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Abstract: The paper establishes a simple and computationally economical 

criterion for determining whether a given adjacency matrix represents a 

transitive closure or not. The criterion is based on a new iterative method for 

finding the transitive closure adjacency matrix. This method is equivalent to 

but computationally more efficient than the traditional Boolean sum of 

successive powers of the original adjacency matrix to determine the transitive 

closure matrix. However, it is computationally less efficient than the 

Warshall algorithm and the recent more advanced algorithms. Nevertheless, 

in many cases, in which a given matrix is different from the transitive closure, 

but may not differ much, a few of the proposed looping steps may suffice to 

find the transitive closure, avoiding the computational burden of the best-in-

class algorithms. Thus, the criterion and the recursive relation are apt in 

complementing the extant methods to establish an efficient evaluation engine 

for the determination of the transitive closure. 
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Introduction  

Many scientific and technical problems can be 
represented as directed or undirected graphs. As a result, 
developing methods for tackling graph problems is both 
practically and theoretically interesting. In many applications 
of the graph theory, the determination of the transitive 
closure is a common technique. On a sequential computer 
architecture, the well-known Floyd algorithm (Warshall, 
1962; Floyd, 1962) solves the problem in O (n3) steps, where 
n is the dimension of the corresponding adjacency matrix. 

Many computational tasks require an efficient 
determination of the transitive closure of a given graph. In 
computer science, for example, the concept of transitive 
closure amounts to the construction of a data structure that 
renders it possible to find an answer to reachability inquiries. 

The transitive closure algorithms are also used in the 
construction of parser automata in compilers. Since, 
practically, all actual recursive searches are transitive, 
effective transitive closure computation has recently been 
identified as an important subclass of problems in analyzing 
recursive database queries (Cormen et al., 2009). Compiler 
construction for parsing automata also uses transitive closure 
operations (Aho et al., 2008). All-pairs shortest routes 
problems, in which the shortest paths between arbitrary 
vertex pairs must be discovered (Aho et al., 2008), are, too, 
intimately connected with transitive closure. Today, the 
fundamental challenge of transitive closure algorithms is the 
numerical efficiency of their algorithms.  

A directed graph is an ordered pair G (V, E) where V 

is the set of vertices and E is the set of edges between pairs 

of vertices. The transitive closure G* connects vertices u 

and v if and only if there is a path in G from u to v. 

The Warshall method (Warshall, 1962; Floyd, 1962) or 

repeated breadth-first search (Cormen et al., 2009) or depth-

first search (Even, 2011) can be used to solve the problem. 
Frequently, one may encounter an adjacency matrix that 

is assumed to be already the transitive closure or to be 
extremely close to transitive closure in several scenarios. In 
the case of existing algorithms, the full algorithm must run 
its course, regardless of its computational efficiency, to 
establish the transitive closure, as the final result. This is a 
computationally intensive process, particularly, for a large 
adjacency matrix. 

However, the adjacency matrix at hand may already 

represent a transitive closure. Nevertheless, to confirm it, one 

would have to apply one of the transitive closure algorithms. 

For a large matrix this is very time-consuming. 

Therefore, it would be useful to avail oneself of a 

criterion that provides a simple, computationally efficient 

calculation that allows one to determine upfront whether 

a particular adjacency matrix already reflects the 

transitive closure. The paper provides such, numerically 

very efficient, criterion which for a large class of cases 

obviates the need to use unreduced and time-consuming 

algorithms to determine a transitive closure for a given 

graph, cutting, thus, the numerical burden drastically. 
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The Powering of Graph Methods and  

Warshalll Algorithms  

The basic method for determination of the transitive 

closure consists in by taking the adjacency matrix A of a 

given graph and raising it to the nth power, where n is the 

number of vertices in G. Raising the adjacency matrix A 

to the kth power, is equivalent to adding exactly the edges 

which represent paths of length k in the original graph. 

Since the longest path may be only of length n, the 

addition of all power matrixes is equivalent to adding 

paths of all lengths that are possible in a given graph.  

The "powering of graph" method states therefore that 

to determine the transitive closure Z* it is sufficient to 

fulfill Eq. (1) (Nuutila, 1998): 
 

2* ... nZ A A A= + +  (1) 
 
using Boolean operations OR (+) and AND (.) and A. Aj = 

Aj+1. The computation time for Eq. (1) is O (n4) bit operations. 

The well-known algorithms (Warshall, 1962, Floyd 1962) 

reduce the number of operations from O (n4) to O (n3). Given 

an adjacency n  n matrix with matrix elements a(i,j), the 

Warshall algorithm, given in Eq. (2), determines the 

adjacency matrix Z* by the following operations on the 

matrix elements (Warshall, 1962): 
 

1 ( , ): ( , ) ( , ). ( , ) 1 , ,p p p pa s r a s r a s I a I r s r l n+ = +    (2) 
 

For convenience, the sign “ between the matrix elements 

will be suppressed in the following. The algorithm constructs 

a sequence of adjacency matrices Wo,…Wn, where Wo=A 

and each ¸Wk represents all paths of G containing no 

intermediate vertices of greater length than k. Consequently, 

Wn=Z*. Recently, because of increased interest in 

hierarchical and recursive queries in databases transitive 

closure algorithms attracted more research and resulted in 

more advanced algorithms based on accelerated algorithms 

for matrix multiplication, (Alman and Williams, 2021; 

Duan et al, 2022). 

Materials and Methods 

In this purely mathematical investigation, no materials 

have been used and the standard methods of linear algebra 

have been employed. 

Results and Discussion 

Proposed Recursive Matrix Relation for  

Transitive Closure 

This study proposes a novel recursive matrix relation 

to calculate the transitive closure for a given directed 

graph, represented by the adjacency matrix A by 

generating a sequence of matrices Zk: 

1 20,k k k kZ A Z Z Z Z k In n+
 = = +  =    (3) 

 

where, for a real number x  , the notation of ⌈x⌉, the so-

called ceiling function, is implemented to determine the 

nearest larger integer.  It can be readily proven that Z⌈ln2n⌉ 

must represent the transitive closure matrix Z*. 

Proof: Any matrix Zk, from Eq. (3) computed after k 

iterations for k>1, can be written in the following form: 

 
2 12

2 22 1

0 0 0 0

1 1

...
k

mm
k k

k

k k

Z Z Z Z Z
−

−

= =

= + + + +   (4) 

 

There jm  are integers resulting from Eq. (3) By way of 

illustration, for three explicit iterations one obtains the 

following three equations: 

 

1 0 0 0Z Z Z Z= +   

 

2 1 1 1Z Z Z Z= +   

 

3 2 2 2Z Z Z Z= +   

 
Resulting in: 

 
2 3 4 5 6 7 8

3 0 0 0 0 0 0 0 03 6 9 10 8 4Z W Z Z Z Z Z Z Z= + + + + + + +  

 

Thus, the coefficients are m2=3, m3=6, m4=9, m5=10, 

m6=8, m7=4, and m1=m8=1, where the subscript of 

parameter m denotes the power of the matrix Zo
j. 

It should be noted that under the logic OR represented 

symbolically here by "+" the operation A+A must 

return A and by extension 
n

i
A A=  or any integer n or 

more generally: 

 

0 0 01

n k k k

i
Z NZ Z

=
= =  (5) 

 

for any k, 2  N, and therefore the exact values of the 

coefficients mj do not matter. Therefore, Eq. (4) is 

equivalent to: 

 
2

01

k l

k l
Z Z

=
=  (6) 

 

If n 2k  then according to the powering of graph 

method the transitive closure must have been reached. 

Thus, the highest order of the iterations is given by k = 

⌈ln2n⌉. Consequently, the matrix for transitive closure can 

be expressed as: 

 

2

01
*

In n l

l
Z Z

 
 

=
=  (7) 
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Fig.1: Directed graph with four directed edges and four vertices 

represented by the corresponding matrix A 
 

 
 
Fig. 2: A flowchart of how the proposed method can be used to 

determine the transitive closure in conjunction with 

extant algorithms 

 

In some cases, for which the equation n = 2k holds for 

n , the rounding equation is substituted by the argument 

itself, that is k = ⌈k⌉. Interestingly, the runtime number 

ln2n has been derived in an investigation of the transitive 

closure algorithms (Benedikt and Senellart, 2011), 

although in a slightly different context. In sum, the proposed 

recursive relation in Eq. (3) is equivalent to the powering of 

graph method but avoids the explicit calculation of all power 

matrices Ak for k = 1, n which results in greater 

computational efficiency. The equivalency between the 

recursive matrix relation in Eq. (3) and the powering of the 

graph method in Eq. (1) establishes a new path to establish 

the transitive closure. Although the algorithm is faster 

than the powering of graph method in Eq. (1), it is slower 

than the most recent matrix multiplication techniques 

(Alman and Williams, 2021; Duan et al., 2002) and hence, 

it does not appear to be attractive at first glance. However, 

since the recursive matrix relation given in Eq. (3) is based 

on matrix multiplication, the proposed method can take 

advantage of the most advanced algorithms. 

However, more significantly, the proposed method 

may be used to construct a simple criterion for 

determining whether a given adjacency matrix is 

transitively already closed or not. 

New Transitive Closure Criterion 

The recursive matrix operation in Eq. (3) can be used to 

determine whether a given matrix A fulfills Eq. (8): 
 

A A A A= +   (8) 

 
If Eq. (8) is satisfied, A must represent the matrix Z* 

of the transitive closure, i.e., A=Z*. Thus, a relatively 

simple operation ascertains the transitive closure 

condition. If condition Eq. (8) is not met, then clearly A 

can does not represent transitive closure. Therefore, the 

inequality Eq. (9) signals that the transitive closure is still 

to be determined:  
 

A A A A +   (9) 

 

Thus Eq. (9) is equivalent to the inequality, *A Z  

However, in some cases, Eq. (9) might turn into Eq. (8) only 

after a few iterations. That is A' = A+ A. A or A'' = A' + A'. 

A' or higher order iterations may lead to Eq. (8) or As' = As' + 

As'. As' for an integer s’ significantly smaller that the 

dimension of the matrix A. In this case, the proposed method 

is still computationally more efficient than the explicit 

algorithms. This could turn very useful in cases, where there 

exists other information that the matrix may be very close 

(close-in terms of a few iterations of Eq. (9)) or in case of 

sparse matrices. Thus, depending on the degree of the 

transitive closure of the initial adjacency matrix, the above 

technique may effectively reduce the computing cost to O 

(n2ln2n) or much less in many actual applications where the 

transitive closure matrix is partially warranted. As a result, 

no application of a full-length algorithm is required and a lot 

of computational time is being saved. 

As a result, an avoidable use of the Warshall O (n3) 

brute force approach or of the more advanced O (ns) 

methods with s<2.5 can be avoided: 

 

2 3 4

0 0 0 0 0 0 0 0 0 0 0 0

0 1 1 0 1 0 0 1 0 1 1 0
, ,

0 0 0 0 0 0 0 0 0 0 0 0

1 1 0 1 0 1 1 0 1 0 0 1

A A A

     
     
     = = =
     
          
     
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1 2 3 4

0 0 1 0

1 1 1 1
*

0 0 0 0

1 1 1 1

Z A A A A

 
 
 + + + =
 
  
 

 

 

We illustrate the proposed method in an example 

provided in Fig. 1, where a simple graph with four vertices 

and the corresponding adjacency matrix, A, is given. 

Above, the power matrices A2, A3, and A4 have been 

calculated according to the powering of the graph method. 

In the case of the Warshall algorithm one would 

have to calculate the following matrices A1, A2, A3, and 

A4 as given below: 

 

0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0

1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 1 1 1 1 1 1 1 1 0 1 1 1

       
       
       
       
              
       

 

 

The last matrix is the sought-after solution, i.e., A4 = Z*. 

On the other hand, using the recursive matrix relation, 

proposed here and given in Eq. (3), one obtains Z1 and Z2 as: 

 

1 2

0 0 1 0 0 0 1 0

1 1 1 1 1 1 1 1
,

0 0 0 0 0 0 0 0

1 0 0 1 1 1 1 1

Z Z

   
   
   = =
   
      
   

 

 

where the second matrix Z2 already represents the 

transitive closure, i.e., Z2 = Z*. 

A not obvious but still simple case of an adjacency 

matrix V with five vertices that already represents the 

transitive closure is given below: 

  

1 1 0 0 0

1 1 0 0 0

0 0 1 1 1

0 0 1 1 1

0 0 1 1 1

V

 
 
 
 =
 
 
 
 

 

 

Of course, using any extant transitive closure 

algorithm, the powering of graph method, or the proposed 

iterative matrix operation given in Eq. (3), it could be found 

readily that the matrix V represents already the transitive 

closure of the underlying graph. But at a considerable 

computational cost, even when using the current best 

algorithm boasting a bound of O(n2.372) (Duan, 2022).  

Instead, by using the criterion given in Eq. (8), one could 

ascertain quickly that matrix V is already the transitive 

closure. The computational burden is only O(n2). 

Therefore, the proposed method should be combined with 

the best existing methods and algorithms to provide an 

efficient evaluation system for determining transitive 

closure. In Fig. 2, a flowchart is provided of how the 

proposed method can be used in conjunction with the 

extant algorithms. Of course, in evaluating Eq. (3) best 

matrix multiplication methods should be taken advantage 

of. The maximum number of iterations m = 0.5⌈ln(n)⌉ is 
dictated by the circumstance that the numerical burden of 

using criterion in Eq. (8) should be considerably smaller 

than the numerical burden of using existing algorithms to 

determine the transitive closure. This restriction indicates 

that the proposed method is superior to the extant algorithms 

only for cases that are close to transitive closure. 

Conclusion 

A criterion has been derived which allows one, at a 

small computational expense, to determine whether an 

adjacency matrix at the hand of a directed graph 

represents the transitive closure. The criterion is based on 

a recursive matrix relation that by itself is another 

algorithm to determine the transitive closure. It is 

computationally faster than the powering of graph method 

but not as efficient as the extant algorithms if the 

calculation of the transitive closure is extensive. There are 

some cases, however, when the transitive closure can be 

found by a relatively small number of recursive loops 

compared to the number of vertices of the graph. In such 

cases, the proposed recursive matrix relation will be 

superior to the best-in-class algorithms. 

If matrix A does not fulfill the criterion in Eq. (8), it is 

the goal of future research to determine how “near” (in 

terms of iterations) the given adjacency matrix is to the 

final matrix of transitive closure (Z*). It appears to be 

possible by utilizing the relation presented in Eq. (9), to 

derive a proximity criterion to estimate how many 

iterations of Eq. (3) are needed to find the ultimate 

transitive closure. The criterion of being close to the final 

solution may be established by monitoring the rate of 

change in the number of matrix element entries "1" from 

a few initial iterations. If this number of additional "1" 

converges quickly to zero, the use of recursive matrix 

relation could open a more efficient path to determine the 

transitive closure than the usage of full-fledged 

algorithms. If a given matrix is far from the transitive 

closure, then the criterion would indicate that a full-

fledged algorithm must be applied to find the transitive 

closure and, in that case, criterion (8) is of no benefit. 

Such an additional proximity criterion is bound to be 

instrumental in increasing the efficiency of a software 

package that combines extant algorithms with the 

recursive matrix relation proposed here. The envisioned 

flowchart equipped with the proximity criterion may 

automatically decide which approach is more 

computationally efficient.  
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