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Abstract: The lightweight nature of Operating System virtualization give 

birth to the containers, and their high efficiency for application deployment 

prefers its usage in Cloud computing. Containers encapsulate and bundle the 

required dependencies for application development and deployment in libs 

packages as a single entity. The nature of containers eases application 

migration within the High-Performance Computing environment to handle 

the scientific workloads smoothly. Singularity containers are aimed to be 

only for High-Performance Computing (HPC) applications. The existing 

HPC workload managers are good with container monitoring, scheduling, 

and resource management, but container orchestration is always a concern. 

This study proposes a framework that will ease container orchestration using 

Kubernetes to handle the scientific applications workload. HPC cluster is 

built using interconnected containers in a private cloud environment. The 

architecture is derived based on the required configuration for containers to 

deploy the application and scheduling jobs.  
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Introduction  

Cloud computing is widely used across enterprise 

applications in the research area. It provides scalability, 

elasticity, fault tolerance, and secure infrastructure to 

develop and deploy applications. Different types of 

cloud models such as public, private, and hybrid; all are 

based on virtualization to serve the computing resources 

and instances to the individuals. Containerization is an 

emerging technology used to provide computing 

instances that replaces virtual machines in cloud 

computing to provide computing instances. It is based on 

Operating System (OS) virtualization and is easy to use 

for application deployment. Scientific applications with 

higher workloads are data-intensive and need high-

performance computing resources in the Graphics 

Processing Unit (GPU), Central Processing Unit (CPU), 

and network. The cluster has multiple containers, where 

each container refers to single application bundling for 

the deployment. The number of applications increases 

results in a higher number of containers, raising the 

concern about its orchestration efficiency. The parallel 

computing application can be on the map-reduce 

technique, where the input data is divided into multiple 

tasks and gets executed in parallel. Once tasks get 

completed, all will be merged as a single output. To 

execute these tasks, we need multiple containers. It is 

going to be similar to microservices architecture. The 

auto-scaling of the infrastructure is required as big data 

applications are based on parallel computation. If there 

is a requirement to add a new library or jar based on 

application type, it will be challenging with the currently 

deployed application. The containers are the best 

solution to handle this kind of situation. The new version 

of the application or library will be added, and the 

computing instance will be launched without 

interruption. In the HPC cluster, the jobs hold huge 

workloads specific to the underlying nature of 

infrastructure. These jobs will be submitted in a queue 

in the form of batches and will be served on a first come, 

first basis. The resource and scheduler manager will 

decide to trigger these waiting jobs to get considered. 

These jobs will get assigned to the nodes based on the 

availability of resources and job priorities. The job 

priorities are defined in terms of numbers which refers 

to Critical, High, normal, and low priority, respectively. 

The higher the count, the lower the priority.  
Container orchestration is an automated operation effort 

to manage its life cycle, including provisioning, 
monitoring, application deployment, and scalability                  
(Al Jawarneh et al., 2019). It's mainly about scheduling, 
resources, and service management. Kubernetes provides a 
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platform to orchestrate the containers. Still, for scientific 
workloads, the requirement is quite different, which needs 
to be handled efficiently as all the running jobs are not 
going to consume all the assigned resources. Instead, 
another job can consume unused resources. In this study, 
we propose a framework that will leverage the existing 
resource manager and Kubernetes to fill the gap in 
container orchestration to handle the scientific workloads 
in the cloud environment. This framework will be based on 
the hybrid architecture of the cloud environment and HPC 
cluster, which internally uses Kubernetes. This study 
contributes to the high-performance computing area where 
we need to handle applications with a high volume of 
scientific workloads. The proposed framework is scalable 
and flexible, as Kubernetes is handling the job submission 
First, we will describe the existing resource managers, 
Kubernetes, and the related work. Next, we have captured 
the proposed framework and its architecture. Following the 
same, we evaluate the use cases and capture the results. 
Later, we covered the discussion and the conclusion of the 
research work.   

Resource Managers  

Conventional resource managers can manage the 
resources in extensive data analytics systems (Medel et al., 
2018). The admin can configure the jobs with their expiry 
and specific configurations in GPU, memory, the number of 
processors, and the network. The resource allocation by the 
resource manager is done based on the granularity of the job 
node, which can be shared across jobs. There are mainly five 
job types: Malleable, moldable, rigid, evolving, and adaptive. 
The dynamic jobs responsible for big data set intensive 
applications are going to be of type adaptive one that will 
become adaptive at runtime based on the changes in resource 
allocation needs. The type requires the detailed formats of 
defined resources of rigid jobs where there is a need for a 
longer execution time for applications.  

The efficient orchestration of containers will benefit the 
deployed high-performance computing application in terms 
of resource control (Rodriguez and Buyya, 2019). It will 
allocate the CPU/GPU to a container which will reframe the 

interference of other containers and help in scheduling by 
discovering the defined policies. It also distributes the load, 
provisions the containers in case of any failure or crashes, 
and helps in the application's scalability. The orchestration 
includes resource management, application management, 
and scheduling. There are multiple existing research 

managers described in the upcoming section. 

Existing Resource Managers  

A. Viewpoint 

It is one of the most commonly used HPC-based resource 
managers. Using its flexible user interface, users can manage 
resources efficiently. Moreover, it is a visual-based interface 
specifically designed to increase the productivity of 
individuals (www.aspsys.com). Therefore, its dashboard is 

self-sufficient and explanatory to the users. The feature 
covers the job submission, application interface, script 
builder, job status details, file manager, 2Dimensional 
(2D)/3Dimensional (3D) visualizations, and throughput 
sessions using pre-defined templates. 

B. SLURM 

It refers to Simple Linux Utility for Resource 
Management (SLURM), a job and resource scheduling 
manager to manage the small and large HPC systems on top 
of the Linux operating system 
(https://slurm.schedmd.com/overview.html). There is no 
need for kernel modification. For the computation of nodes, 
it allocates exclusive and non-exclusive access. Once 
resources get allocated, jobs will be pushed into the queue, 
where they will get served one by one. Once the current job 
finishes, another job will be picked from the queue. 

C. Torque 

It refers to the Tera-scale Open-source Resource 
(https://adaptivecomputing.com) and QUEue manager 
(TORQUE), one of the most commonly used resource 
managers. It is used to control the HPC running jobs and 
nodes. It provides the high logging-based job scheduling user 
interface, the generated data after the completion of the job, 
and fault tolerance. It is highly scalable and used in 
mainframes and supercomputers for research work. The 
most commonly used commands are: 

 

• Qstat – for checking the job’s current status 

• Qdel – delete a job once it gets finished 

• Qsub – for job submission 

  

D. Maui 

It is a cluster resource manager that is highly 
optimized and easily configurable. It is a job scheduler 
with advanced features and is used to schedule the jobs 
based on the policies, fair share, dynamic priorities, and 
user interface to manage the resources for massive 
clusters. It helps to improve machine performance, 
ranging from smaller ones to higher processor-based 
clusters in teraflops (Zitzlsberger et al., 2018). 

Figure 1 shows the TORQUE-based resource 

management for the HPC cluster having multiple 

containers to deploy the applications using the OS 

virtualization using the underlying infrastructure holding 

physical servers. The jobs on the computing nodes will be 

queues and served once resources are allocated based on 

their availability. It shows the general mechanism of 

managing the computing resources in the HPC cluster, 

where jobs are typically queued, and resources will get 

allocated once they get freed. The queue refers to the nodes 

partitioned in the form of different groups. TORQUE 

internally holds one primary node and the other multiple 

computing nodes. The job is submitted first to the primary 

node, and it is passed to the pbs server after allocating an id. 

file:///C:/Users/hp/AppData/Roaming/Microsoft/Word/www.aspsys.com
https://slurm.schedmd.com/overview.html
https://adaptivecomputing.com/
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Later this job will be served to the scheduler. The scheduler 

will add this job to the queue based on a first-come, first-

served basis, and the resource allocation and job priority 

will be defined. Then, based on the node's availability, the 

job details are returned to the pbs server. The first node will 

become the mother, and the other will become the sister 

node. The pbs server will get the resource allocation details 

from the job. It will pass the job control to the sister's nodes, 

installed on the superior, and instructed to provide the job 

on the multiple computing nodes. The superior node will 

monitor and manage the resource allocation to the 

containers. Whether success or error, the job status will be 

reported to the pbs server. 

 

 
 
Fig. 1: Resource management using torque 

 

 
 
Fig. 2: Kubernetes using containers 

E. Kubernetes 

It is an open-source, most widely used platform for 
container orchestration (Jeffery et al., 2021). It has its 
resource manager and job scheduler to allocate the 
resources and deploy the application bundled in 
containers. The deployed containers are called pods. 
The underlying container run time removed the Docker 
from the Kubernetes version 1.20 and onwards. It is 
fault-tolerance, highly scalable, efficient job 
scheduling, and a self-healed platform. It is based on 
the master and slave model. The primary node will be 
treated as a highly available fault-tolerant. The primary 
node will act as a control panel where slave nodes are 
the nodes where containers will get executed. Figure 2 
shows the Kubernetes high-level component 
architecture diagram for container orchestration. 

Related Work 

Here, we are discussing a brief overview of our survey, 

which is done around the container’s orchestration, which 

motivates us to develop this framework. Only a bunch of 

studies have been done as containerization is in its adopting 

phase for handling scientific workloads. The migration of 

computing resources at run time using HPC and Cloud 

Clusters is captured by Liu et al. (2018). IBM has also used 

the Spectrum Load Sharing Facility (LSF) workload 

manager to demo the Kubernetes pods execution (Liu et al., 

2018). Using the Grid Engine, Piras et al. (2019) have 

developed an approach to extend the Kubernetes on the top 

of HPC clusters (Piras et al., 2019). A prototype has been 

proposed by Julian using the Moab scheduler (Julian et al., 

2016) to orchestrate the containers within the HPC 

environment. The python script is used to destroy the unused 

containers. Within the HPC cluster, an experiment has been 

performed by Wrede and Von Hof (2017) using the Docker 

Swarm. We propose a framework that will act as a bridge 

between the cloud and HPC systems using Kubernetes for 

container orchestration. It can be used for non-HPC 

applications, where GPU is not a requirement. 

Proposed Model using Kubernetes 

Our proposed framework is based on the model where 

the HPC Cluster will build using the cloud stack, i.e., 

private Cloud. The cluster is created using the provisioned 

computing instances in the form of high resource-based 

containers. As the scientific workloads need to be 

handled, GPU, network, CPU, and memory have been 

assigned accordingly. The Kubernetes will autonomously 

handle the container orchestration. Suppose there is a need 

to change the configuration or increase the higher 

resources at run time. In that case, the kubectl command 

will be run to deploy the new image of the application, 

which will provision the new container with defined 

resources and destroy the existing container only once the 
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new container is up and running. It is used to achieve the 

automatic deployment of containers and fault tolerance. 

Suppose the application breaches the higher limit at the 

run time, based on the prediction policy. In that case, a 

new container will be spawned with a threshold of 

memory in addition to what the previous container 

breaches the same based on the framework workflow 

design implementation. As Kubernetes is open source, we 

have leveraged its internal working mechanism to 

orchestrate the containers seamlessly in the cloud 

environment. We have used Linux Operating System-

based containers to set up the HPC cluster and deploy the 

containers. The virtualization technology needs to be 

carefully chosen to handle the scientific workload in a 

cloud environment as it has its drawbacks to handle data-

intensive applications. Using this framework, users can do 

changes in the Cloud-based execution stack and deploy 

their high data-sensitive application within the HPC 

cluster in the form of multiple containers to execute the 

tasks in parallel, similar to the map-reduce technique. 
Figure 3 shows the proposed model architecture to 

orchestrate the containers for HPC Cluster. The job scheduler 

will schedule the queued jobs based on their priority. The 

scheduling layer is responsible for effectively using the 

resources. It takes the user inputs in terms of replication job 

placement cost rates. It will predict the placement of 

containers based on the defined policy at run time. It checks 

the readiness of the deployed application bundled in the form 

of a container. It will periodically check the heartbeat of the 

container for long-running applications. If the status is 1/1, 

the container is up and running and ready to accept the 

requests. It also takes care of the auto-restart of the containers 

on failure or crash, its rollback mechanism, handling the 

image upgrade version, and the containers' colocation. 

Table 1 shows the comparison of the scheduler layer with 

Kubernetes and other existing container orchestration tools. 

The resource allocator is responsible for resource 

management in terms of memory, CPU, GPU, and network. 

It avoids interference between the containers for getting the 

resources. The service management layer is responsible for 

facilitating the environment to develop and deploy the 

applications. It holds the labels, which are the metadata info 

associated with containers, and namespaces as a unique 

identifier to identify the containers, their dependencies, 

readiness check, and load balancing to distribute the 

incoming load. Table 2 compares the service management 

layer with Kubernetes and other existing container 

orchestration tools. 

Evaluation 

Here, we will evaluate our proposed framework-based 

model for container orchestration using Kubernetes to handle 

the scientific workloads in the cloud environment. The jobs 

are scheduled and managed by the job scheduler and 

resource allocator. We have set up the cloud environment 

using OpenStack (Wang and Zhang, 2017) and built the 

HPC cluster. We have deployed three applications that are 

highly data-intensive applications. Later, we changed some 

business logic implementation and maintained a new version 

of the image. Kubernetes Cluster is set up to deploy the 

application in the form of containers. We have defined the 

resource configurations of an application in the form of 

multiple image versions in YAML files. Kubernetes will 

orchestrate the containers and take care of their whole 

lifecycle. Figure 4 shows the used Kubernetes commands to 

show the deployments and labels for the nodes. 

We have evaluated the different performance 

metrics using a hybrid model to compare container 

orchestration. The Message Passing Interface (MPI) 

launcher at the cluster level will provide the containers 

where the internal application that will be deployed 

using containers is of type MPI. We have used the MPI 

library (Sultana et al., 2021). At first, we considered 

the requirement of time for deploying our proposed 

framework. Next, we performed the analysis for service 

management and scheduling to evaluate readiness time 

consumption and recover and reschedule in case of 

fault tolerance.  

 

 
 

Fig. 3: Proposed model architecture in HPC cluster 

 

 
 

Fig. 4: Kubernetes commands for container deployment and 

checking the label for nodes 
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Table 1: Comparison of scheduling layer 

Scheduling layer Mesos Swarm Kubernetes 

Replication Yes Yes Yes 

Placement Yes Yes Yes 

Readiness Yes No Yes 

Rolling deployment Yes No Yes 

Colocation No No Yes 

 
Table 2: Comparison of the service management layer 

Scheduling layer Mesos Swarm Kubernetes 

Namespaces Yes No Yes 

Labels Yes Yes Yes 

Readiness  Yes No Yes 

Load balancing Partial No Yes 

 
Table 3: Computing resources specification for HPC cluster using physical servers and container-based cluster 

Computing resources HPC cluster (physical server) Container cluster 

Operating system Ubuntu 18.04.3 Ubuntu 18.04.3 

Cores 24 (Per CPU 12 cores, Per node 2 CPU) Yes 

CPU frequency Intel ® Xeon ® CPU E5-2630 v4, 2.20 GHz Intel i7 9xx (Core i7 IBRS) 2.79 GHz 

RAM 124 GB 8 GB 

Number of nodes 4 (3 compute nodes) 4 (3 worker nodes) 

 

Test Beds Specifications  

The test bed specifications are defined using Table 3 

which holds the specification for HPC Cluster using 

both physical as well as container-based, which is 

described as follows: 

Use Case  

We have executed three HPC applications App1, App2, 

and App3. We have increased the workload starting from 

App1, then higher in App2 and highest in App3, and 

performed the performance evaluation based on the testbeds 

specification as defined in Table 3. We have used the 

Singularity containers (Godlove, 2019). Docker is used to 

provisioning the containers using Kubernetes. It provides 

support for both types of containers, i.e. Singularity and 

Docker containers. Worker nodes are not going to be linked 

with the HPC cluster as they will be responsible for running 

the Docker containers. We have used one existing model for 

Kubernetes to establish communication among the 

Kubernetes pods, which are hosted on different hosts within 

the cluster. Using the existing model, there is no need for an 

overlay network to deploy Kubernetes within the system. It 

internally supports its network policy to provide isolation 

across Kubernetes namespaces. Only two processors will be 

used by each application on the node within the Container 

cluster. It will range from 2 processors to 24 in the count 

based on having the testbeds specifications. 

Results 

    All three applications were first bundled in the 

form of an image to deploy them in the form of 

containers as Kubernetes pods. We have evaluated the 

provisioning time to deploy the application in containers 

using the existing orchestrator vs our proposed model 

using Kubernetes. When we compared the results, we 

found the heavy workload-based HPC application 

impacts the provisioning time within the container-based 

cluster. We have considered the experiments using 

multiple applications local images vs single application 

Docker image. 

Using Fig. 5(a) and (b), shows that Kubernetes is 

consuming less time among all used container 

orchestration tools, i.e. Apache Mesos (Saha et al., 

2018) and Docker Swarm (Marathe et al., 2019). The 

other two orchestration tools have comparable 

provisioning time, i.e., almost negligible. We initially 

kept the replicas as two, but later we increased these 

from 2 to 4 and later increased gradually to 80. We 

found a different set of results captured using Fig. 6(a) 

and (b), which shows the comparison of provisioning 

time for the application deployment using local image 

vs remote Docker image. Kubernetes took lower 

provisioning time with a local image whereas the 

highest time for a remote one. It is found that a longer 

time is taken due to communication between 

Kubernetes and Docker registry. The other orchestrator 

found it correlated in between. Apache Mesos provides 

a better result. We have gradually increased the replicas 

count to 80 and found that the results were linearly 

increasing in terms of provisioning time. Fig. 7 shows 

that our proposed model using Kubernetes is the best 

fit to restore the deployed applications during the 

failover of containers. 
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Fig. 5(a): Applications provisioning time using a local private 

image 

 

 
 
Fig. 5(b): Applications provisioning time using Docker 

registry remote image 
 

 
 
Fig. 6(a): Single Application provisioning time with multiple 

replicas using a local private image 
 

 
 
Fig. 6(b): Single Application provisioning time with multiple 

replicas using Docker registry remote image 

 

 
Fig. 7: Failover Time using proposed model vs existing 

container orchestration tools 

 

Conclusion 

The experimental results based on the defined use 
case highlight the advantages of our proposed model 
for the provisioning time to deploy the applications and 

the failover time. HPC-based applications tend to scale 
with the number of cores. We have proposed this 
architecture-based framework that fills the gap of HPC 
clusters using the containers-based cluster in the cloud 
environment. It will benefit where we need to handle 
the application with a high volume of scientific 

workloads. The proposed framework is scalable and 
flexible, as Kubernetes is handling the job submission. 
TORQUE has been used in the framework as a resource 
allocator, which takes care of the resource allocations 
to the containers. The higher provisioning time for 
remote images registered with the Docker registry 

using Kubernetes can be improvised by removing the 
communication overhead. We have proposed a 
framework for container orchestration to handle the 
scientific workloads using Kubernetes. This framework 
is scalable for HPC-based applications. It is the best fit 
for the provisioning time to deploy the application 

using the private local images and restore the services. 
It is flexible to adopt in Cloud vs non-cloud-based 
environment to orchestrate the containers using 
Kubernetes. In today's world, scientific research-based 
or Artificial intelligence-based applications revolve 
around the data (Li and Yao, 2022), and that cloud 

environment offers the HPC cluster using the 
containers. As the number of replicas grows, it needs 
to be handled efficiently and considered an exciting 
topic for future work. 
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