

© 2022 Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy. This open-access article is distributed under a Creative

Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Boosting Arabic Named Entity Recognition with K-Fold Cross

Validation on LSTM and Bi-LSTM Models

1,2Hamid Sadeq Mahdi Alsultani and 2Ahmed H. Aliwy

1Department of Computer Science, College of Basic Education, University of Diyala, Iraq
2Department of Computer Science, Faculty of Computer Science and Mathematics, University of Kufa, Iraq

Article history

Received:23-03-2022

Revised: 01-07-2022

Accepted: 13-08-2022

Corresponding Author:

Hamid Sadeq Mahdi Alsultani

Department of Computer

Science, College of Basic

Education, University of

Diyala, Iraq
Email: hamedsultani@uodiyala.edu.iq

Abstract: Named-Entity-Recognition (NER) is one of the most important

Information-Extraction (IE) use cases, which is used to improve the performance

of Natural Languages Processing (NLP) tasks, such as Relation-Extraction (RE),

Question-Answering (QA). Recently, Arabic NER is tackled in different ways

by researchers. In this study, we assess the performance of two widely used

models, namely, LSTM and Bi-LSTM on the NER task in the Arabic language

and perform a comparative study between these models. In contrast to the

traditional data partition technique widely used during the training, we employ

the technique of k-fold cross-validation to improve the performance of each

model. The experimental results reveal that the performance of all models is

improved when k-fold cross-validation is applied. Additionally, according to our

experiment results, the Bi-LSTM model outperforms the LSTM model in terms

of our evaluation metric. We achieve the best F1 score of 94.17% with CNN-Bi-

LSTM-CRF. An ablation study on k-fold cross-validation demonstrates that the

F1 score increased from 87.28 to 94.17%.

Keywords: Arabic Named Entity Recognition, LSTM, BiLSTM, K-Fold

Cross Validation

Introduction

Arabic is one of the most commonly spoken languages

and has become a United Nations (UN's) official language.

Arabic is the main language of twenty-two nations and

About 360 million people speak the Arabic language in more

than 25 countries around the world (Ali et al., 2019). Arabic

uses twenty-eight basic alphabets and is always written from

right to left in contrast to the English language. It is highly

inflected, morphologically rich, and syntactically

complicated, and these factors complicate the development

of NLP tools for this language (Shaalan and Oudah, 2014).
"Named Entity Recognition" (NER) is considered as a

subtask of Information Extraction, that identifies and
classifies textual elements according to a pre-defined set of
classes called Named-Entities (NEs), which include names
of people, organizations, locations, quantities, etc.
(Gorla et al., 2020). NER is a tool used to pre-process a wide
variety of applications, including "Relation Extraction",
"Question Answering", "Information Retrieval",
etc. (Chen et al., 2019).

In past decades, the Arabic NER models have been
developed employing either handcrafted rules
(Shaalan and Raza, 2008) or statistical learning (Benajiba
and Rosso, 2007). More specifically, the handcrafted rules
rely on manually handcrafted grammatical rules acquired
from linguists. The drawbacks of such systems are the

maintenance cost and their labor-intensive characteristics,
particularly in cases where the knowledge and background
of the linguists are poor (Shahina et al., 2019). In contrast,
statistical learning based on Machine Learning (ML) relies
on a training dataset to extract model patterns that are
pertinent to the NER task. ML-based models do not require
in-depth knowledge of the Arabic language. By providing
sufficient corpus, ML-based models are adaptable and
updatable with minimum cost and time (Patil et al., 2020).

Although their significant benefits, the traditional ML-

based methods are not able to be used on large-scale Arabic

datasets available on the web. Therefore, it becomes crucial

to look for an alternative solution to build powerful and

durable processing tools for the Arabic language. To

mitigate that, neural networks have attracted researchers'

attention and different deep neural network approaches

have been proposed in recent years. Especially, several

research works have combined supervised learning

algorithms and deep neural networks to solve NLP

problems such as NER, machine translation, etc.

(Melis et al., 2017). In these deep learning approaches,

researchers have employed word embedding to capture the

similarities between words. Because only word embedding

leads often to the problem of Out-of-Vocabulary (OoV),

some research works employed both word-level embedding

and character-level embedding (Shahina et al., 2019).

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

793

In addition to the embedding process, the encoding layer is

often added on top of the embedding layer to encode the

input sequence. After the encoding phase, the prediction of

the entity of each word in the input sequence is performed

through softmax or other classification methods. When

tackling the NER problem or Part-of-Speech (PoS) tagging,

it is very important to exploit the dependencies between

subsequent tags and not decide on tags locally. For instance,

a PER tag is more likely followed by another PER tag than

by an ORG tag (Patil et al., 2020). Conditional Random

Fields (CRF) can in exploiting the dependencies between

subsequent tags. Therefore, CRF is widely used as a

prediction layer in many NER models. When it comes to the

encoding part, RNNs, LSTMs, and Bi-LSTMs can model the

data such that the context of all words is relevant (Lee, 2017).

In most NER models, the traditional 80% for training

and 20% for testing is widely used. In this study, our main

contribution is to shift to the K-fold Cross Validation (K-fold

CV) technique and compare various NER models to show

the advantages of such a technique. The following models

are compared in this study: LSTM, Bi-LSTM, LSTM-CRF,

Bi-LSTM-CRF, CNN-LSTM, CNN-Bi-LSTM, CNN-

LSTM-CRF, and CNN-Bi-LSTM-CRF. We show that the

(K-fold CV) not only prevents the model from overfitting but

it also increases the performance of all models.

Literature Review

Building strong NER models has become a crucial study

field for decades, and numerous models have been tried and

created to achieve substantial results. In the past decades,

ANER systems have been developed using one of the

following three techniques: rule-based, machine-learning-

based, or hybrid.

Zaghouani (2012) presented a rule-based system

called RENAR. It morphologically pre-processes data,

retrieves known NEs, and extracts unknown NEs utilizing

localized grammar.

Elsayed and Elghazaly (2015) developed a rule-based

model to extract Arabic entities using the grammar rules

of Arabic. These rules identified Arabic nouns that are not

included in existing gazetteers.

Benajiba et al. (2008) created SVM-CRF classifiers.

They evaluated the ACE dataset. Their findings indicate

that CRF is not better than SVM in ANER or vice versa.

Each type of NEs had a sensitivity to distinct features.

Benajiba and Rosso (2008) improved the performance of

their model by replacing "Maximum Entropy" (ME) with

CRF. They utilized many features in the model, such as POS-

tagging, Base-Phrase-Chunks (BPC), nationalities as well as

gazetteers. The model measures were: Recall, precision, and

F-Score with 72.77, 86.90, and 79.21% respectively.

AbdelRahman et al. (2010) integrated two ML models to

handle Arabic-NER utilizing CRF, plus bootstrapping. Many

features were implemented such as Word features,

morphological features, POS tagging, and gazetteers. The

model detected several NEs (Persons, Locations, Devices,

Cell-Phones, Organizations, Cars, Dates, and Times).

Elarnaoty et al. (2012) offered another notable machine

learning-based study. The ANER challenge was solved by

identifying ten NE classes. CRF and bootstrapping were

seamlessly combined to improve performance.
Mohammed and Omar (2012) built an ANER model

utilizing neural networks. Two approaches were used
to extract persons, organizations, places, and
miscellaneous named entities. The experiment
compared Decision-Tree (DT) with Neural Network
(NN) on the exact dataset. The used measure was the
precision with 92% for the NN and 87% for the DT.

Dahan et al. (2015) suggested a "Hidden Markov

Model" HMM-based ANER. The model addressed

Arabic inflection and ambiguity using stemming. Their

NE-recognition model was entirely automated and

tested using "Al -Hayat newspaper".

Al-Shoukry and Omar (2015) suggested a Decision

Tree-based ML model. Their technology can extract

NEs of persons, places, criminal activities, times, as

well as the date. The F-score for the model was 81.35%.

Alsayadi and ElKorany (2016) used machine

learning to propose a model for ANER that was

semantically integrated. Multiple language features

and syntax dependencies were used by the model to

predict how named entities are semantically related.

The model assisted in overcoming some of Arabic's

orthographic as well as morphological limitations.

Recently, deep learning techniques have demonstrated

their efficiency in several tasks from computer vision to

healthcare. On NLP tasks, including NER, deep learning

outperforms handcrafted features with a large margin.

Therefore, current NER systems employ deep learning. For

instance, Helwe and Elbassuoni (2019) proposed a

revolutionary deep co-learning approach for recognizing and

classifying NEs. This approach uses only word embedding

but no other designed features. This approach surpassed

other Arabic approaches, including ones that incorporate

well-engineered NLP features. It also surpassed many

supervised and semi-supervised approaches in deep learning.

An encoder-decoder Arabic NER model was

proposed by Ali and Tan (2019). More specifically,

they used an attention layer to concatenate the

characters embedding and word embedding at the first

layer. The output of this layer is fed to a Bi-LSTM for

encoding. Then, another attention is added on top of the

encoder and the output of this attention layer is given

to the decoder which is another Bi-LSTM. On

ANERCorp and AQMAR datasets, the authors

demonstrated significant improvement in their model.

For Arabic NER, El Bazi and Laachfoubi (2019)

used a BiLSTM-CRF neural network model. The total

efficiency of the model was evaluated using a different

set of hyperparameters that are commonly used. Both

character and word embeddings are used to give word

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

794

information to the model, removing the need for

designed features.

Al-Smadi et al. (2020) proposed a transfer-learning

NER model for Arabic. They used a pre-trained

Universal Sentence Encoder (USE) for embedding and

fed the embedding output to a Bi-GRU. Then, the

authors applied a Global-Average-Pooling (GAP) and

a Global-Max-Pooling (GMP). The results of these

operations are concatenated and fed to a feed-forward

network for prediction. They obtained a 91.20% of F1-

score on the WikiFANE_Gold dataset.

Materials and Methods

The task of NER is used to identify each token in

the sequence and to assign it a suitable label. Many

models have been used to efficiently predict the correct

labels for tokens. In this section, some models that are

commonly used in the task of NER in general and in

ANER, in particular, are mentioned and briefly

explained. These models are as follows:

Long Short-Term Memory (LSTM)

Scientists created the LSTM to handle the long-term

dependencies and overcome the issues of vanishing gradients

and exploding gradients that exist in the traditional RNN

(Thomas and Sangeetha, 2020). LSTM memory cells

substituted previously hidden layer updates in RNN. A self-

recurrent neuron (SRN) as well as three gates (input, forget,

and output) make up an LSTM memory cell (Kompalli et al.,

(2021). The SRN ensures that the memory cell state is

maintained over time. The input gate controls the effects of

the input signal on the cell's state, whereas the output gate

controls the effects of the cell's state on the further neurons.

Finally, the forget-gate manages the SRN (Fan et al., 2020).

The basic design of the LSTM cell is shown in Fig. 1.

Figure 2 shows an LSTM model for ANER that uses

the above-mentioned LSTM's memory cells (grey-

colored boxes).

CNN-LSTM

Convolutional Neural Networks (CNNs) were firstly

used in computer vision for pattern recognition. CNN has

several layers, an input layer, hidden layers, and an output

layer. Hidden layers include convolutional-layer, pooling-

layer, fully-connected-layer, and normalizing-layer (Thomas

and Sangeetha, 2020). Lastly, CNN includes a SoftMax layer

which is used to get output classes. In NLP, CNN is often

used to obtain character-level features that can be employed

in NER tasks (Maslej-Krešňáková et al., 2020). The basic

design of CNN is shown in Fig. 3.

A CNN-LSTM model is formed by combining a

CNN-layer with an LSTM-layer as in Fig. 4. The

purpose of using the CNN-layer (blue colored boxes) is

to get character-level features from the input data.

LSTM-CRF

An LSTM-CRF model is formed by combining an

LSTM-layer with a CRF-layer as in Fig. 5. In this model,

previous input features through an LSTM-layer as well as

label information at the sentence level through a CRF-layer

can be used efficiently. A CRF-layer is denoted by green

dashed lines that connect successive outputs. A CRF layer

uses parameters called the state-transition matrix. Through a

CRF layer, it is efficient to predict the present label because

previous and future labels can be used to do this task, and this

is the same as using previous and future input features

through a BiLSTM model.

CNN-LSTM-CRF

A CNN-LSTM-CRF model is formed by combining

a CNN-layer with an LSTM-layer and a CRF-layer as

in Fig. 6. A CRF-layer is denoted by green dashed lines

that connect successive outputs.

Bidirectional Long Short-Term Memory (BiLSTM)

Sequence labeling can be made more efficient by

providing both future and previous input context for a certain

period. An integrated LSTM in two directions (forward and

backward) solves the problem of only having previous inputs

for all the hidden states (Manur et al., 2020). Every time a

sequence is given, it is checked in the forward direction (left

to right), and in the backward direction (right to left) once

more (Cai et al.,2021). The basic design of BiLSTM is

shown in Fig. 7.

Figure 8 shows a BiLSTM model for ANER that

uses both forward and backward LSTM layers (grey-

colored boxes).

CNN-BiLSTM

A CNN-BiLSTM model is formed by combining a CNN

layer with a BiLSTM-layer as in Fig. 9.

BiLSTM-CRF

A BiLSTM-CRF model is formed by combining a

BiLSTM-layer with a CRF-layer as in Fig. 10. This

model uses the future input features as well as the

previous input features and label information at the

sentence level that is used in the LSTM-CRF model.

CNN-BiLSTM-CRF

A CNN-BiLSTM-CRF model is formed by

combining a CNN-layer with a BiLSTM-layer and a

CRF-layer as in Fig. 11.

Experiments

Dataset

All models are trained, validated, and tested using a

public Arabic dataset called (WikiFANE_Selective). The

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

795

dataset has (57126) sentences and (2,021,177) tokens. It also

has (9) main labels: FAC (Facility), GPE (Geopolitical),

LOC (Location), ORG (Organization), PER (Person), PRO

(Product), VEH (Vehicle), WEA (Weapon), and O (Other).

The annotation standard used for the ANER task was (BIO)

where (B, I, and O) mean (Begin, Inside, and Other)

respectively. The annotation standard was used for all labels

except the (O) label. The link for the dataset is:

(https://fsalotaibi.kau.edu.sa/Pages-Arabic-NE-

Corpora.aspx).

Metrics

The F1 score was the main metric used to evaluate

the performance of the used models. This metric

depends on two other metrics: Precision (P) and recall

(R). The formulas for precision, recall, and F1-score

are given in Eq. 1, 2, and 3.

100
TP

P
TP FP

= 
+

 (1)

100
TP

R
TP FP

= 
+

 (2)

2

1 100
P R

F
P R

 
= 

+
 (3)

where, (TP), (FP), and (FN) denote true-positive, false-

positive, and false-negative, respectively.

Pre-Processing

The Arabic language consists of (28) basic

alphabets plus "hamza" (ء), "alif maqsoora" (ى), and

"taa Marboota" (ــة). Some alphabets are written in

many forms, for example, "alif" (ا) may be written as

follows: (إ ,أ ,آ ,ا). Also "hamza" may be written as

follows: (ئ ,ؤ ,ء). To deal with these various forms fast

and easily, some pre-processing may be applied using

two main processes: Normalization and transliteration.

Normalization

In this process, some rules are applied as follows:

1- Normalize "alif": ا → إ ,أ ,آ

2- Normalize "hamza": ء → ئ ,ؤ

Transliteration

In this process, each Arabic alphabet is converted to its
equivalent alphabet in English. This process is important
when there is a mix of Arabic and English alphabets in a
dataset or text. In this study, a special transliteration was
used. The applied rules are as follows:

1- "hamza": ء --------- i
2- "alif": ا --------- a
3- "baa": ب --------- b
4- "taa": ت --------- t
5- " taa marboota ": ــة --------- p
6- "thaa": ث --------- P
7- "jeem": ج --------- j
8- "Haa": ح --------- H
9- "Khaa": خ --------- K
10- "daal": د --------- d
11- "thal": ذ --------- V
12- "raa": ر --------- r
13- "zaay": ز --------- z
14- "seen": س --------- c
15- "sheen": ش --------- C
16- "saad": ص --------- s
17- "dhaad": ض --------- S
18- "Taa": ط --------- T
19- "Zaa": ظ --------- Z
20- "ain": ع --------- E
21- "ghain": غ --------- g
22- "faa": ف --------- f
23- "qaaf": ق --------- q
24- "kaaf": ك --------- k
25- "laam": ل --------- l
26- "meem": م --------- m
27- "noon": ن --------- n
28- "haa": ه --------- h
29- "waaw": و --------- w
30- "yaa": ي --------- y
31- "alif maqsoora": ى --------- Y

Tables 1 and 2 show examples of the normalization and

the transliteration processes on the used dataset respectively:

Table 1: Examples of the normalization process

Words in English Words in Arabic before normalization Words in Arabic after normalization

Song اغنية أغنية
Spain اسبانيا إسبانا

Last اخر آخر

Responsible مسءول مسؤول
Disadvantages مساوء مساوئ

Table 2: Examples of the transliteration process

Words in English Words in Arabic before Transliteration Words after Transliteration

Ancient القديم alqdym
Program برنامج brnamj

Company شركة Crkp

When عندما Endma
Photography فوتوغرافيا fwtwgrafya
Principles مبادء mbadi

https://fsalotaibi.kau.edu.sa/Pages-Arabic-NE-Corpora.aspx
https://fsalotaibi.kau.edu.sa/Pages-Arabic-NE-Corpora.aspx

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

796

Fig. 1: The basic design of LSTM cell (Fan et al., 2020)

Fig. 2: An LSTM model for ANER

Fig. 3: The basic design of CNN [28]

Fig. 4: A CNN-LSTM model for ANER

Fig. 5: An LSTM-CRF model for ANERc

Fig. 6: A CNN-LSTM-CRF model for ANER

Fig. 7: The basic design of BiLSTM (Cai et al., 2021)

Fig. 8: A BiLSTM model for ANER

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

797

Fig. 9: A CNN-BiLSTM model for ANER

Fig. 10: A BiLSTM-CRF model for ANER

Fig. 11: A CNN-BiLSTM-CRF model for ANER

Fig. 12: Traditional partitioning

Fig. 13: K-fold CV (k=3)

Dataset Partitioning

In this study, two types of partitioning were applied to

the dataset: Traditional partitioning and partitioning by k-

fold cross validation.

Traditional Partitioning

The dataset is partitioned by a specific ratio into

three parts: Training, validation, and testing. In this

study, the dataset was partitioned by 80, 10, and 10%

for training, validation, and testing, respectively, as

shown in Fig. 12.

Partitioning by K-Fold Cross Validation

The "K-fold cross-validation" or "K-fold CV"

technique can be used to evaluate learning models

(Jiang and Wang, 2017). With this technique, the

dataset can be partitioned into k-folds. Each iteration

uses one-fold for testing and the rest for training. Thus,

this procedure repeats until the entire dataset has been

evaluated (Nti et al., 2021). The final model scores are

calculated by averaging the scores obtained from all

iterations (Yadav and Shukla, 2016). In this study, the

number of folds (k) was (3) as shown in Fig. 13.

Results and Discussion

Since no previous paper used the

WikiFane_Selective dataset for the task of ANER to

use it for comparison, two baseline models were used

and improved in this study: LSTM and BiLSTM. The

F1 scores of the baseline models and their

improvements are presented in Table 3. Note that each

model in the table has two F1 scores, the first one when

the traditional partitioning is used and the second when

the partitioning by k-fold CV is used.

The LSTM baseline model achieves the lowest F1

scores (68.94) and (81.27). Adding the CNN layer to

the LSTM makes the model run better when it uses

character features. The F1 scores become (71.08) and

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

798

(84.68). If a CRF layer is added to the LSTM, the F1

scores will be (80.87) and (92.34). While adding both

the CNN-layer and the CRF-layer to the LSTM makes

the model get the highest F1 scores (84.69) and (92.46).

The results of the LSTM variations are shown in

Fig. 14.

For the BiLSTM baseline model, the initial F1

scores are (79.44) and (88.65). After adding the CNN

layer, the F1 scores become (81.89) and (90.34). If a

CRF-layer is added the F1 scores will be (83.61) and

(94.06). Finally, adding both the CNN-layer and the

CRF-layer raises F1 scores to (87.28) and (94.17). The

results of the BiLSTM variations are shown in Fig. 15.

A close look at Fig. 16 shows many important

issues. First, the BiLSTM models always overcome

their analogs in the LSTM models when using the CNN

layer, the CRF layer, or both layers. Second, using the

CNN-layer (character features) gives a minor

improvement for both the LSTM and BiLSTM baseline

models when used with ANER for the used dataset

(WikiFane_Selective). Third, when the CRF-layer is

used, both the LSTM and CNN-LSTM models get a big

boost from it. The BiLSTM and CNN-BiLSTM models,

on the other hand, get a small boost from them. Finally,

the results of the partitioning by K-fold CV are always

better than the results of the traditional partitioning

for all models.

Fig. 14: Results of the LSTM variations

Fig. 15: Results of the BiLSTM variations

Fig. 16: Comparison of the LSTM and BiLSTM models

Table 3: F1-scores of different ANER models using traditional partitioning and partitioning by k-fold CV

Models Traditional partitioning Partitioning by k-fold CV

LSTM 68.94 81.27

CNN-LSTM 71.08 84.68

LSTM-CRF 80.87 92.34

CNN-LSTM-CRF 84.69 92.46

BiLSTM 79.44 88.65

CNN-BiLSTM 81.89 90.34

BiLSTM-CRF 83.61 94.06

CNN-BiLSTM-CRF 87.28 94.17

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

799

Conclusion and Future Works

This study presented a comparison among variants of the
LSTM and BiLSTM baseline models using a public
Arabic dataset to extract Arabic-named entities. Each
baseline model was combined with either a CNN layer,
a CRF layer, or both layers. Two types of dataset
partitioning were used: The traditional portioning and
the partitioning by k-fold CV. The BiLSTM models got
better results if they were compared with their analog
LSTM models in both types of dataset partitioning.
Also, dataset partitioning by the K-fold CV is more
useful than traditional partitioning. The best F1 score
when using the K-fold CV was for the CNN-BiLSTM-
CRF model, with a score of 94.17. Based on the results
and what was mentioned above, it is concluded that
using the K-fold CV in dataset partitioning and
combining the CRF layer with both the BiLSTM and
CNN-BiLSTM models will get the best results.

In the future, we aim to apply K-fold CV to advanced

architectures, like sequence-2-sequence models or

architecture that includes attention mechanisms.

Acknowledgment

This research paper was not funded by any institution.

Author’s Contributions

Hamid Sadeq Mahdi Alsultani: The paper background

work, conceptualization, methodology, dataset pre-

processing, implementation, result analysis and comparison,

preparing and editing draft, and visualization.
Ahmed H. Aliwy: The supervision, review of work and

project administration.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all of the

other authors have read and approved the manuscript and

no ethical issues involved.

References

AbdelRahman, S., Elarnaoty, M., Magdy, M., & Fahmy, A.

(2010). Integrated machine learning techniques for

Arabic named entity recognition. IJCSI, 7(4), 27-36.

Ali, M. N. A., Tan, G., & Hussain, A. (2019). Boosting

Arabic named-entity recognition with multi-attention

layer. IEEE Access, 7, 46575-46582.

https://doi.org/10.1109/ACCESS.2019.2909641
Ali, M. N., & Tan, G. (2019). Bidirectional encoder-

decoder model for Arabic named entity recognition.
Arabian Journal for Science and
Engineering, 44(11), 9693-9701.

https://doi.org/10.1007/s13369-019-04068-2

Alsayadi, H. A., & ElKorany, A. M. (2016). Integrating

semantic features for enhancing Arabic named entity

recognition. International Journal OF Advanced

Computer Science And Applications, 7(3).

Al-Shoukry, S., & Omar, N. (2015). Proper noun recognition

in Arabic crime text using machine learning

approach. Journal of Theoretical & Applied

Information Technology, 79(3).

Al-Smadi, M., Al-Zboon, S., Jararweh, Y., & Juola, P.

(2020). Transfer learning for Arabic named entity

recognition with deep neural networks. IEEE Access, 8,

37736-37745.

https://doi.org/10.1109/ACCESS.2020.2973319

Benajiba, Y., & Rosso, P. (2007, December). ANERsys 2.0:

Conquering the NER task for the Arabic language by

combining the maximum entropy with POS-tag

information. In IICAI (pp. 1814-1823).

Benajiba, Y., & Rosso, P. (2008, May). Arabic named entity

recognition using conditional random fields. In Proc. of

Workshop on HLT & NLP within the Arabic World,

LREC (Vol. 8, pp. 143-153).
Benajiba, Y., Diab, M., & Rosso, P. (2008). Arabic named

entity recognition: An SVM-based approach. In
Proceedings of 2008 Arab International Conference on
Information Technology (ACIT) (pp. 16-18). Amman,
Jordan: Association of Arab Universities.

Cai, C., Tao, Y., Zhu, T., & Deng, Z. (2021). Short-
Term Load Forecasting Based on Deep Learning
Bidirectional LSTM Neural Network. Applied
Sciences, 11(17), 8129.

https://doi.org/10.3390/app11178129
Chen, H., Lin, Z., Ding, G., Lou, J., Zhang, Y., & Karlsson,

B. (2019, July). GRN: Gated relation network to
enhance convolutional neural network for named entity
recognition. In Proceedings of the AAAI Conference on
Artificial Intelligence (Vol. 33, No. 01, pp. 6236-6243).
https://doi.org/10.1609/aaai.v33i01.33016236

Dahan, F., Touir, A., & Mathkour, H. (2015). First-order
hidden Markov model for automatic Arabic name entity
recognition. International Journal of Computer
Applications, 123(7).

El Bazi, I., & Laachfoubi, N. (2019). Arabic named entity
recognition using a deep learning approach.
International Journal of Electrical & Computer
Engineering (2088-8708), 9(3).

https://10.11591/IJECE.V9I3.PP2025-2032
Elarnaoty, M., AbdelRahman, S., & Fahmy, A. (2012). A

machine learning approach for opinion holder extraction
in the Arabic language. ARXIV preprint
arXiv:1206.1011.
https://doi.org/10.48550/arXiv.1206.1011

Elsayed, H., & Elghazaly, T. (2015, April). A named entities
recognition system for modern standard Arabic using a
rule-based approach. In 2015 First International
Conference on Arabic Computational Linguistics
(ACLing) (pp. 51-54). IEEE.

https://doi.org/10.1109/ACLing.2015.14

Hamid Sadeq Mahdi Alsultani and Ahmed H. Aliwy / Journal of Computer Science 2022, 18 (9): 792.800

DOI: 10.3844/jcssp.2022.792.800

800

Fan, H., Jiang, M., Xu, L., Zhu, H., Cheng, J., & Jiang, J.

(2020). Comparison of long short-term memory

networks and the hydrological model in runoff

simulation. Water, 12(1), 175.

Gorla, S., Neti, L. B. M., & Malapati, A. (2020). Enhancing

the performance of Telugu named entity recognition

using Gazetteer features. Information, 11(2), 82.

https://10.3390/info11020082

Helwe, C., & Elbassuoni, S. (2019). Arabic named entity

recognition via deep co-learning. Artificial Intelligence

Review, 52(1), 197-215.

https://doi.org/10.1007/s10462-019-09688-6

Jiang, G., & Wang, W. (2017). Error estimation based on

variance analysis of k-fold cross-validation. Pattern

Recognition, 69, 94-106.

 https://doi.org/10.1016/j.patcog.2017.03.025

Kompalli, N. S. J., & Murthy, D. S. R. C (2021). Elite Firefly

and Long Short Term Memory Based Model for

Texture Classification.

Lee, C. (2017). LSTM-CRF models for named entity

recognition. IEICE Transactions on Information and

Systems, 100(4), 882-887.

https://doi.org/10.1587/transinf.2016EDP7179
Manur, M., Pani, A. K., & Kumar, P. (2020). A prediction

technique for heart disease based on long short-term
memory recurrent neural network. International
Journal of Intelligent Engineering and Systems, 13(2),
31-33.

Maslej-Krešňáková, V., Sarnovský, M., Butka, P., &
Machová, K. (2020). Comparison of deep learning
models and various text pre-processing techniques for
the toxic comments classification. Applied
Sciences, 10(23), 8631.
https://doi.org/10.3390/app10238631

Melis, G., Dyer, C., & Blunsom, P. (2017). On the state of
the art of evaluation in neural language models. arXiv
preprint arXiv:1707.05589.
https://doi.org/10.48550/arXiv.1707.05589

Mohammed, N. F., & Omar, N. (2012). Arabic named
entity recognition using artificial neural
network. Journal of Computer Science, 8(8), 1285.

Nti, I. K., Nyarko-Boateng, O., & Aning, J. (2021).

Performance of Machine Learning Algorithms with

Different K Values in K-fold Cross-Validation. Inter.

J. Info. Technol. Comp. Sci., 13, 61-71.

https://10.5815/ijitcs.2021.06.05

Patil, N., Patil, A., & Pawar, B. V. (2020). Named entity

recognition using conditional random

fields. Procedia Computer Science, 167, 1181-1188.

Shaalan, K., & Oudah, M. (2014). A hybrid approach to

Arabic named entity recognition. Journal of

Information Science, 40(1), 67-87.

https://doi.org/10.1177/0165551513502417

Shaalan, K., & Raza, H. (2008, August). Arabic named

entity recognition from diverse text types.

In International Conference on Natural Language

Processing (pp. 440-451). Springer, Berlin,

Heidelberg.

Shahina, K. K., Jyothsna, P. V., Prabha, G., Premjith, B.,

& Soman, K. P. (2019, March). A sequential labeling

approach for the named entity recognition in the

Arabic language using deep learning algorithms. In

2019 International Conference on Data Science and

Communication (IconDSC) (pp. 1-6). IEEE.

https://doi.org/10.1109/IconDSC.2019.8817039

Thomas, A., & Sangeetha, S. (2020). Deep learning

architectures for named entity recognition: A survey.

In Advanced Computing and Intelligent

Engineering (pp. 215-225). Springer, Singapore.

https://doi.org/10.1007/978-981-15-1081-6_18

Yadav, S., & Shukla, S. (2016, February). Analysis of k-

fold cross-validation over hold-out validation on

colossal datasets for quality classification. In 2016

IEEE 6th International Conference on Advanced

Computing (IACC) (pp. 78-83). IEEE.

https://doi.org/10.1109/IACC.2016.25

Zaghouani, W. (2012). RENAR: A rule-based Arabic

named entity recognition system. ACM Transactions

on Asian Language Information Processing

(TALIP), 11(1), 1-13.

 https://doi.org/10.1145/2090176.2090178

https://doi.org/10.1016/j.patcog.2017.03.025

