
= (6)

If n 2k then according to the powering of graph

method the transitive closure must have been reached.

Thus, the highest order of the iterations is given by k =

⌈ln2n⌉. Consequently, the matrix for transitive closure can

be expressed as:

2

01
*

In n l

l
Z Z

 
 

=
= (7)

Marius Orlowski / Journal of Computer Science 2022, 18 (12): 1232.1236

DOI: 10.3844/jcssp.2022.1232.1236

1234

Fig.1: Directed graph with four directed edges and four vertices

represented by the corresponding matrix A

Fig. 2: A flowchart of how the proposed method can be used to

determine the transitive closure in conjunction with

extant algorithms

In some cases, for which the equation n = 2k holds for

n , the rounding equation is substituted by the argument

itself, that is k = ⌈k⌉. Interestingly, the runtime number

ln2n has been derived in an investigation of the transitive

closure algorithms (Benedikt and Senellart, 2011),

although in a slightly different context. In sum, the proposed

recursive relation in Eq. (3) is equivalent to the powering of

graph method but avoids the explicit calculation of all power

matrices Ak for k = 1, n which results in greater

computational efficiency. The equivalency between the

recursive matrix relation in Eq. (3) and the powering of the

graph method in Eq. (1) establishes a new path to establish

the transitive closure. Although the algorithm is faster

than the powering of graph method in Eq. (1), it is slower

than the most recent matrix multiplication techniques

(Alman and Williams, 2021; Duan et al., 2002) and hence,

it does not appear to be attractive at first glance. However,

since the recursive matrix relation given in Eq. (3) is based

on matrix multiplication, the proposed method can take

advantage of the most advanced algorithms.

However, more significantly, the proposed method

may be used to construct a simple criterion for

determining whether a given adjacency matrix is

transitively already closed or not.

New Transitive Closure Criterion

The recursive matrix operation in Eq. (3) can be used to

determine whether a given matrix A fulfills Eq. (8):

A A A A= +  (8)

If Eq. (8) is satisfied, A must represent the matrix Z*

of the transitive closure, i.e., A=Z*. Thus, a relatively

simple operation ascertains the transitive closure

condition. If condition Eq. (8) is not met, then clearly A

can does not represent transitive closure. Therefore, the

inequality Eq. (9) signals that the transitive closure is still

to be determined:

A A A A +  (9)

Thus Eq. (9) is equivalent to the inequality, *A Z

However, in some cases, Eq. (9) might turn into Eq. (8) only

after a few iterations. That is A' = A+ A. A or A'' = A' + A'.

A' or higher order iterations may lead to Eq. (8) or As' = As' +

As'. As' for an integer s’ significantly smaller that the

dimension of the matrix A. In this case, the proposed method

is still computationally more efficient than the explicit

algorithms. This could turn very useful in cases, where there

exists other information that the matrix may be very close

(close-in terms of a few iterations of Eq. (9)) or in case of

sparse matrices. Thus, depending on the degree of the

transitive closure of the initial adjacency matrix, the above

technique may effectively reduce the computing cost to O

(n2ln2n) or much less in many actual applications where the

transitive closure matrix is partially warranted. As a result,

no application of a full-length algorithm is required and a lot

of computational time is being saved.

As a result, an avoidable use of the Warshall O (n3)

brute force approach or of the more advanced O (ns)

methods with s<2.5 can be avoided:

2 3 4

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 1 0 1 1 0
, ,

0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0 1 0 0 1

A A A

     
     
     = = =
     
          
     

Marius Orlowski / Journal of Computer Science 2022, 18 (12): 1232.1236

DOI: 10.3844/jcssp.2022.1232.1236

1235

1 2 3 4

0 0 1 0

1 1 1 1
*

0 0 0 0

1 1 1 1

Z A A A A

 
 
 + + + =
 
  
 

We illustrate the proposed method in an example

provided in Fig. 1, where a simple graph with four vertices

and the corresponding adjacency matrix, A, is given.

Above, the power matrices A2, A3, and A4 have been

calculated according to the powering of the graph method.

In the case of the Warshall algorithm one would

have to calculate the following matrices A1, A2, A3, and

A4 as given below:

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1

       
       
       
       
              
       

The last matrix is the sought-after solution, i.e., A4 = Z*.

On the other hand, using the recursive matrix relation,

proposed here and given in Eq. (3), one obtains Z1 and Z2 as:

1 2

0 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1
,

0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1

Z Z

   
   
   = =
   
      
   

where the second matrix Z2 already represents the

transitive closure, i.e., Z2 = Z*.

A not obvious but still simple case of an adjacency

matrix V with five vertices that already represents the

transitive closure is given below:

1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

V

 
 
 
 =
 
 
 
 

Of course, using any extant transitive closure

algorithm, the powering of graph method, or the proposed

iterative matrix operation given in Eq. (3), it could be found

readily that the matrix V represents already the transitive

closure of the underlying graph. But at a considerable

computational cost, even when using the current best

algorithm boasting a bound of O(n2.372) (Duan, 2022).

Instead, by using the criterion given in Eq. (8), one could

ascertain quickly that matrix V is already the transitive

closure. The computational burden is only O(n2).

Therefore, the proposed method should be combined with

the best existing methods and algorithms to provide an

efficient evaluation system for determining transitive

closure. In Fig. 2, a flowchart is provided of how the

proposed method can be used in conjunction with the

extant algorithms. Of course, in evaluating Eq. (3) best

matrix multiplication methods should be taken advantage

of. The maximum number of iterations m = 0.5⌈ln(n)⌉ is
dictated by the circumstance that the numerical burden of

using criterion in Eq. (8) should be considerably smaller

than the numerical burden of using existing algorithms to

determine the transitive closure. This restriction indicates

that the proposed method is superior to the extant algorithms

only for cases that are close to transitive closure.

Conclusion

A criterion has been derived which allows one, at a

small computational expense, to determine whether an

adjacency matrix at the hand of a directed graph

represents the transitive closure. The criterion is based on

a recursive matrix relation that by itself is another

algorithm to determine the transitive closure. It is

computationally faster than the powering of graph method

but not as efficient as the extant algorithms if the

calculation of the transitive closure is extensive. There are

some cases, however, when the transitive closure can be

found by a relatively small number of recursive loops

compared to the number of vertices of the graph. In such

cases, the proposed recursive matrix relation will be

superior to the best-in-class algorithms.

If matrix A does not fulfill the criterion in Eq. (8), it is

the goal of future research to determine how “near” (in

terms of iterations) the given adjacency matrix is to the

final matrix of transitive closure (Z*). It appears to be

possible by utilizing the relation presented in Eq. (9), to

derive a proximity criterion to estimate how many

iterations of Eq. (3) are needed to find the ultimate

transitive closure. The criterion of being close to the final

solution may be established by monitoring the rate of

change in the number of matrix element entries "1" from

a few initial iterations. If this number of additional "1"

converges quickly to zero, the use of recursive matrix

relation could open a more efficient path to determine the

transitive closure than the usage of full-fledged

algorithms. If a given matrix is far from the transitive

closure, then the criterion would indicate that a full-

fledged algorithm must be applied to find the transitive

closure and, in that case, criterion (8) is of no benefit.

Such an additional proximity criterion is bound to be

instrumental in increasing the efficiency of a software

package that combines extant algorithms with the

recursive matrix relation proposed here. The envisioned

flowchart equipped with the proximity criterion may

automatically decide which approach is more

computationally efficient.

Marius Orlowski / Journal of Computer Science 2022, 18 (12): 1232.1236

DOI: 10.3844/jcssp.2022.1232.1236

1236

Acknowledgment

The author would like to acknowledge the reviewer’s

helpful comments, especially regarding in fashioning the

flowchart in Fig. 2.

Funding Information

The author received no financial support for the

research, authorship, and/or publication of this article.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

Aho, A., Hopcroft, E., & Ullman, J. D. (2008). The Design

and Analysis of Computer Algorithms, Addison-Wesley

Alman, J., & Williams, V. V. (2021). A refined laser

method and faster matrix multiplication.

In Proceedings of the 2021 ACM-SIAM Symposium

on Discrete Algorithms (SODA) (pp. 522-539).

Society for Industrial and Applied Mathematics.
https://doi.org/10.1137/1.9781611976465.32

Benedikt, M., & Senellart, P. (2011). Databases.

In Computer Science (pp. 169-229). Springer, New

York, NY. https://doi.org/10.1007/978-1-4614-

1168-0_10

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein,

C. (2009) Introduction to Algorithms, 3 rd ed., MIT

Press, USA

Duan, R., Wu, H., & Zhou, R. (2022). Faster Matrix

Multiplication via Asymmetric Hashing. arXiv

preprint arXiv:2210.10173.
 https://doi.org/10.48550/arXiv.2210.10173

Floyd, R. W. (1962). Algorithm 97: Shortest

path. Communications of the ACM, 5(6), 345.
https://doi.org/10.1145/367766.368166

Nuutila, E. (1998). Efficient transitive closure

computation in large digraphs.

Even, S. (2011) Graph Algorithms, (2nd ed.), Cambridge

 University Press, pp. 46–48 ISBN-10: 1139504150

Warshall, S. (1962). A theorem on boolean matrices. Journal

of the ACM (JACM), 9(1), 11-12.

https://doi.org/10.1145/321105.321107

