

© 2022 Manish Kumar Abhishek, D. Rajeswara Rao and K. Subrahmanyam. This open-access article is distributed under a

Creative Commons Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Framework for Containers Orchestration to handle the

Scientific Workloads using Kubernetes

Manish Kumar Abhishek, D. Rajeswara Rao and K. Subrahmanyam

Department of Computer Science, Koneru Lakshmaiah Education Foundation, Vaddeswaram, India

Article history

Received: 27-03-2022

Revised: 11-06-2022

Accepted: 22-07-2022

Corresponding Author:

Manish Kumar Abhishek

Department of Computer

Science, Koneru Lakshmaiah

Education Foundation,

Vaddeswaram, India
Email: manish.9623727629@gmail.com

Abstract: The lightweight nature of Operating System virtualization give

birth to the containers, and their high efficiency for application deployment

prefers its usage in Cloud computing. Containers encapsulate and bundle the

required dependencies for application development and deployment in libs

packages as a single entity. The nature of containers eases application

migration within the High-Performance Computing environment to handle

the scientific workloads smoothly. Singularity containers are aimed to be

only for High-Performance Computing (HPC) applications. The existing

HPC workload managers are good with container monitoring, scheduling,

and resource management, but container orchestration is always a concern.

This study proposes a framework that will ease container orchestration using

Kubernetes to handle the scientific applications workload. HPC cluster is

built using interconnected containers in a private cloud environment. The

architecture is derived based on the required configuration for containers to

deploy the application and scheduling jobs.

Keywords: Cloud Computing, High-Performance Computing, Containers,

Containers Orchestration, Resource Manager, Kubernetes

Introduction

Cloud computing is widely used across enterprise

applications in the research area. It provides scalability,

elasticity, fault tolerance, and secure infrastructure to

develop and deploy applications. Different types of

cloud models such as public, private, and hybrid; all are

based on virtualization to serve the computing resources

and instances to the individuals. Containerization is an

emerging technology used to provide computing

instances that replaces virtual machines in cloud

computing to provide computing instances. It is based on

Operating System (OS) virtualization and is easy to use

for application deployment. Scientific applications with

higher workloads are data-intensive and need high-

performance computing resources in the Graphics

Processing Unit (GPU), Central Processing Unit (CPU),

and network. The cluster has multiple containers, where

each container refers to single application bundling for

the deployment. The number of applications increases

results in a higher number of containers, raising the

concern about its orchestration efficiency. The parallel

computing application can be on the map-reduce

technique, where the input data is divided into multiple

tasks and gets executed in parallel. Once tasks get

completed, all will be merged as a single output. To

execute these tasks, we need multiple containers. It is

going to be similar to microservices architecture. The

auto-scaling of the infrastructure is required as big data

applications are based on parallel computation. If there

is a requirement to add a new library or jar based on

application type, it will be challenging with the currently

deployed application. The containers are the best

solution to handle this kind of situation. The new version

of the application or library will be added, and the

computing instance will be launched without

interruption. In the HPC cluster, the jobs hold huge

workloads specific to the underlying nature of

infrastructure. These jobs will be submitted in a queue

in the form of batches and will be served on a first come,

first basis. The resource and scheduler manager will

decide to trigger these waiting jobs to get considered.

These jobs will get assigned to the nodes based on the

availability of resources and job priorities. The job

priorities are defined in terms of numbers which refers

to Critical, High, normal, and low priority, respectively.

The higher the count, the lower the priority.
Container orchestration is an automated operation effort

to manage its life cycle, including provisioning,
monitoring, application deployment, and scalability
(Al Jawarneh et al., 2019). It's mainly about scheduling,
resources, and service management. Kubernetes provides a

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

861

platform to orchestrate the containers. Still, for scientific
workloads, the requirement is quite different, which needs
to be handled efficiently as all the running jobs are not
going to consume all the assigned resources. Instead,
another job can consume unused resources. In this study,
we propose a framework that will leverage the existing
resource manager and Kubernetes to fill the gap in
container orchestration to handle the scientific workloads
in the cloud environment. This framework will be based on
the hybrid architecture of the cloud environment and HPC
cluster, which internally uses Kubernetes. This study
contributes to the high-performance computing area where
we need to handle applications with a high volume of
scientific workloads. The proposed framework is scalable
and flexible, as Kubernetes is handling the job submission
First, we will describe the existing resource managers,
Kubernetes, and the related work. Next, we have captured
the proposed framework and its architecture. Following the
same, we evaluate the use cases and capture the results.
Later, we covered the discussion and the conclusion of the
research work.

Resource Managers

Conventional resource managers can manage the
resources in extensive data analytics systems (Medel et al.,
2018). The admin can configure the jobs with their expiry
and specific configurations in GPU, memory, the number of
processors, and the network. The resource allocation by the
resource manager is done based on the granularity of the job
node, which can be shared across jobs. There are mainly five
job types: Malleable, moldable, rigid, evolving, and adaptive.
The dynamic jobs responsible for big data set intensive
applications are going to be of type adaptive one that will
become adaptive at runtime based on the changes in resource
allocation needs. The type requires the detailed formats of
defined resources of rigid jobs where there is a need for a
longer execution time for applications.

The efficient orchestration of containers will benefit the
deployed high-performance computing application in terms
of resource control (Rodriguez and Buyya, 2019). It will
allocate the CPU/GPU to a container which will reframe the

interference of other containers and help in scheduling by
discovering the defined policies. It also distributes the load,
provisions the containers in case of any failure or crashes,
and helps in the application's scalability. The orchestration
includes resource management, application management,
and scheduling. There are multiple existing research

managers described in the upcoming section.

Existing Resource Managers

A. Viewpoint

It is one of the most commonly used HPC-based resource
managers. Using its flexible user interface, users can manage
resources efficiently. Moreover, it is a visual-based interface
specifically designed to increase the productivity of
individuals (www.aspsys.com). Therefore, its dashboard is

self-sufficient and explanatory to the users. The feature
covers the job submission, application interface, script
builder, job status details, file manager, 2Dimensional
(2D)/3Dimensional (3D) visualizations, and throughput
sessions using pre-defined templates.

B. SLURM

It refers to Simple Linux Utility for Resource
Management (SLURM), a job and resource scheduling
manager to manage the small and large HPC systems on top
of the Linux operating system
(https://slurm.schedmd.com/overview.html). There is no
need for kernel modification. For the computation of nodes,
it allocates exclusive and non-exclusive access. Once
resources get allocated, jobs will be pushed into the queue,
where they will get served one by one. Once the current job
finishes, another job will be picked from the queue.

C. Torque

It refers to the Tera-scale Open-source Resource
(https://adaptivecomputing.com) and QUEue manager
(TORQUE), one of the most commonly used resource
managers. It is used to control the HPC running jobs and
nodes. It provides the high logging-based job scheduling user
interface, the generated data after the completion of the job,
and fault tolerance. It is highly scalable and used in
mainframes and supercomputers for research work. The
most commonly used commands are:

• Qstat – for checking the job’s current status

• Qdel – delete a job once it gets finished

• Qsub – for job submission

D. Maui

It is a cluster resource manager that is highly
optimized and easily configurable. It is a job scheduler
with advanced features and is used to schedule the jobs
based on the policies, fair share, dynamic priorities, and
user interface to manage the resources for massive
clusters. It helps to improve machine performance,
ranging from smaller ones to higher processor-based
clusters in teraflops (Zitzlsberger et al., 2018).

Figure 1 shows the TORQUE-based resource

management for the HPC cluster having multiple

containers to deploy the applications using the OS

virtualization using the underlying infrastructure holding

physical servers. The jobs on the computing nodes will be

queues and served once resources are allocated based on

their availability. It shows the general mechanism of

managing the computing resources in the HPC cluster,

where jobs are typically queued, and resources will get

allocated once they get freed. The queue refers to the nodes

partitioned in the form of different groups. TORQUE

internally holds one primary node and the other multiple

computing nodes. The job is submitted first to the primary

node, and it is passed to the pbs server after allocating an id.

file:///C:/Users/hp/AppData/Roaming/Microsoft/Word/www.aspsys.com
https://slurm.schedmd.com/overview.html
https://adaptivecomputing.com/

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

862

Later this job will be served to the scheduler. The scheduler

will add this job to the queue based on a first-come, first-

served basis, and the resource allocation and job priority

will be defined. Then, based on the node's availability, the

job details are returned to the pbs server. The first node will

become the mother, and the other will become the sister

node. The pbs server will get the resource allocation details

from the job. It will pass the job control to the sister's nodes,

installed on the superior, and instructed to provide the job

on the multiple computing nodes. The superior node will

monitor and manage the resource allocation to the

containers. Whether success or error, the job status will be

reported to the pbs server.

Fig. 1: Resource management using torque

Fig. 2: Kubernetes using containers

E. Kubernetes

It is an open-source, most widely used platform for
container orchestration (Jeffery et al., 2021). It has its
resource manager and job scheduler to allocate the
resources and deploy the application bundled in
containers. The deployed containers are called pods.
The underlying container run time removed the Docker
from the Kubernetes version 1.20 and onwards. It is
fault-tolerance, highly scalable, efficient job
scheduling, and a self-healed platform. It is based on
the master and slave model. The primary node will be
treated as a highly available fault-tolerant. The primary
node will act as a control panel where slave nodes are
the nodes where containers will get executed. Figure 2
shows the Kubernetes high-level component
architecture diagram for container orchestration.

Related Work

Here, we are discussing a brief overview of our survey,

which is done around the container’s orchestration, which

motivates us to develop this framework. Only a bunch of

studies have been done as containerization is in its adopting

phase for handling scientific workloads. The migration of

computing resources at run time using HPC and Cloud

Clusters is captured by Liu et al. (2018). IBM has also used

the Spectrum Load Sharing Facility (LSF) workload

manager to demo the Kubernetes pods execution (Liu et al.,

2018). Using the Grid Engine, Piras et al. (2019) have

developed an approach to extend the Kubernetes on the top

of HPC clusters (Piras et al., 2019). A prototype has been

proposed by Julian using the Moab scheduler (Julian et al.,

2016) to orchestrate the containers within the HPC

environment. The python script is used to destroy the unused

containers. Within the HPC cluster, an experiment has been

performed by Wrede and Von Hof (2017) using the Docker

Swarm. We propose a framework that will act as a bridge

between the cloud and HPC systems using Kubernetes for

container orchestration. It can be used for non-HPC

applications, where GPU is not a requirement.

Proposed Model using Kubernetes

Our proposed framework is based on the model where

the HPC Cluster will build using the cloud stack, i.e.,

private Cloud. The cluster is created using the provisioned

computing instances in the form of high resource-based

containers. As the scientific workloads need to be

handled, GPU, network, CPU, and memory have been

assigned accordingly. The Kubernetes will autonomously

handle the container orchestration. Suppose there is a need

to change the configuration or increase the higher

resources at run time. In that case, the kubectl command

will be run to deploy the new image of the application,

which will provision the new container with defined

resources and destroy the existing container only once the

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

863

new container is up and running. It is used to achieve the

automatic deployment of containers and fault tolerance.

Suppose the application breaches the higher limit at the

run time, based on the prediction policy. In that case, a

new container will be spawned with a threshold of

memory in addition to what the previous container

breaches the same based on the framework workflow

design implementation. As Kubernetes is open source, we

have leveraged its internal working mechanism to

orchestrate the containers seamlessly in the cloud

environment. We have used Linux Operating System-

based containers to set up the HPC cluster and deploy the

containers. The virtualization technology needs to be

carefully chosen to handle the scientific workload in a

cloud environment as it has its drawbacks to handle data-

intensive applications. Using this framework, users can do

changes in the Cloud-based execution stack and deploy

their high data-sensitive application within the HPC

cluster in the form of multiple containers to execute the

tasks in parallel, similar to the map-reduce technique.
Figure 3 shows the proposed model architecture to

orchestrate the containers for HPC Cluster. The job scheduler

will schedule the queued jobs based on their priority. The

scheduling layer is responsible for effectively using the

resources. It takes the user inputs in terms of replication job

placement cost rates. It will predict the placement of

containers based on the defined policy at run time. It checks

the readiness of the deployed application bundled in the form

of a container. It will periodically check the heartbeat of the

container for long-running applications. If the status is 1/1,

the container is up and running and ready to accept the

requests. It also takes care of the auto-restart of the containers

on failure or crash, its rollback mechanism, handling the

image upgrade version, and the containers' colocation.

Table 1 shows the comparison of the scheduler layer with

Kubernetes and other existing container orchestration tools.

The resource allocator is responsible for resource

management in terms of memory, CPU, GPU, and network.

It avoids interference between the containers for getting the

resources. The service management layer is responsible for

facilitating the environment to develop and deploy the

applications. It holds the labels, which are the metadata info

associated with containers, and namespaces as a unique

identifier to identify the containers, their dependencies,

readiness check, and load balancing to distribute the

incoming load. Table 2 compares the service management

layer with Kubernetes and other existing container

orchestration tools.

Evaluation

Here, we will evaluate our proposed framework-based

model for container orchestration using Kubernetes to handle

the scientific workloads in the cloud environment. The jobs

are scheduled and managed by the job scheduler and

resource allocator. We have set up the cloud environment

using OpenStack (Wang and Zhang, 2017) and built the

HPC cluster. We have deployed three applications that are

highly data-intensive applications. Later, we changed some

business logic implementation and maintained a new version

of the image. Kubernetes Cluster is set up to deploy the

application in the form of containers. We have defined the

resource configurations of an application in the form of

multiple image versions in YAML files. Kubernetes will

orchestrate the containers and take care of their whole

lifecycle. Figure 4 shows the used Kubernetes commands to

show the deployments and labels for the nodes.

We have evaluated the different performance

metrics using a hybrid model to compare container

orchestration. The Message Passing Interface (MPI)

launcher at the cluster level will provide the containers

where the internal application that will be deployed

using containers is of type MPI. We have used the MPI

library (Sultana et al., 2021). At first, we considered

the requirement of time for deploying our proposed

framework. Next, we performed the analysis for service

management and scheduling to evaluate readiness time

consumption and recover and reschedule in case of

fault tolerance.

Fig. 3: Proposed model architecture in HPC cluster

Fig. 4: Kubernetes commands for container deployment and

checking the label for nodes

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

864

Table 1: Comparison of scheduling layer

Scheduling layer Mesos Swarm Kubernetes

Replication Yes Yes Yes

Placement Yes Yes Yes

Readiness Yes No Yes

Rolling deployment Yes No Yes

Colocation No No Yes

Table 2: Comparison of the service management layer

Scheduling layer Mesos Swarm Kubernetes

Namespaces Yes No Yes

Labels Yes Yes Yes

Readiness Yes No Yes

Load balancing Partial No Yes

Table 3: Computing resources specification for HPC cluster using physical servers and container-based cluster

Computing resources HPC cluster (physical server) Container cluster

Operating system Ubuntu 18.04.3 Ubuntu 18.04.3

Cores 24 (Per CPU 12 cores, Per node 2 CPU) Yes

CPU frequency Intel ® Xeon ® CPU E5-2630 v4, 2.20 GHz Intel i7 9xx (Core i7 IBRS) 2.79 GHz

RAM 124 GB 8 GB

Number of nodes 4 (3 compute nodes) 4 (3 worker nodes)

Test Beds Specifications

The test bed specifications are defined using Table 3

which holds the specification for HPC Cluster using

both physical as well as container-based, which is

described as follows:

Use Case

We have executed three HPC applications App1, App2,

and App3. We have increased the workload starting from

App1, then higher in App2 and highest in App3, and

performed the performance evaluation based on the testbeds

specification as defined in Table 3. We have used the

Singularity containers (Godlove, 2019). Docker is used to

provisioning the containers using Kubernetes. It provides

support for both types of containers, i.e. Singularity and

Docker containers. Worker nodes are not going to be linked

with the HPC cluster as they will be responsible for running

the Docker containers. We have used one existing model for

Kubernetes to establish communication among the

Kubernetes pods, which are hosted on different hosts within

the cluster. Using the existing model, there is no need for an

overlay network to deploy Kubernetes within the system. It

internally supports its network policy to provide isolation

across Kubernetes namespaces. Only two processors will be

used by each application on the node within the Container

cluster. It will range from 2 processors to 24 in the count

based on having the testbeds specifications.

Results

 All three applications were first bundled in the

form of an image to deploy them in the form of

containers as Kubernetes pods. We have evaluated the

provisioning time to deploy the application in containers

using the existing orchestrator vs our proposed model

using Kubernetes. When we compared the results, we

found the heavy workload-based HPC application

impacts the provisioning time within the container-based

cluster. We have considered the experiments using

multiple applications local images vs single application

Docker image.

Using Fig. 5(a) and (b), shows that Kubernetes is

consuming less time among all used container

orchestration tools, i.e. Apache Mesos (Saha et al.,

2018) and Docker Swarm (Marathe et al., 2019). The

other two orchestration tools have comparable

provisioning time, i.e., almost negligible. We initially

kept the replicas as two, but later we increased these

from 2 to 4 and later increased gradually to 80. We

found a different set of results captured using Fig. 6(a)

and (b), which shows the comparison of provisioning

time for the application deployment using local image

vs remote Docker image. Kubernetes took lower

provisioning time with a local image whereas the

highest time for a remote one. It is found that a longer

time is taken due to communication between

Kubernetes and Docker registry. The other orchestrator

found it correlated in between. Apache Mesos provides

a better result. We have gradually increased the replicas

count to 80 and found that the results were linearly

increasing in terms of provisioning time. Fig. 7 shows

that our proposed model using Kubernetes is the best

fit to restore the deployed applications during the

failover of containers.

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

865

Fig. 5(a): Applications provisioning time using a local private

image

Fig. 5(b): Applications provisioning time using Docker

registry remote image

Fig. 6(a): Single Application provisioning time with multiple

replicas using a local private image

Fig. 6(b): Single Application provisioning time with multiple

replicas using Docker registry remote image

Fig. 7: Failover Time using proposed model vs existing

container orchestration tools

Conclusion

The experimental results based on the defined use
case highlight the advantages of our proposed model
for the provisioning time to deploy the applications and

the failover time. HPC-based applications tend to scale
with the number of cores. We have proposed this
architecture-based framework that fills the gap of HPC
clusters using the containers-based cluster in the cloud
environment. It will benefit where we need to handle
the application with a high volume of scientific

workloads. The proposed framework is scalable and
flexible, as Kubernetes is handling the job submission.
TORQUE has been used in the framework as a resource
allocator, which takes care of the resource allocations
to the containers. The higher provisioning time for
remote images registered with the Docker registry

using Kubernetes can be improvised by removing the
communication overhead. We have proposed a
framework for container orchestration to handle the
scientific workloads using Kubernetes. This framework
is scalable for HPC-based applications. It is the best fit
for the provisioning time to deploy the application

using the private local images and restore the services.
It is flexible to adopt in Cloud vs non-cloud-based
environment to orchestrate the containers using
Kubernetes. In today's world, scientific research-based
or Artificial intelligence-based applications revolve
around the data (Li and Yao, 2022), and that cloud

environment offers the HPC cluster using the
containers. As the number of replicas grows, it needs
to be handled efficiently and considered an exciting
topic for future work.

Acknowledgment

I am thankful to the Koneru Lakshmaiah Education

Foundation for allowing me to choose my research area

as per my interest and my guide's optimistic nature, and

other staff members who encouraged me to complete

this research work.

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

866

Author’s Contributions

Manish Kumar Abhishek: Considered the research

framework, understanding of existing resource e managers,

Kubernetes, container orchestration environment setup,

performance result analysis, concluding framework, and

preparing the manuscript.

D. Rajeswara Rao and K. Subrahmanyam: Advice on

test bed specifications and participation to complete the final

manuscript.

Ethics

The article is original and holds individual results for the

research work. The corresponding author confirms that all of

the other authors have read and approved the manuscript and

that no ethical issues are involved.

References

Al Jawarneh, I. M., Bellavista, P., Bosi, F., Foschini, L.,

Martuscelli, G., Montanari, R., & Palopoli, A. (2019,

May). Container orchestration engines: A thorough

functional and performance comparison. In ICC 2019-

2019 IEEE International Conference on

Communications (ICC) (pp. 1-6). IEEE.

https://doi.org/10.1109/ICC.2019.8762053

Godlove, D. (2019). Singularity: Simple, secure

containers for compute-driven workloads.

In Proceedings of the Practice and Experience in

Advanced Research Computing on Rising of the

Machines (learning) (pp. 1-4).

https://doi.org/10.1145/3332186

Jeffery, A., Howard, H., & Mortier, R. (2021, April).

Rearchitecting Kubernetes for the edge. In Proceedings

of the 4th International Workshop on Edge Systems,

Analytics, and Networking (pp. 7-12).

https://doi.org/10.1145/3434770.3459730

Julian, S., Shuey, M., & Cook, S. (2016, July). Containers in

research: initial experiences with lightweight

infrastructure. In Proceedings of the XSEDE16

Conference on Diversity, Big Data, and Science at

Scale (pp. 1-6).

https://doi.org/10.1145/2949550.2949562

Li, Y., & Yao, D. (2022). Dynamic Analysis of Deep

Integration of Artificial Intelligence Based on High-

Performance Computing for Ideological and Political

Teaching Evaluation. Mobile Information

Systems, 2022. https://doi.org/10.1155/2022/4748544

Liu, F., Keahey, K., Riteau, P., & Weissman, J. (2018,

November). Dynamically negotiating capacity between

on-demand and batch clusters. In SC18: International

Conference for High-Performance Computing,

Networking, Storage and Analysis (pp. 493-503). IEEE.

https://doi.org/10.1109/SC.2018.00041

Rodriguez, M. A., & Buyya, R. (2019). Container‐

based cluster orchestration systems: A taxonomy

and future directions. Software: Practice and

Experience, 49(5), 698-719.

Marathe, N., Gandhi, A., & Shah, J. M. (2019, April).

Docker swarm and Kubernetes in a cloud

computing environment. In 2019 3rd International

Conference on Trends in Electronics and

Informatics (ICOEI) (pp. 179-184). IEEE.

https://doi.org/10.1109/ICOEI.2019.8862654

Medel, V., Tolosana-Calasanz, R., Bañares, J. Á.,

Arronategui, U., & Rana, O. F. (2018).

Characterizing resource management performance

in Kubernetes. Computers & Electrical

Engineering, 68, 286-297.

https://doi.org/10.1016/j.compeleceng.2018.03.041

Piras, M. E., Pireddu, L., Moro, M., & Zanetti, G.

(2019, June). Container orchestration on HPC

clusters. In International Conference on High-

Performance Computing (pp. 25-35). Springer,

Cham.

https://doi.org/10.1007/978-3-030-34356-9_3

Saha, P., Beltre, A., & Govindaraju, M. (2018, July).

Exploring the fairness and resource distribution in

an apache Mesos environment. In 2018 IEEE 11th

International Conference on Cloud Computing

(CLOUD) (pp. 434-441). IEEE.

https://doi.org/10.1109/CLOUD.2018.00061

Slurm Overview, its features, and how to use

it.[https://slurm.schedmd.com/overview.html]

Sultana, N., Rüfenacht, M., Skjellum, A., Bangalore,

P., Laguna, I., & Mohror, K. (2021).

Understanding the use of message passing

interface in exascale proxy

applications. Concurrency and Computation:

Practice and Experience, 33(14), e5901.
https://doi.org/10.1002/cpe.5901

Torque Resource Manager overview and its

advantages.

[https://adaptivecomputing.com/cherry-

services/torque-resource-manager/]

VIEWPOINT, what it is, and how to use it.

[https://www.aspsys.com/solutions/software-

solutions/hpc-schedulers/]

Wang, L., & Zhang, D. (2017, June). Research on

OpenStack of open-source cloud computing in

colleges and universities' computer rooms. In IOP

Conference Series: Earth and Environmental

Science (Vol. 69, No. 1, p. 012140). IOP

Publishing.

https://doi.org/10.1088/1755-1315/69/1/012140

https://doi.org/10.1109/ICC.2019.8762053
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1145/3434770.3459730
https://doi.org/10.1155/2022/4748544
https://doi.org/10.1109/SC.2018.00041
https://doi.org/10.1016/j.compeleceng.2018.03.041
https://doi.org/10.1109/CLOUD.2018.00061
https://slurm.schedmd.com/overview.html
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://adaptivecomputing.com/cherry-services/torque-resource-manager/
https://www.aspsys.com/solutions/software-solutions/hpc-schedulers/
https://www.aspsys.com/solutions/software-solutions/hpc-schedulers/

Manish Kumar Abhishek et al. / Journal of Computer Science 2022, 18 (9): 860.867

DOI: 10.3844/jcssp.2022.860.867

867

Wrede, F., & Von Hof, V. (2017, April). Enabling
efficient use of algorithmic skeletons in cloud
environments: container-based virtualization for
hybrid CPU-GPU execution of data-parallel
skeletons. In Proceedings of the Symposium on
Applied Computing (pp. 1593-1596).

https://doi.org/10.1145/3019612. 3019894

Zitzlsberger, G., Jansík, B., & Martinovič, J. (2018).

Feasibility analysis of using the maui scheduler for

job simulation of large-scale pbs based

clusters. IADIS International Journal on Computer

Science & Information Systems, 13(2).

https://doi.org/10.33965/ijcsis_2018130204

https://doi.org/10.1145/3019612.%203019894

