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Abstract: Support Vector Machine (SVM) is a highly attractive algorithm 

among many machine learning models due to its generalization power and 

classification performance based on sound mathematical formulation being 

convex that offers global minimum. However, despite being sparse, its high 

classification cost from kernel execution with Support Vectors (SVs) reduces 

the user's interest when there are hard computational constraints in the 

application, especially, for large and difficult data. So far in our knowledge, 

out of many existing works to overcome this problem, some are really 

interesting and heavy but get less attractive due to improper training 

difficulties for example, excessive cost-memory requirement, initialization, 

and parameter selection trouble because of the non-convexity of the problems 

while the other few that avoid these problems, cannot generate sparsity and 

complexity simultaneously of the final discriminator upto satisfactory level 

for very large and tricky data. In this direction, we propose a novel algorithm 

Efficiency Escalated SVM (EESVM) that solves two convex problems using 

Quadratic Programming (QP) and Linear Programming (LP) in sequence. 

This is followed by computational analysis on the remaining smallest set of 

slack variables that ultimately build two very essential properties of the 

machine: (i) Highly efficient by being heavily sparse and optimally complex 

and (ii) Able to handle very large and noise-effected complicated data. 

Benchmarking shows that this EESVM demands kernel computation as little 

as 6.8% of the standard QPSVM while posing almost the same classification 

accuracy on test data and requiring 42.7, 27.7 and 46.6% that of other three 

implemented state-of-the-art heavy-sparse machines while offering similar 

classification accuracy. It claims the lowest Machine Accuracy Cost (MAC) 

value among all of these machines though showing very similar 

generalization performance that is evaluated numerically using the term 

Generalization Failure Rate (GFR). Being quite pragmatic for modern 

technological advancement, it is indispensable for optimum manipulation of 

the troublesome massive, and difficult data. 
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Introduction  

The size and complexity of data have been 

intensifying continuously in parallel with the advances in 

science and technology. Conventional weak classifiers are 

not fit to classify such complicated data for decision-

making. But while the complex non-linear classifiers (for 

example kernel-based classifiers) are capable of learning 

these difficult data with optimum generalization and 

stochastic nature, they demand much computational cost. 

This increases the uncertainty of successfully performing 

the quite challenging task of classifying complex data 

with high speed and accuracy simultaneously. 

But while the ultimate goal of the training in a 

classification learning method is to design the best-

generalized mapping from input patterns into their class 

labels based on the given example patterns and their 

respective class labels, the size and the selection of kernel 

operating examples to be applied to form a specific 

kernel-based stochastic discriminator and preserving its 

complexity to construct the class-boundaries mainly 

varies with respect to the size as well as the geometric 

randomness of the learning data, classification accuracy 

and essential cost (kernel execution ) may vary from one 

machine to another. In this respect, while the Support 

Vector Machine (SVM) oriented detectors lead the data 
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classification area by offering the highest accuracy, an 

exciting characteristic of it is that because of its sparsity, 

it is sufficient to use only a subset of the training patterns 

(known as support vectors) to build the optimum 

classifier. Thus, the computational load, consequently, the 

classification cost for non-linear SVM based classifier 

increases with this number of Support Vectors (SVs) gets 

higher. Hence, reducing this number of SV is really 

essential for computational savings and fast classification. 

Moreover, as the support vectors' number in SVM rises 

with the increment of the number of training patterns 

(Steinwart, 2004), this sparsity of support vector set is 

very significant in the case of large datasets, particularly 

in the scenario where there exists a hard constraint 

regarding computational load and time for data 

classification. Finally, to classify large and complicated 

datasets efficiently, a highly sparse but high-powered 

SVM-oriented classifier is strongly demanded. 

Subsequently, this issue has taken the main focus with a 

serious concentration in research recently. 

Downs et al. (2001) propose a method that finds the 

linearly dependent SVs and throws one but all of them 

where the number of linearly dependent SVs may go 

down with the rise of data dimension and complexity. 

Some clever iterative algorithms are devised by Keerthi et al. 

(2006); Cotter et al. (2013); Joachims and Yu (2009) for 

reduced SVMs that give impressive results requiring only 

a tiny part of kernel computation for classifying a single 

pattern where (Cotter et al., 2013) claimed a memory 

expire from (Keerthi et al., 2006; Joachims and Yu, 2009) 

considering their applications on bulky dataset and 

(Cotter et al., 2013) has a noticeable amount of feasible 

deviation with massive parameter choosing from its real 

stated approach. Approximating the decision function of a 

full SVM is proposed by Wu et al. (2006); Romdhani et al. 

(2004) by realizing a new compact set of vectors for 

replacing the support vectors altogether whereas Ratsch et al. 

(2005) explores a wavelet estimation for these latter 

vectors with the aim of evaluating the dot products amidst 

pattern vectors efficiently for those the kernels are 

applied. However, these types of computations of new 

substitutes of support vectors rely upon complicated 

optimization methods that are finicky to step sizes, 

initialization, etc. On the other side, Heisele et al. (2003) 

focused on structured SVM-based classification by using 

a series of SVMs with linear ones in the beginning and a 

nonlinear one at the final stage and they tuned the 

thresholds to optimize classification speed and 

performance where Karim et al. (2007) showed that a 

well-designed cascade of two non-linear SVM can 

significantly reduce classification cost compared to a 

standard SVM. Romdhani et al. (2004) offer an SVM 

chain, which follows an optimization by tuning the 

threshold and by the approximation of a complete 

nonlinear SVM that is needed to be determined ahead, 

while a linear SVM-based decision tree is modeled by 

Arreola et al. (2006). Sahbi and Geman (2006) designed a 

hierarchical form of SVMs following a tree structure that 

practices threshold selection and reduced set method in 

Romdhani et al. (2004) for optimization and uses various 

poses to operate on application followed partitioning of 

the pattern space. Moreover, in some other interesting 

works, some SVM-associated cheaper classifiers have 

been developed, which are different from conventional 

RSVMs. Maji et al. (2013) show that SVMs with 

histogram and additive kernels work at higher speed and 

perform better than linear SVM where as Ladicky and 

Torr (2011) offer a novel SVM classifier that they say 

locally linear having bounded curvature as well as smooth 

decision boundary while proposing a trade-off the anchor 

points' number against the articulateness of the classifier 

with the intention of avoiding overfitting and run-time 

problem. To compress the trained SVM further, an 

additional training algorithm on the obtained SVs using a 

few more parameters is designed by Xu et al. (2015). Li 

and Zhang (2013) developed a fast object detector that is 

built by cascading comparatively fewer stages where 

logistic regression is used in the role of weak learner that 

focuses on efficient training. Raykar et al. (2010) 

designed a cascade in which classifiers refuse patterns 

based on probability distributions urged by the classifiers 

at previous stages to try to find a very good balance 

between accuracy and feature learning cost. Fu et al. 

(2010) model to combine linear SVMs in order to classify 

complicated data and claim experimental outcomes 

showing the prediction phase efficiency of LSVMs 

comparable to non-linear SVMs. Karim and Kundu 

(2018) find a very compact and strong classifier with 

higher classification accuracy by solving QP followed by 

LP and this machine is referred to as second-order SVM 

by them. However, shortly after that, Karim and Kundu 

(2019) offered another algorithm to reduce the number of 

SVs by using computational analysis after solving an LP 

and provided experimental results on benchmark data 

validating that their model is significantly more efficient in 

the prediction stage while providing a classification 

accuracy very similar to standard non-linear SVMs. 

Although these classifiers are very efficient, further 

sparsification is useful for very large and complex datasets. 
In our work, we try to obtain a highly sparse 

machine with a very straightforward method. By 
analyzing the learning method of the SVM algorithm 
and using our computational and statistical perceptions, 
we propose a new learning algorithm to produce an 
immensely efficient classifier that accelerates the 
classification task by demanding significantly less 
expense for classification without compromising the 
statistical and generalization guarantees.  
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The paper is organized using the following sequence: 

First, we explain our approach in the “method” section, 

then we describe our experimental works with outputs in 

the “results and discussion" section, and last, we use the 

"conclusion” section to conclude our idea and findings 

with possible future extension. 

Method 

The proposed training algorithm for extracting the 

reduced support vectors consists of the following steps: A 

QP based SVM training, an LP based training followed by 

the 'slack variable' analysis. 

QP-Based SVM Learning on Training Data 

Vapnik’s Quadratic Programming based SVM 

(QPSVM) (Vapnik, 1998) is a widely used supervised 

classifier, which employs the structural risk minimization 

concept for building the classifier model. Suppose that for 

a two-class classification problem, a set of training 

examples with corresponding labels: 

 

 

 

are known. Utilizing the given training examples, the goal 

of this QP-based training is to find the decision function 

having the form class (x) = sgn(w ·φ(x)+ b), where w is 

the weight vector, b is the bias term and φ(x) is the Kernel 

mapping of the example x from input space to a higher 

dimensional feature space. To obtain the training model 

parameters w as well as b, SVM looks for a separating 

hyperplane that is optimal having the maximum margin 

between two classes and minimum training error depths 

of the margin-outward-deviated examples (examples that 

stay outwards from their own class margins), which leads 

to the following QP problem: 

 

 (1) 

 

 
 (2) 

 

 (3) 

 

where, the introduced slack variables ξi > 0 stand for the 

training-error depths of margin-outward-deviated 

examples and the C > 0 regularization parameter finds the 

best balance between minimizing the depth of training-

errors and maximizing the margin between two classes 

optimally. The constraints in relation (2) mean that the 

intended decision function must be capable of classifying 

the training examples upto some acceptable depth of 

training error. The problem in (1-3) can be solved 

efficiently by using a Lagrangian and in dual form. The 

equivalent dual problem becomes: 
 

  (4) 
 

 (5) 

 

 (6) 
 

The dual formulation in (4-6) is also a QP. Here, 

K (xi, xj) = φ(xi)·φ(xj) is a kernel operation and the 

Langrangian multiplier αis are the optimization 

variables. The training model parameters w as well as b 

can be found as w =∑αiyiφ(xi) and b = ym − w·φ(xm), 

where m is an index of an example with 0< αm <C. A 

KKT condition for problems in (1) to (3) is, 
 which implies 

 for Support Vector (SV) 

patterns with αi ≠ 0. The SV-set is extracted with 

corresponding labels . The SV 

patterns can be classified into two types, firstly, the 

patterns lying on their own class margins (having αi < C 

and ξi = 0), patterns staying in the opposite direction of 

their own class margins (having αi = C and ξi >0). It is 

notable that the constraint in (5) makes sure that QPSVM 

has SVs from both classes. A simple graphical 

representation of QP based SVM with decision 

boundary is shown in Fig. 1. 

QPSVM is academically richer having a validated 

theoretical foundation with skillful dual mapping. The 

training set is represented by the SVs by filtering out the 

only significant patterns based on theoretically solid and 

powerful training using QP formulation. Hence, the only 

representative SV set S1 is utilized for further 

sparsification in the next step. 

Training of the Representative Examples Using an 

LP Based SVM 

Sparseness of a machine relies on the number of noisy 

examples as well as the complication of data. For a set of 

noisy data, a generalized QP based SVM gets more 

outliers and as a result, these examples are included in SV 

set S1 along with the patterns lying on their own class 

margins. Therefore, while being sufficient to represent the 

discrimination between classes, the number of SVs 

heavily increases. Thus, another stage of training on the 

extracted representative examples can be employed to 

extract a denser set of representative patterns for 
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representing the discrimination between two classes 

without losing the generalization capability. Moreover, 

after applying QP in the first stage, the number of training 

patterns will be reduced heavily because of the filtration 

and hence the input load and number of variables will be 

significantly less for the next stage. Additionally, instead 

of using an L2 norm in the cost function, another Kernel 

based classifier is proposed in Vapnik (1998), which 

utilizes an indirect L1 norm in the cost function. This L1 

norm leads to a sparser solution compared to an L2 norm 

(Boyd and Vandenberghe, 2004), hence, requiring a lower 

number of kernel computations in the test phase. We 

select such one for our next stage by modeling an LP as 

follows. If wv is the weight vector for this machine, the 

discriminator function is of the form fv(x) = wv ·φ(x)+bv 

that leads to class (x)= sgn(fV(x)). A linear cost function is 

employed to minimize the summation of the SV 

coefficients associated with SVs along with the unity 

deviation penalty. 
 

 
 
Fig. 1: Sketch of Vapnik’s QP SVM (Karim and Kundu, 2019) 

applying the margin maximization approach: Triangles 

represent patterns of positive class whereas squares 

represent patterns of negative class. The dark straight 

lines represent the edges of the margin from both classes 

belonging to a hypothetically very higher dimensional 

feature space. The patterns that stay in the opposite 

directions of their own class margins are called margin 

outward deviated patterns and the amount of this 

deviation is represented by a non-negative variable, ξ. 

QP SVM maximizes the margin while maintaining the 

optimal training-error distance. The red line represents 

QP SVM's decision boundary that is generated by the 

training output 

 (7) 

 

 (8) 

 

 (9) 

 

 (10) 

 

 (11) 

 

The set of constraints in (8) indicates that the 

discriminator should classify the representer set of 

training examples up to an acceptable depth of accuracy 

error where the variables ζi >0 represent the unity 

outward-deviated examples (examples for which class 

label (xi)· fv(xi) <1) and a regularizer parameter Cv >0 

generates the trade-off between overfitting and learning 

the data (which is comparatively dense representer of the 

training data this time). In the case of this machine, the 

decision function's bias term, bv is also an optimization 

variable of the main problem (7-10), which is found with 

the other variables λ as well as ζ. These optimum values 

of λ are applied to find the weight vector wv as wv = 

∑λjyjφ(xj). This time, training vectors, xj having 

coefficients λj > 0 work as the bases or representer set for 

the discriminator generated from this problem. For better 

clarification, we call these patterns "Expansion Vector 

(EV)" to distinguish them from SVs in QPs as they work 

verily in the same way but are produced from different 

methods. These EVs are generally much less in number 

relative to the overall size of the training set and at this 

stage, these vectors with labels are extracted along with 

the bias bv to produce an updated discriminator. 

Slack Variable Analysis 

The pattern set in S2 provides us with a considerably 

sparser subset of the training data while representing the 

discriminator function quite well. However, accelerating 

the classification process is continuously desired, which 

motivates us to throw as many patterns as possible from this 

sparser subset (to further reduce the computational load of 

the classifier) without notable sacrifice in the classification 

accuracy. Hence, an approximation of the SVM solution is 

proposed to further reduce the size of this sparser set S2, 

which is achieved by discarding the most insignificant 

patterns in S2 following the proposed slack variable analysis 

based on the corresponding coefficient values as described. 

We can rewrite the constraint in (8) as 

. For a misclassified pattern 

(pattern staying in the region of the opposite class) 
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. Hence, for L misclassified patterns, 

 L. Thus suppressing ∑i ζi by penalizing through 

regularize will suppress L, the number of training 

errors. Therefore, throwing outliers from the S2 set 

apparently reduces training errors. Moreover, by 

observing the cost function in the above LP, we find 

that patterns having higher ζ values get comparatively 

very small (but non-zero) coefficient values λ that leads 

these patterns to be members of the final discriminator 

and demand kernel computations during the 

classification process though create more ambiguity 

than precision for correct decision by staying in another 

class. Thus, considering the computational load and 

classification accuracy, we analyze their contribution 

to correct decision-making based on misleading and 

right-leading them. 

Right-Leading and Misleading in the Discriminator 

from the Patterns Having ζ >1 

After the sequential QP and LP, the decision function 

is modeled in a way that for any arbitrary training pattern 

xa, having label ya, the function value is. 

 Considering 
we get xm, xn are all 

Kernel Computing Vectors (KCVs). Thus as λm, λn > 0, 

and  if

 are from 

opposite classes while xm pushes xa outwards from xa’s 

own class, which we call here as wrong force, and in case 

of are from the same class 

while xn pulls xa inwards to xa’s class, which we call here 

as right force. Now, from these KCVs, those who have 

ζ >1 stay inside the boundaries of opposite classes, 

which usually provide lower values for the Euclidean 

distances between these patterns and the patterns of 

opposite classes and higher values for the Euclidean 

distances between these patterns and the patterns of 

their own classes. As we have used RBF kernel, which 

is inversely proportional to distance, using these 

patterns as the bases in the discriminator produces 

comparatively larger kernel values with respect to the 

opposite class that boosts the wrong force, which 

powers Misleading (pushing away from its own class) 

and smaller kernel values for patterns of the same class 

that weakens the right force, which weakly supports 

Right-leading (pulling a training pattern inwards to the 

pattern’s class) for correct decision making. Thus, 

considering higher classification accuracy and speed, 

we throw KCVs with ζ >1 patterns from the S2 set as 

part of the active KCVs for our final discriminator after 

examining their depth of misleading and right-leading 

with respect to all of the training examples by applying 

the following analytic survey. 

For a ζ >1 KCV, xO having label yO, 

Risght Leading Depth (RLD) on all of the training 

examples,  and 

hence right-leading of xO on all of the training examples, 

 whereas 

MLD (Misleading Depth) of that KCV, xO on all of the 

training examples can be found as,

 and thus 

Misleading of xO on all of the training examples, 

. 
Exploring the benchmark datasets shows that for 

almost all cases, the ζ >1 KCVs Misleads more than 

Right-leading, which aligns with our proposal of throwing 

ζ >1 KCVs from the predictor. The algorithm of our 

proposed scheme is shown in Algorithm 1. 

Figure 2 shows the decision boundary evolution 

with a number of support vectors and training error 

rates after the three stages of the proposed algorithm, 

such as QP training, LP training, and the slack variable 

analysis on synthetic data. Fig. 2(a) presents the 

decision boundary after QP SVM training with C = 

0.125 and σ = 0.125, Fig. 2(b) presents the decision 

boundary after LP training on S1 set with CLP = 16 and 

σLP = 0.25 and the decision boundary after the final 

stage is shown in Fig. 2(c). The escalated efficiency of 

our method is quite clear here as it demands a number 

of KCVs only around 4% of standard QP SVM while 

posing similar classification accuracy. 
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Fig. 2: Illustration of decision evolution of the proposed 

EESVM 

 

Results and Discussion 

This part presents the experimental results to validate 

our proposed method EESVM along with data description 

and discussions about the results obtained from 

experiments. Seven benchmark machine learning datasets 

available in Diethe (2015) are used for evaluating the 

performance. The datasets are Banana, German, Heart, 

Ringworm, Titanic, Twonorm, and Waveform as listed in 

Tables 1-3. The EESVM is compared with the QPSVM, 

LP SVM (VLPSVM), SOSVM proposed in Karim and 

Kundu (2018) and RLPSVM proposed in Karim and 

Kundu (2019). In all experiments, the Gaussian kernel is 

implemented. In QPSVM, VLPSVM, and RLPSVM, the 

corresponding penalty term parameters C and CV and the 

kernel computing parameters σ, σV are chosen based on the 

highest cross-validation true prediction rate using 5-fold 

cross-validation. In implementing these 3 machines, 

cross-validations are performed with kernel parameters σ 

and σV. To obtain the best parameters, modified fivefold 

cross-validation is implemented where we randomly 

choose 4 folds of training examples to train the first stage 

with specific C and σ. The returned KCVs are used as 

training sets with the best CV and σV in the later stage. The 

final KCVs are used to build the predictor and test the 

remaining training data. C, σ, CV, and σV are chosen from 

the ranges of {2−2,20,22,...,212},{2−2,20,...,26}, C × 

{2−2,2−1,20,...,25} and σ × {2−2,2−1,20,...,25} respectively. 

Numbers of KCVs and Test Error Rates of Proposed 

Method (EESVM) and Different Machines are given in 

Table 1.  
 

Algorithm 1: Proposed EESVM (Efficiency Escalated 

SVM) 

1: Input: A training set D  

2: Output: A discriminator from.(·) 

3: Select the best penalty parameters and Kernel 

 parameters: ≡ (C,σ),(CV,σV)  

4: Run the QP-based SVM using the entire training set to 

solve the following problem: 

 
 

 
 

 
 
5: Extract the SV-set of this step with labels as  

 S  

6: Run LP-based SVM on the extracted SV-set S1  

 by solving the following problem: 

 

 
 

 
 

 
 

 
 

7: Extract SVs of this LP step with labels as  

 S  and the bias bv. 

8: Find {(xp, yp) ∈ S2|ζp > 1} and throw the corresponding 

 patterns from S2 to construct a new compact SV set, 

 C ∈ {2−2,20,22,...,212} and σ ∈ {2−2,20,22,...,26}. For 

SOSVM and our proposed method EESVM, there are 

two penalty parameters in the two stages C and CV, and 

two  

 S3 = {(xp,yp) ∈ S2|ζp ≤ 1} 

9:   

10:   

 

Goodness of Machines 

To measure the goodness of a classifier, two terms, 

namely Generalization Failure Rate (GFR) and Machine 

Accuracy Cost (MAC) (Karim and Kundu, 2018) of 

different machines are analyzed. GFR represents the 

classifier's deficiency in generalizing the test data, 

whereas MAC expresses machines' cost per accuracy. 

Generalization Failure Rate (GFR) 

The primary goal of a training algorithm of a classifier 

is to obtain a discriminator using the training examples 

that classifies the novel examples with the highest 

possible accuracy. The accuracy of test data provides us 

the information about the classifier's performance but 

does not tell us about the bridging capability of a machine 

between the training and test data. Moreover, a classifier 

should be as sparse as possible for real-time 

implementation, which means a kernel-based classifier 

should demand as few kernel evaluations as possible for 
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classifying a test example. Therefore, the set of KCVs 

heavily influences the classifier's performance. If the 

KCV set leads to a relatively simple model, it may fail to 

properly learn the complexity of the data and thus perform 

poorly on both the training and test examples from under-

fitting. On the other side, if the KCV set leads to a very 

complicated model, the model learns the unnecessary 

details and noise from the training examples. Thus, the 

training error decreases by weakening the general model, 

which in turn, leads to generalization failure with an 

increase in the test-error rate, also known as over-fitting. 

Hence, to evaluate the deficiency of a classifier to 

generalize, the terms Over-fitting Tendency (OT) and 

GFR are introduced as follows: 
 

 (12) 
 

  (13) 
 

OT increases for a lower value of training error rate and 

a higher test error rate. GFR is defined keeping two points 

in mind: (i) How much the classifier overfits and (ii) How 

badly it performs on the test patterns. GFR increases with 

an increase in OT or with a decrease in test accuracy. The 

GFR of different machines are given in Table 2. 

Machine Accuracy Cost (MAC) 

A high-performance machine with less 

computational cost is always highly desired. In this 

regard, the objective is to build a predictor demanding 

a small number of kernel evaluations in the test phase 

having high accuracy. Hence, to terminate the 

confusion between the usefulness of an expensive 

machine with higher accuracy and a cheaper machine 

with comparable accuracy, the term MAC is defined for 

kernel-based machines as: 
 

 (14) 
 

A low MAC value of a machine is always desired, 
which implies the machine will achieve maximum test 
accuracy with minimum KCVs. MAC values from 
different machines are given in Table 3. 

 
Table 1: Numbers of KCVs and Test Error Rates of Proposed Method (EESVM) and different machines 

Dataset name (No. of  VLPSVM (Karim SOSVM (Karim  RLPSVM (Karim  Proposed method  
training patterns, No. of QPSVM mean and Kundu, 2018) and Kundu, 2018) and Kundu, 2019) EESVM mean 
testing patterns, dimension) (KCVs, TeER) mean (KCVs, TeER) mean (KCVs, TeER) mean (KCVs, TeER) (KCVs, TeER) 

Banana (400, 4900, 2) (102.26, 10.61) (15.08, 10.75) (15.23, 10.91) (13.47, 11.38) (13.62, 11.53) 

German (700, 300, 20) (438.75, 23.70) (26.47, 24.00) (178.99, 25.27) (38.74, 24.30) (27.61, 24.16) 

Heart (170, 100, 13) (68.23, 16.60) (21.94, 17.44) (10.60, 15.55) (8.07, 15.51) (7.45, 15.33) 
Ringnorm (400, 7000, 20) (77.00, 2.23) (15.99, 1.73) (40.26, 1.81) (15.99, 1.73) (15.83, 2.54) 

Titanic (150, 2051, 3) (148.50, 22.69) (83.91, 22.91) (48.48, 23.34) (82.22, 22.91) (39.19, 23.18) 

Twonorm (400, 7000, 20) (299.18, 2.42) (32.00, 3.71) (18.50, 3.38) (19.27, 3.70) (19.45, 2.93) 
Waveform (400, 4600, 21) (228.33, 13.15) (20.81, 11.18) (21.06, 11.20) (20.64, 10.44) (10.67, 12.72) 
Average k (–, –, –) (194.61, 13.06) (30.89, 13.10) (47.59, 13.07) (28.34, 12.85) (19.11, 13.20) 

In Table 1, the number of Kernel Computing Vector (KCVs) of different state-of-the-art machines along the proposed EESVM with the test 

error rates of different machines on benchmark datasets (Diethe, 2015) is presented. It is observed from the table that for a ll seven datasets, 
EESVM requires significantly fewer kernel evaluations compared to the sparse QPSVM. EESVM requires as little as 4.7% of QPSVM  for the 

Waveform dataset and 9.8% averaged over all datasets. Despite huge cost reduction, EESVM performs similarly to the power ful QPSVM 

posing amazingly 0 .43% more for the Waveform dataset and only 0.14% less on average. Moreover, we observe that the proposed EESVM 
requires significantly less number of kernel evaluations on average compared to the other three sparser machines. EESVM requi res as little as 

61.9% kernel computations compared to the VLPSVM, 40.2% kernel executions of SOSVM, and 67.4% kernel executions of RLPSVM  while 

offering very similar classification accuracy 

 

Table 2: Generalization failure rate of different Machines 

  VLPSVM (Karim SOSVM (Karim RLPSVM (Karim   

Dataset QPSVM and Kundu, 2018) and Kundu, 2018) and Kundu, 2019) EESVM 

Banana 0.0031 0.0026 0.0019 0.0016 0.0018 

German 0.0049 0.0011 0.0140 0.0015 0.0009 

Heart 0.0039 0.0060 0.0012 0.0012 0.0010 

Ringnorm – 0.0103 – 0.0103 0.0162 

Titanic 0.0017 0.0015 0.0010 0.0015 0.0010 

Twonorm 0.0017 1.7005 0.0246 0.0539 0.0070 

Waveform 0.0013 0.0051 0.0051 0.0042 0.0018 

Average 0.0028 0.2467 0.0080 0.0106 0.0042 

In Table 2, the GFR values of different machines along the proposed classifier are presented. It is observed from the table that in the case 

of German, Heart, and Titanic datasets, the GFR values of the proposed classifier are less than the corresponding GFR values from the 

other four classifiers whereas, for the other four datasets, the GFR values of the proposed machines are better in most cases while 

considering the average value, it is the second best following very closely the most powerful standard QP SVM 
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Table 3: Machine accuracy cost of different machines 

  VLPSVM (Karim SOSVM (Karim RLPSVM (Karim  

Dataset QPSVM and Kundu, 2018) and Kundu, 2018) and Kundu, 2019) EESVM 

Banana 1.1439 0.1690 0.1710 0.1520 0.1539 

German 5.7501 0.3483 2.3952 0.5118 0.3641 

Heart 0.8181 0.2657 0.1255 0.0955 0.0880 

Ringnorm 0.7876 0.1627 0.4100 0.1627 0.1624 

Titanic 1.9208 1.0885 0.6324 1.0666 0.5102 

Twonorm 3.0661 0.3323 0.1915 0.2001 0.2004 

Waveform 2.6291 0.2343 0.2372 0.2305 0.1222 

Average 2.3022 0.3715 0.5947 0.3456 0.2287 

In Table 3, the MAC values of different machines along the proposed classifier are presented. It is observed from the table that 

in the case of Heart, Titanic, and Waveform datasets, the MAC values of the proposed classifier are less than the MAC values 

of the corresponding other four classifiers, which implies that the proposed machine involves less cost per accuracy than oth er 

reported classifiers whereas, for the other four datasets, the MAC values of the proposed machines are better in  most cases while 

considering the average values, it is the best 

 

Conclusion 

In this research paper, we propose an SVM-based 

novel algorithm, EESVM to classify data with a highly 

powerful discriminator that demands the least 

computational load. It is built by imitating the Powerful 

and standard (QP based) Support Vector Machine 

maintaining optimal complexity and accuracy through 

filtering its Support Vectors to select their possibly 

smallest but dense subset that is almost a complete 

perceptual representer of the data set. This is achieved by 

modeling objective functions involving margin 

maximization and direct sparsification that are activated 

in sequence following the pattern scattering and their 

topological representation in such a way that different 

optimizers work on the pattern space using the 

generalized representer of the training set according to the 

pattern-spanning in the individual level being interfaced 

through the constraints along with the objective functions. 

This solution is further improved by the virtue of some 

computational analysis and statistical insight on this 

resultant discriminator involving the slack variables (ζ) 

that correlate with noise and error to reduce both 

classification cost and possible overfitting by throwing 

those kernel computing vectors that require computational 

cost but may not have countable influence in higher 

classification accuracy. An important feature of our 

algorithm is that it is straightforward to build and simple 

to use having just one stage in the classification phase 

though there are three stages in training. The key 

achievement here is that it can learn only a fractional 

number of Kernel Computing Vectors (KCVs) compared 

to the standard SVM to form a classifier with high 

generalization capability producing classification 

accuracy quite similar to this powerful SVM. It gives the 

lowest Machine Accuracy Cost (MAC) value. Despite 

being so sparse, its generalization ability is better than 

other machines and also very near to QPSVM while for a 

few datasets, it generalizes even better than that. Thus, our 

method, based on combined operations of optimizations 

and computational analysis, is also able to successfully fill 

up the very little gap that remains from a powerful and 

parameter-based machine like SVM where there is no 

ultimate certainty to obtain the best regularization 

parameters using cross-validation, which may bring a 

sharp change in the solution by involving a much higher 

number of KCVs for very similar accuracy from the 

computationally costly classifier with a significant 

probability of over-fitting that could even be further 

triggered by the inclusion of noise effected highly 

deviated outliers in training set. A classifier with such 

efficiency, accuracy, and simplicity with noise de-coupling 

ability is indispensable for real-time classification of the 

heavy challenging very large, and noise-effected 

complicated data. In the future, introducing asymmetry and 

probabilistic bounds on the boundary values of the error 

rate using an analytic method would be interesting. 
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