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Abstract: The Quadratic Residue (QR) codes have a rich mathematic structure. 

Unfortunately, their Algebraic Decoding (AD) is not generalizable for all QR 

codes. In this study, an efficient hard decoding algorithm is proposed to 

generalize the decoding of the binary systematic Quadratic Residue (QR) codes. 

The proposed decoder corrects t erroneous bits or less, in the received word, based 

on a reduced set of permutations derived from the large automorphism group of 

QR codes. This set of permutations is applied to the received word to move the 

error positions and trap all of them in redundancy. Then, to evaluate the proposed 

method, we applied it to many binary QR codes of moderate code length starting 

with 17 until 113 with reducible and irreducible generator polynomials. The 

proposed decoder was validated by inserting all possible error patterns, that have 

t or less erroneous positions, as input of the proposed decoder and the output is 

always a correct codeword. The complexity study, in terms of the number of 

operations used, reveals that the light permutation decoding LPD algorithm 

significantly decreases decoding complexity without performance loss. So, it is 

qualified to be a good competitor to decode QR codes with lower lengths but is 

the best for QR codes with higher lengths. 

 

Keywords: Automorphism Group, Permutation Decoding, Quadratic Residue 

Codes, Syndrome Decoding 

 

Introduction 

The digitization of several sectors of activity is 

increasing every day and the need for more secure 

communication systems is also increasing. These later are 

manifested generally in the storage and transmitting data, 

with the greatest reliability, from one user to another that are 

mainly distant. This transmission is carried out through a 

noisy physical communication channel (Shannon, 1948). 

The basic model of digital communication is presented in 

Fig. 1 and is known as the Shannon paradigm. This 

fundamental model improves the reliability and efficiency 

of communication systems under varying conditions. It 

provides the ability to understand and analyze the 

behavior of communication systems in the presence of 

various types of impairments, such as noise, interference, 

and fading. It helps the researchers to determine the best 

encoding and decoding techniques and the most efficient 

error correction algorithms to implement. 

In more cases the received message certainly includes 

errors. The processing of data at the reception is limited 

to restore the integrality of the transmitted information. 

This concept is based on the detection and correction of 

errors by using channel coding techniques. The integration 

of this module at the transmitter and the receiver improves 

the quality of the transmission and guarantees the reliability 

of the communication system. It enables the introduction of 

controlled redundancy bits into the binary message which is 

then exploited at the receiver to remove the errors introduced 

by the channel and to find the most likely transmitted 

message related to the received one. This process is mainly 

done by using algebraic structures of the Errors Correcting 

Codes (ECC). In communication systems, linear block codes 

are widely used and cyclic codes are the most important and 

attractive class of block codes. 

In 1958, Prange introduces a new powerful subclass of 

codes that possess a half code rate and a good minimum 

distance (Prange, 1957). This subclass of codes is called 

the Quadratic Residue QR codes which belong to the 

family of cyclic codes and has rich mathematic structure. 

They have the best error performances among binary 

codes and offer the information a high resistance against 

channel perturbations. They can be an excellent candidate 

to be adopted for a very noisy channel (MacWilliams and 
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Sloane, 1977) and the next generations of mobile 

communication systems. For this reason, the researchers 

consider these codes that are the best codes known in the 

theory of ECC due to their algebraic structure. So, QR codes 

with lengths less than 100 may have greater application 

potential for short packet transmission with low latency 

(Dong et al., 2022). Why not extend the areas of the 

use of the longer QR codes? practically, the (24,12,8) 

extended QR code has been used in imaging systems for 

space exploration (Wicker, 1994) and high frequency 

radio systems (Honary et al., 1994). 

The decoding of QR codes seems very hard. Because the 

algorithms mainly used to decode other subclasses of cyclic 

codes, namely BCH and Reed Solomon codes, could not 

decode all the QR codes. This decoding hardness is 

manifested in the way that the algebraic structure of QR 

codes presents some restrictions to adopting a universal 

decoder. It means that the decoding system followed, to 

determine the erroneous positions for a code length, must, 

necessarily, be modified or at least adapted for each QR code. 

On the other hand, real works began in the eighties 

(Elia, 1987) and continue today. They have produced 

several techniques for decoding QR codes which can be 

classified into three broad categories: Algebraic decoding 

techniques, quasi algebraic decoding techniques, and non-

algebraic methods that consider the QR codes as linear 

block codes. The former has some points of similarities in 

the decoding procedure which are based on a set of 

syndromes basically known to find the error locator 

polynomial L(z). This polynomial be able to establish if 

we can solve a nonlinear equation system (i.e., the 

Newton identities related with the syndrome components 

of the code) by using Sylvester’s resultant (Reed et al., 

1990; 1992) or Gröbner basis (Chen et al., 1994). Then, 

to find the erroneous positions a substitution process of 

L(z) is carried out by using the roots of the generator 

polynomial of the code. This is usually done by using the 

Chien search (Chien et al., 1969). For the QR codes, some 

of the syndrome components are missing due to the 

algebraic properties and the required eliminations using 

successive substitutions will be difficult to obtain. So, 

when the number of errors occurs in the transmitted 

codeword is quite high, the set of unknown syndromes 

increases as well as the number of nonlinear equations. 

Hence, the decoding procedure definitely is not trivial as 

we do not have enough syndrome components. 

However, the authors (He et al., 2001) arrived, 2001, 

to determine the value of the unknown syndromes. They 

proposed a new technic that serves to make a 

correspondence between the unknown syndromes and the 

known ones which define the best (v + 1) (v + 1) matrix 

S(I, J) with strict conditions. Thereafter, this method 

makes the decoding procedure somehow less complex 

and has still opened the door for the researchers to decode 

the next lengths of QR codes. The benefit of using this 

method consists of the possibility to apply the efficient 

Inverse Free Berlekamp Massey (IFBM) algorithm to 

decode the QR codes (Chang et al., 2003; Wang et al., 

2013). The IFBM method is an iterative approach that 

requires 2t consecutive known syndromes as the input for 

determining L(z). It has been considered a useful decoding 

procedure for different binary QR codes. On top of that, there 

is another commonly used technique to decode a cyclic code 

but is seldom used to decode the binary QR code. This 

technique is known as the Euclidean algorithm (Shih et al., 

2008; 2009). It is based on the division of the syndrome 

polynomial S(x) and xn -1. It allows us to determine L(z) by 

computing the gcd (S(x); xn -1), but also all the n consecutive 

syndromes must be established. 

Through the above, it is relatively apparent and 

straightforward to decode the binary QR code with the 

required consecutive syndromes and apply the 

abovementioned algebraic decoding algorithms. Despite 

that, these decoding algorithms are very complex and 

need highly complicated computations by utilizing an 

enormous number of operations over a Galois field. They 

present a difficult hardware implementation. 
Since the Lookup Table Decoding (LTD) is used as a 

quasi-algebraic decoding technique. In 2009 the authors 
(Chen et al., 2009) propose a new decoding scheme for 
the binary systematic QR (47,24,11) code based on a 
lookup table decoding approach. Then, a Reduced Size 
Lookup Table (RSLT) was proposed (Lin et al., 2010). 
They made some improvements to the decoding 
parameter by reducing the number of syndromes stored 
and consequently the size of the decoding table. 

 

 
 

Fig. 1: Simplified model of a digital communication system
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After that, new decoding algorithms (Lin et al., 2012; 

Lee et al., 2013; Li et al., 2018; Huang et al., 2018; 

Gholami and Roostaie, 2021) based on these two previous 

works have been proposed to improve the decoding. These 

methods retain the employment of the mathematical 

properties of this family of codes to determine the erroneous 

positions. They have been proposed due to the limitation of 

the AD algorithms. The LTD and their improved versions are 

slightly less complex and practically provide another way to 

decode the QR code. It achieves the same goal by looking up 

a pre-calculated table. These algorithms need to store the 

lookup tables for all error patterns which requires a real 

storage capacity in the DSP system and a tangible CPU time 

when the code length is quite high. 

In 1962, Prange introduced the permutation decoding PD 

algorithm based on the principle of error trapping decoding 

scheme (Prange, 1962). This category of algorithms is 

dedicated to decoding systematic cyclic codes. After that, 

MacWilliams developed (Macwilliams, 1964) a serial 

decoder for cyclic code. She is interested in finding a large 

group of automorphisms of the systematic cyclic codes that 

operate in a particular manner to correct the highest 

number of errors that do not exceed the error correction 

capability of code. The PD applies a set of code preserving 

permutations to the received codeword in order to move, 

towards the redundancy, of errors appearing in the 

received word. The algorithm based on this approach is 

less expensive and simpler to implement than other 

decoding methods. It is best suited to codes that are 

invariant under a large group of automorphisms 

(MacWilliams and Sloane, 1977) and is most useful for 

alphabets with high error correcting capabilities. 

Prange and MacWilliams introduced an (S, V) 

permutation group, in which (S) is a group of cyclic shifts 

and (V) is a sequence of squares. After that, two general 

research areas have been getting started: 

 

• First, to study the application domain of this technique 

and to verify analytically the capability of decoding 

several codes. Based on the algebraic properties of the 

code, they investigate (Benyamin-Seeyar et al., 1986; 

Jia et al., 1992) an exact lower bound on the code length. 

They show that the size of the permutation group is 

proportional to the code dimension or to the error 

correction capability of the code. Then, they extend 

the study of the capability of the large (S, V) 

permutation decodable cyclic codes (Jia et al., 1994; 

Jia and Le-Ngoc, 1995). They use a maximum number 

of squaring permutations, called steps, required to move 

all errors. They have established equations that 

represent the exact relations between the parameters 

of the code n, k, t and the number of the steps 

• Second, to optimize and minimize the number of 

permutations used in the decoding. This process was 

done algebraically (Wolfmann, 1983) or by genetic 

algorithms (Nouh et al., 2013) 
 

In 2010 the authors (Key et al., 2010) decode Reed 

Muller codes by using permutation decoding. They 

applied the decoding algorithm to the first and second 

order Reed Muller codes. They show that they have a 

large automorphism group containing the translation 

group, making them good candidates for permutation 

decoding. In 2017 the authors (Pace and Sonnino, 

2017) construct linear codes that present large 

automorphism groups and they are suitable for 

permutation decoding. Propose a new permutation 

decoding method for RM codes (Kamenev et al., 2019). 

After that, the permutation decoding is applied to polar 

codes. The authors (Pillet et al., 2021) deal with polar 

code automorphisms that kept the code invariant under 

permutation. They propose a low latency Automorphism 

Ensemble (AE) decoding and they prove that polar codes 

under AE decoding are more efficient than classical polar 

codes decoders. In 2022 the authors (Bioglio et al., 2023) 

propose some improvements by introducing the notion of 

redundant automorphism permutations. They list all the 

permutations that can give a different codeword candidate 

under successive cancellation-based AE decoding to 

further reduce the automorphism set size. 

For QR codes, the situation is somewhat easier. The 

decoding of this family of codes is even more efficient 

because they present a large group of automorphism. In 

this study, a universal hard decoder based on a subset of 

permutations, derived from the automorphism group of 

QR codes, is the subject of this study’s interest. The light 

permutation decoding LPD algorithm corrects t 

erroneous bits or less in the received word. It applies a 

reduced set of permutations to move the error positions 

and trap all of them in redundancy. That means that there 

is at least one permutation that can perform this. We 

have applied two kinds of decoding algorithms based on 

two permutation sets. The first is the (S, V) permutation 

set and the second is the (S, V, T) permutation set which 

the permutation (T) is the modular multiplicative inverse 

of the position of the symbols. 

As we mentioned before, the algebraic decoding 

algorithms are very complex and need highly complicated 

computations by utilizing an enormous number of 

operations over a Galois field. So, the proposed decoder 

performs without the necessity for both the unknown 

syndrome computation and the error locator polynomial 

on the one hand, and on the other hand, it avoids 

constructing and stocking a sizeable pre-calculated table 

that needs real storage capacity like the LTD algorithms 

and DS algorithm. However, the LPD uses two essential 

operations: The application of the permutation and the 

calculation of syndrome weights. 

Then, to evaluate the proposed method, we applied it 

to many binary QR codes of moderate code length starting 
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with 17 until 113 with reducible and irreducible generator 

polynomials. We have tried ( )n

i error patterns in which 

0 < i ≤ t is the input of the proposed decoder and the 

saucerful rate is 100%. In addition, we compare the 

computational complexity, in the worst case, of the LPD 

algorithm with the best existing decoding techniques, 

namely, the cyclic weight decoding algorithms, the 

difference of syndromes decoding algorithm, and the 

modified reduced lookup table decoding algorithm. The 

complexity study reveals that the proposed decoder 

significantly decreases decoding complexity without 

performance loss. So, it is qualified to be a good competitor 

to decode QR codes with lower lengths but is the best for 

QR codes with higher lengths. 

Preliminary and Background of the QR Codes 

Cyclic Codes 

Definition 1 Let GF(2) denote a Galois finite field 

of order 2. A binary linear code over GF(2) of length n 

is called cyclic code if every cyclic shift, of coordinate 

i → (i + 1) mod n, of a codeword in C is also a 

codeword in C. It means that if the components of an 

n-tuple (c0, c1,..., cn−1) ∈ C another n-tuple (cn-1, c0, 

c1,..., cn-2) ∈ C. 

When studying binary cyclic codes over GF(2), we 

will most often represent the codewords in polynomial 

form. There is a bijective correspondence between the n-

tuple vectors c = (c0, c1,..., cn−1) in GF(2) and the 

polynomial c(x) = c0 + c1x+c2x2+...+ cn−1xn−1 in GF(2)[x]. 

Definition 2 Let a nonzero binary cyclic code C be 

ideal in a polynomial ring Rn = GF(2)[x]/(xn -1) over a 

Galois finite field. Then, there exists a unique monic 

polynomial g(x) of minimal degree such divides xn-1 in 

GF(2)[x]. Then, g(x) is called the generator polynomial of 

cyclic code C. 

Therefore, the binary cyclic code C(n, k, d) over GF(2) 

where the positive integers n and k denote, respectively, 

the code length and the code dimension. The positive integer 

d represents the minimum distance. Code C consists of 2k 

multiples of g(x) of degree n-k. In other words, the 2k 

information words are extended by (n-k) redundant parity 

bits that are algebraically attached. Let b = (b0, b1,..., bk−1) be 

k-dimensional binary information bits corresponding to the 

information polynomial b(x) = b0 + b1x + b2x2 +...+bk−1xk−1. 

Then, the code c(x) over GF(2)[x] corresponding to b(x) is 

obtained by the encoding operation: 
 

( ) ( ) ( )c x b x g x=  (1) 

 

Such that, ( )
1

0

n i

ii
c x c x C

−

=
=  , where, ci ∈{0,1} and 

( )
1

0

k i

ii
b x b x

−

=
=  the information polynomial, where bi ∈ 

{0,1} and ( )
1

0

n k i

ii
g x g x

− −

=
= , where gi ∈ {0,1}. 

The Cyclic Codes in Systematic Form 

In general, to facilitate the decoding of cyclic codes, 

we use a systematic encoding procedure. So, if g(x) divide 

b(x)xn−k, then we get the following equality: 
 

( ) ( ) ( ) ( )n kb x x q x g x d x− = +  (2) 

 

( ) ( ) ( ) ( )n kb x x d x q x g x− + =  (3) 

 
Then, by (1) the code polynomial c(x) is equal to: 

 

( ) ( ) ( )n kc x b x x d x−= +  (4) 

 

where the associated vector d = (d0, d1,..., dk−1) of d(x) is 

the remainder obtained from the division operation. Then, 

by multiplying both sides of (1) by xk mod (xn -1), i.e.: 

 

( ) ( ) ( )( ) ( )k kd x x b x q x x g x+ =  (5) 

 

By definition 1, the term (d(x)xk + b(x)), which is a 

multiple of g(x), can be given by: 
 

( ) ( ) ( )kc x d x x b x= +  (6) 

 
where the b(x) is in the lower k-bit of c(x): 
 

( ) ( )

( )

0 1 1

0 1 1 0 1 1

, ,..., ,

, ,..., , , ,...,

n b d

k n k

c c c c c c

b b b d d d

−

− − −

= =

=
 (7) 

 
The information symbols are embedded in the 

obtained codeword. Then, the polynomial c(x) is a 

systematic code. 

The Quadratic Residue Codes 

The C(n, k, d) binary quadratic residue codes over 

GF(2)[x], with a code rate 
,

1

2
R   , are a subclass of the 

cyclic codes of odd prime length n = 8u ± 1 where u is 

some integer, 
1

2

n
k

+
=  is the set of information symbols 

and d represents the minimal distance. Let’s define the error 

correcting capability of C to be denoted by t = ⌊(d-1)/2⌋, 
where ⌊x⌋ indicate the first integer less than or equal to x. 

Then, to construct a C, we must specify the smallest 

positive integer m which is required to comply with the 

following condition: n|2m -1. For a given length, we will 

define the set Qn to be as being a series of non-zero 

squares modulo n: 
 

( ) 2| 1 1nQ i i j mod n for j n=    −  (8) 

 

The set Qn contains 
1

2

n −
elements and is called the 

defining set of cover a finite field GF(2m) of order 2m. 
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Let p(x) be the primitive polynomial of degree m 

which accepts α as the root. This α is the generator of 

the field GF(2m), knowing that each element in the field 

can be expressed as a function of α. Finally, to 

construct the generator polynomial g(x) of the QR 

codes, we will not need all the elements of the field 

GF(2m), but the construction requires a set Tn extracted 

from GF(2m). 

Indeed, we can define the set Tn for a given QR code 

as Tn = {βi ∈ GF(2m)|i ∈ Qn} which is called the variety 

of g and is the set of all roots of g(x) over GF(2m) i.e., 

g(β) = 0, then (x-β)|g(x). Where, β = α(2m−1)/n is the 

primitive nth root of unity in GF(2m) and the generator 

polynomial given as: 
 

( ) ( )
n

i

i Q

g x x 


= −  (9) 

 
For a code length up to 113, Table 1 lists all the 

necessary parameters that we need to construct the 

generator polynomial g(x) for a given QR (n, k, d). 

Namely, the Galois finite field GF(2m), the primitive 

polynomial p(x), and the value of the first element in Tn. 

The Light Permutation Decoding Algorithm for the 

QR Codes 

Let’s assume that, over GF(2)[x], a codeword

( )
1

0

n i

ii
c x c x

−

=
=  is transmitted via a noisy channel. This 

transfer of information is carried out with error and has 

at least a direct effect on the polarity of one symbol. 

Then, let’s define, respectively, the received word and 

the error by ( )
1

0

n i

ii
r x r x

−

=
=  and ( )

1

0

n i

ii
e x e x

−

=
=  where 

r(x), e(x) ∈ GF(2)[x] and ri, ei ∈ {0,1}. Thus, r(x) is 

mathematically represented by the following identity: 
 

( ) ( ) ( )r x c x e x= +  (10) 

 
which the addition is done in GF(2). This later has a nonzero 

term in erroneous positions, bearing in mind that it represents 

the deformation undergone by the channel. So, if we suppose 

that this deformation produces v errors in r(x). Then, e(x) will 

include, therefore, v non-zero terms as: 

( ) 1 2 ... vpp pe x x x x= + + +  (11) 

 

where, p1, p2,...pv ∈ n indicates the erroneous positions 

for 0 ≤ p1 < p2 < ... < pv < n. 

Obviously, we can algebraically decode the received 

word r(x) once we determine e(x), which amounts to 

finding the error positions {p1, p2,...,pv} for v ≤ t. Let’s 

divide r(x) by g(x), we obtain: 

 

( ) ( ) ( ) ( )r x q x g x s x= +  (12) 

 

The remainder s(x) is zero as long as there are no errors 

in r(x). It means that r(x) is a factor of g(x) and the 

received word is exactly a codeword. Then, if deg(s(x))  

0, s(x) is a polynomial of degree ≤ n-k-1 and is the 

syndrome of the received word r(x). 

By (1), c(x) is a multiple of g(x). Then, combining 

(10) and (12), we have the following relationship 

between the error pattern and the syndrome: 

 

( ) ( ) ( )( ) ( ) ( )e x b x q x g x s x= + +  (13) 

 

then: 

 

( ) ( ) ( ) ( )e x q x g x s x= +  (14) 

 

The syndrome s(x) is also the remainder after we 

divide e(x) by g(x). 

The principal mission of a decoder is manifested by two 

great acts, in particular, to detect and correct the errors 

produced by the channel during the transfer of information. 

This must be done without forgetting the complexity, 

reliability, and efficiency which are the ultimate objectives of 

such a decoding scheme. The ancient decoders proposed to 

decode the QR code have unfortunately been unsuccessful to 

find a universal decoding scheme. It means that the technique 

used to correct the erroneous positions for a code, must 

necessarily, be modified or at least adapted for each QR code.

 
Table 1: The needed parameters to construct the generator polynomial g(x) of QR codes 

n k d Galois finite field GF(2m) Primitive polynomial p(x) Primitive nth root β 

  17 9 5 GF(28) x8+x5+x3+x2+1 α15 

  23 12 7 GF(211) x11+x2+1 α89 

  31 16 7 GF(25) x5+x3+1 α1 

  41 21 9 GF(220) x20+x3+1 α25575 

  47 24 11 GF(223) x23+x5+1 α178481 

  71 36 11 GF(235) x35+x2+1 α483939977 

  73 37 13 GF(29) x9+x4+1 α7 

  79 40 15 GF(239) x39+x4+1 α6958934353 

  97 49 15 GF(248) x48+x8+x6+x5+x4+x3+x2+x+1 α2901803883615 

113 57 15 GF(228) x28+x3+1 α2375535
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In this study, we propose an efficient decoding technique 

for the QR codes by using a subset of permutations 

derived from the automorphism group of QR codes. We 

show and prove that this method can rise to the challenge 

of being an efficient model to decode QR codes. The 

proposal decoding algorithm retains the employment of 

the mathematical properties of the QR code to determine 

the erroneous positions. It performs without the necessity 

for both the unknown syndrome computation and the error 

locator polynomial L(z). It avoids constructing and 

stocking a sizeable pre-calculated table that needs real 

storage capacity like the LTD decoding method. 

The Automorphism Group of the QR Codes 

Usually, we are interested in the positive 

characteristics of QR codes. It makes them at the heart of 

the concerns of several authors. The cyclic character of 

this family of codes gives a flexible behavior against 

errors. It provides the ability to pass from one vector to 

another that is the same. From a mathematics point of 

view, two binary linear codes are the same if they are 

isomorphic as vector spaces with the same length and 

over the same field. This concept led us to introduce the 

term "code equivalence". 

Definition 3 two codewords c1 ⊆ GF(2) and c2 ⊆ GF(2) 

are said to be equivalent if c1 can be obtained from c2 by 

permuting the coordinate places of c1 and multiplying each 

coordinate position by a non-zero field element. 

With generator matrix, G in systematic form, an 

automorphism group of code C is an isomorphism from C 

to C. Then, the permutation of the position of the symbols 

in a code c ⊆ GF(2) forms the automorphism group of C. 

Let Aut(C) = {π ∈ Sn |π(C) = C} be an automorphism 

group. It is the set of permutations that map C to itself 

without changing their weight distribution and 

translocating errors from one location to another. A 

typical permutation π of the position of the symbols is a 

bijective function between i into π(i) means that the vector 

c = (c1, c2,..., cn) goes into π(c) = (π(c1), π(c2)..., π(cn)). 

Definition 4 a group P of permutations of code C is 

transitive if, for a given n distinct symbols c1, c2,...,cn and 

another n distinct symbols c′1, c′2,..., c′n, there is a π ∈ G 

such that ( ) ( ) ( )1 1 2 2, ..., n nc c c c c c    = = = . 

If ρ is another permutation of the position of the 

symbols, the product of the two permutations π and ρ 

means that we apply π first then ρ. Thus, the following 

identity is correct ρ(π(c)) = π(ρ(c)). 

For binary cyclic codes, Prange proposed a method for 

producing a series of distinct data sets that may be applied 

to any cyclic code (Prange, 1962). This method is based 

on the observation that all cyclic codes are invariant under 

the symbol position permutations. By definition, a group 

of permutations (S, V) includes all the cyclic permutations 

(cyclic shift) and all their powers denoted respectively by 

(S) and (V). Hence, MacWilliams announced, by the 

following theorem, the automorphism group of the QR 

codes (MacWilliams and Sloane, 1977). 

Theorem 1 the automorphism group of QR codes is 

generated by three permutations: 

 

: 1S i i +  (15) 

 
2:V i i  (16) 

 

1
:T i

i
−  (17) 

 

where, i represents a symbol position of the code and ρ is 

an integer prime to n. 

In fact, the automorphism group of QR codes consists 

of the n(n2−1) permutations. For detailed proof, see 

(MacWilliams and Sloane, 1977). 

If we want to apply, on the codeword, the permutation 

(S) for the finite number ω < n and the permutation (V) for 

the finite number µ < m− 1, in which m is the smallest 

positive integer who is required to comply with the 

following condition: n|2m −1. Then (15) and (16) become: 

 

( ):S i i mod n +  (18) 

 

( )( )2:V i i mod n


   (19) 

 

Example 

Suppose that: 

 

( ) 2 4 61f x x x x x= + + + +  (20) 

 

is a cyclic codeword of length 7 over GF(2). Let ω = 4, 

µ = 2, and only for more simplicity do we take ρ2 = 2. 

Then, by applying S4 to f(x) we obtain: 

 

( ) 3 4 5 6

Sf x x x x x x= + + + +  (21) 

 

x6 and by applying V3 to f(x) we obtain: 

 

( ) 2 4 51Vf x x x x x= + + + +  (22) 

 

and by applying T to fS(x) we obtain: 

 

( ) 2 3 5 6

Tf x x x x x x= + + + +  (23) 

 

Hence the polynomial fS(x), fV(x), and fT(x) are also a 

codeword and every power of the permutation V leaves 

the zero-position unchanged. 
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The Decoding of the Binary QR Codes by Using 

Reduced Permutation Sets 

Now, the large enough permutation automorphism 

group of code is established. We can officially discuss the 

decoding techniques that will exploit the aforementioned 

properties. In his research, MacWilliams principally 

introduces, in (MacWilliams and Sloane, 1977), a 

category of decoding algorithms for short cyclic codes, 

with a very small number of errors, known as 

"permutation decoding" and it is completely explained in 

(MacWilliams and Sloane, 1977). They assumed that the 

PD algorithm is best suited to codes that are invariant 

under a large group of permutations and they conjectured 

that the PD algorithm fit for cyclic codes. For this study, 

the concept of PD-sets was extended to correct a larger 

number of errors by using reduced permutation sets. 

For a determined b(x) of a given code, this method 

employs a particular set of permutations called light 

PD-set derived from the automorphism group of QR 

codes. Its makes use of both the group (S) of cyclic shift 

and group (V) of a sequence of squares. Since these two 

subsets of permutations transform c ∈ C into an equivalent 

c′ ∈ C with the same length and the same properties. It 

means that the syndrome of the obtained codeword is zero 

and c
′ always is a factor of g(x). Then, the error position 

{p1, p2,..., pv}, for v ≤ t, associated with this erroneous 

version of the transmitted code word will, however, be 

moved into {p′1, p′2,..., p′v}. So, the idea behind this method 

is to apply the particular elements of the PD-set to the 

received word until all the errors are included in redundancy. 

Definition 5 if C is a t-error correcting code, then a 

PD-set for C is a subset of the automorphism group of C 

which is such that every error pattern of t coordinate positions 

is moved by at least one permutation into the redundancy. 

Finding adequate PD-sets for a code is not trivial. If 

such a set can be determined, then the LPD algorithm can 

be used to move the errors of which the code is capable 

into the check positions. In the case of systematic QR 

codes, any selection of successive positions represents a 

data set. Let C (n, k, 2t+1) be a QR code and c ∈ C, with: 
 

( )
1

0

n
i

i

i

c x c x
−

=

=  (24) 

 

where, ci ∈ {0,1}. Clearly, the permutation group given by 

(15) and (16) can be applied separately to c(x) as follows: 
 

( ) ( ) ( )
1

1

0

n
i n

S i

i

c x S c x c x mod x 
−

+ −

=

 
=   =   

 
  (25) 

 

and: 

 

( ) ( ) ( ) ( )
1

2

0

1
n

i n

V i

i

c x V c x c x mod x


 
−



=

 
=   = −  

 
  (26) 

Since every binary systematic QR code is preserved by 

the (S) PD-set and the (V) PD-set the new polynomials 

cS(x) and cV(x) are simply included in C with the 

coordinate position permuted (definition 1). Let’s now, 

apply a couple of permutations at the same time to c(x). 

We obtain the following equations, respectively, for the 

(S, V) PD-set and (S, V, T) PD-set: 

 

( ) ( )
( ) ( ) ( )

21

,

0

1
n

i n

S V i

i

c x V S c x c x mod x


  
−

+ 

=

 
=   = −  

 
   (27) 

 

and: 

 

( ) ( )
( ) ( )

21

, ,

0

1
i

n
n

S V T i

i

c x V TS c x c x mod x


  
−

 

=

 
=   = −  

 
  (28) 

 

where, 
1

i
i




 = −
+

 and is the modular multiplicative 

inverse of n. Then, if n is odd and ρ is the primitive root 

of n, the code is invariant under the (V) permutation group 

and VµSω[c(x)] VµTSω[c(x)] is in C. 

Let’s assume that at most v ≤ t errors occur in the 

transmitted codeword. So, the error vector will include, 

therefore, v non-zero terms, i.e., e(x) = xp1 +xp2 +...+xpv. If |pi 

−pj| ⩾ k such that i and j are two distinct positions. Then, the 

(S) PD-set can alone move the error into the check positions. 

If the maximum number of consecutive zero terms in e(x), 

however, is less than k, then the use only of the shift 

permutation set will be very restrained. It will be valid only 

for a single error correction. The same problem arises when 

we apply only the (V) PD set because every power of the 

permutation (V) leaves the zero-position unchanged. 

On the decoder side and based on (12) and (14), we have 

shown that the syndrome determined by the process of 

dividing r(x) by g(x) is also the same after dividing e(x) by g(x). 

Then, it can be shown that the syndrome of the permuted 

received words V 
µSω[r(x)] is relatively the same as that 

obtained from the divisions of (VµSω[e(x)] modulo (xn −1)): 
 

( ) ( ) ( )( )( ) ( )1nS x V S e x mod x mod g x 

 =   −   (29) 

 
is the syndrome of the permuted e(x). 

Description of Algorithm 

Let’s C(n, k, 2t + 1) be a binary systematic QR code, 

and H of size (n-k)× n is the systematic parity check 

matrix given by: 
 

|T

n kH A I −
 =    (30) 

 
where, AT denotes the transpose of A and in k is the identity 

matrix of size n-k. Let’s assume that at most t errors occur 

in the transmitted codeword. Then, the syndrome can be 

determined by the following equation: 
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Ts rH=  (31) 

 

Based on the abovementioned theoretical 

definitions, equations, and theorem 1, the procedure of 

the proposed decoding algorithm performs as follows. 

Once we have found, by Theorem 1, a PD set for the 

given QR code. Suppose that the Hamming weight of 

the error vector satisfies that wt(e) ≤ t and has the 

syndrome wt(s) > t. We consider the first algorithm 

which presents the decoding protocol of the systematic 

QR codes by operating the product of two 

permutations. So, the idea behind this is to apply first 

the (S) PD-set, for ω < n, to the received word. Then we 

apply the (V) PD-set for µ < m−1. 

The (S, V) PD algorithm of the QR codes is chiefly 

based on two major nested loops. The initial loop, in line 

4, requires n circular permutations by shifting the received 

word. The second loop, in line 6, is a power permutation 

of the shifted received word and is require m-2 

permutations. The following theorem illustrates a break 

condition of the decoding process. 

Theorem 2 supposes an error vector e = e0e1···en−1 of 

weight t occurs, where 2t+1 ⩽ d. Let y be the received 

vector, with syndrome s = HyT. If the syndrome weight 

wt(s) ⩽ t, then the information symbols yr ···yn−1 are 

correct and s = (e0···er−1)T gives the errors. If wt(s) > t, 

then at least one information symbol is incorrect. For 

detailed proof, MacWilliams and Sloane (1977). 

Based on theorem 2 the decoder can decide correctly 

in the first k coordinate positions corresponding to the 

information symbols and correct the errors in n-k 

coordinate positions corresponding to the parity check 

symbols. So, we compute the syndromes sµω = r(µω)HT, 

until ω and µ are found such that wt(sµω) ≤ t. The non-zero 

symbols in the syndrome sµω correspond to the erroneous 

position in the parity check symbols of the permuted 

received word ( )
pr


. Then we can construct a decided 

codeword D(µω) ∈ C. Finally, we decode by inverting the 

permutation S−ω(T−1(V−µ(D(µω)))). The flowchart of the 

(S, V) PD algorithm is illustrated in Fig. 2. 

 

Algorithm 1: The (S, V) PD of the QR codes 

1 Input: Received Codeword r, n, m, t, HT 

2 Output: Corrected Codeword D 

3 ω ← 0 

4 while ω < n do 

5 μ ← 0 

6 while μ < m − 1 do 

7 r(μω) ← Vμ(Sω (r)) 

8 sμω ← r(μω) × HT 

9 if wt(sμω) ≤ t then 

10 ( ) ( )
p pD r s
 

   

11 ( ) ( )
m mD r
 

  

12 D ← S-ω (V−μ(D(μω))) 

13 Break 

14 end 

15 μ ← μ + 1 

16 end 

17 ω ← ω + 1 

18 end 

 

Algorithm 2: The (S, V, T) PD of the QR codes 

1 Input: Received codeword r, n, m, t, HT 

2 Output: Corrected Codeword D 

3 ω ← 0 

4 while ω < n do 

5 r′(ω) ← T((Sω (r))) 

6 μ ← 0 

7 while μ < m − 1 do 

8 r′(μω) ← Vμ(r′(ω)) 

9 ( ) TS r H



    

10 if wt ( )S
  ≤ t then 

11 ( ) ( )
p pD r s
 


    

12 ( ) ( )
m mD r
   

13 D ← S-ω (T−1(V-μ(D(μω)))) and Break 

14 end 

15 μ ← μ + 1 

16 end 

17 ω ← ω + 1 

18 end 

 

In order to aid efficient and effective understanding of 

the decoding process. Fig. 3 represents an example of the 

decoding process of the QR (23, 12, 3) code using the 

(S, V) PD-set. The nodes colored in green represent the 

correct symbols and the others colored in red, blue, and 

purple are considered erroneous. Each row represents the 

result of a symbol permutation of the previous row and 

their syndrome weight is displayed to the right. Then, for 

ω = 1 and µ = 3, the decoder was able to move the three 

errors toward redundancy. 

Let’s consider the second algorithm which presents the 

decoding protocol of the QR codes by using the product 

of three permutations (S, V, T). In addition to the 

permutations (S, V) applied in the first algorithm, it uses 

the permutation (T) which is based on the modular 

multiplicative inverse of the position of the symbol. So, if 

the (S, V) PD failed to move out the errors of the 

information set to redundancy, we apply, in line 5 of 

algorithm 2, this permutation only once for each shifted 

received word and the rest looks like the protocol shown 

in the decoding scheme of the first algorithm. 
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Fig. 2: Flowchart of the (S, V) PD algorithm for decoding a QR code 

 

 

 

Fig. 3: Example of the decoding procedure of the QR (23, 12, 3) by using the PD algorithm, such that m = 11, the correction capacity 

is t = 3 errors, and e(x) = x + x4 + x15
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Results and Discussion 

This section is dedicated to the performance evaluation 

of the proposed decoding algorithm. We have made a habit 

of evaluating decoders by measuring the Bit Error Rate 

(BER) for each Signal Noise Ration’s (SNR) value by 

carrying out the Monte Carlo method, using a given 

modulation and passing the codeword over a fixed channel. 

But in this case, we were mainly interested in the output of 

the decoder according to a conditional input. In other words, 

we need to evaluate the efficiency of our decoder through the 

success and failure rate of a set of erroneous inputs such that 

wt(e) < t. Then, Table 2 illustrates the simulation parameters. 

It presents the value of the integer ρ2, then nopt represent the 

number of cyclic shifts (S) and m is the permutation order (V). 

Normally, the decoder must use n cyclic shifts, but by 

simulation, we have ended up with a number, called nopt less 

than the one theoretically proposed. In the last column of the 

table, we present the necessary number of error combinations 

to be tested for each code as a function of its capacity t. 

So, we want to underline that this algorithm is written in 

C language. It is used to test, separately, all codes included in 

Table 2 and to see the behavior of the decoder for each code. 

Therefore, it is necessary to check all the error combinations 

according to each code length to validate the decoding 

algorithm. Let’s take, as an example, the QR (23,12,7) code 

which we need to check ( )
3 23

1 ii= = 2047 error pattern 

containing at most three errors to validate the decoding. 

When the decoder tests all possible error combinations. 

The results of the evaluation of the decoding algorithms 

(S, V) and (S, V, T) are presented respectively in Tables 3-4. 

Let’s take Table 3, it can be divided into two parts. The first 

contains the QR codes which are completely decoded 

without any problem. We refer to the codes of length n that 

are equal to 17, 23, 31, 41, 47, and 71. In the second part, the 

failure of the (S, V) PD-set is manifested only when wt(e) = t. 

We notice that the number of uncorrectable combinations 

remains very small in comparison with the number of tested 

combinations. We speak of very small proportions. 

To face this limitation, we have widened the 

permutation set from the (S, V) permutation set to the 

(S, V, T) permutation set only for the codes with length n 

equal to 73, 79, 97, and 113 when wt(e) = t. We obtained 

good results since the proposed decoder manages to 

correct all shown in Table 4. 

Complexity Analysis 

We would like to point out that the success rate of our 

decoder is 100% which guarantees decoding efficiency. 

This preliminary conclusion brings us to achieve the main 

objective of this study which manifests itself in the 

proposal of a method that generalizes the decoding of 

binary QR codes. In fact, this result has repeatedly been made 

plain that our proposed method is practically powerful and 

capable to decode a set of QR codes in the same way. 

Before considering this conclusion, it is necessary to 

mention that proving the generalization of decoding on a 

set of QR codes is not sufficient. We must prove the 

robustness of this method in terms of complexity. It is not 

easy to directly compare the permutation decoding 

method to previously known AD algorithms in terms of 

decoding complexity since there is no universal algebraic 

for this category that can always decode every QR code. 

The basic concept of permutation decoding consists of 

the determination of a set of code preserving permutations. 

For such code, the original PD algorithm proposed by 

MacWilliams exploits all the automorphism group 

permutations. According to theorem 1, this set of 

permutations contains ( )21
1

2
n n −  permutations. Indeed, the 

LPD is based on a reduced set of permutations to decode the 

QR. Then, Fig. 4 presents the cardinal number of the 

permutation set comparison between the light PD and the 

original PD proposed. The LPD significantly decreases the 

number of permutations without performance loss. 

On the other hand, we compare the computational 

complexity of the LPD algorithm with the best existing 

decoding techniques. Initially, this comparison study will be 

based on the decoding of the systematic QR code (47,24,11). 

Then, it can therefore be directly generalized to other QR 

codes. We provide the computational complexity analysis 

when correcting 1 to t errors, for the Cyclic Weight (CW) 

decoding algorithms in (Lin et al., 2012), the Difference of 

Syndromes (DS) decoding algorithm in (Li et al., 2018), and 

the Modified Reduced Lookup Table Decoding (MRLTD) 

algorithm (Gholami and Roostaie, 2021). These three 

algorithms are based on storing error patterns and their 

corresponding syndromes in a table such that each one uses 

a different size. They are based on the same decoding 

principle of which they examine the realization of all possible 

cases based on the distribution of t non-zero positions on the 

error vector. These errors can appear on t distinct positions 

among the n positions of the received word. Then, they can 

distinguish three possible cases: First, the information part 

contains all the erroneous positions. Second, all the t errors 

appear in the parity check section. Third, each section 

contains a number of errors strictly less than t, such that the 

sum of the errors of each section equals t. 
 
Table 2: The simulation parameters 

n k t nopt m ρ2 ( )
1

t n

ii=  

  17 9 2 3 8 2 153 
  23 12 3 8 11 2 2047 
  31 16 3 27 5 9 4991 
  41 21 4 32 20 2 112791 
  47 24 5 34 23 2 1729647 
  71 36 5 28 35 2 14051255 
  73 37 6 73 9 25 186404113 

  79 40 7 79 39 2 3200838655 

  97 49 7 97 48 2 13902476209 

113 57 7 113 28 9 41293903801 
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Table 3: Decoding results by using the (S, V ) permutation decoding set  

n k t wt(e) = 1 (%) wt(e) = 2 (%) wt(e) = 3 (%) wt(e) = 4 (%) wt(e) = 5 (%) wt(e) = 6 (%) wt(e) = 7 (%) 

  17 9 2 100 100 - - - - - 

  23 12 3 100 100 100 - - - - 

  31 16 3 100 100 100 - - - - 

  41 21 4 100 100 100 100 - - - 

  47 24 5 100 100 100 100 100 - - 

  71 36 5 100 100 100 100 100 - - 

  73 37 6 100 100 100 100 100 99 - 

  79 40 7 100 100 100 100 100 100 98,8 

  97 49 7 100 100 100 100 100 100 94,61 

113 57 7 100 100 100 100 100 100 96,5 
 
Table 4: Decoding results by using the (S, V, T) permutation 

decoding set 

n k t wt(e) = 5 (%) wt(e) = 6 (%) wt(e) = 7 (%) 

  73 37 6 100 100 - 

  79 40 7 100 100 100 

  97 49 7 100 100 100 

113 57 7 100 100 100 
 

 
 
Fig. 4: The comparison between the light PD and the original 

PD proposed by MacWilliams in terms of the cardinal 

number of the permutation set 
 

In order to investigate an appropriate comparison 

between these algorithms. We consider the worst case, 

for t = 5, with the highest computational complexity. Let 

GF(+), GF(<<), and R(+) denote, respectively, the addition, 

the shift operation in a finite field, and the real addition. 

Table 5 displays in detail the amount of calculation 

performed by the CW, DS, MRLTD, and the LPD algorithm. 

In the worst case, the CW decoding process is applied twice 

in order to decode the received message. 

Consequently, it performs 13344 GF(+), 106950 R(+), 

46 GF(<<), 9296 times search and its memory 

requirements amount to 20.43 Kbytes. Then, the DS 

algorithm stores 24 syndromes in the look up table 

corresponding to the single error patterns. The MRLTD 

algorithm needs 300 syndromes with their corresponding 

error patterns. Hence, the memory requirement for storing 

is quite 2, 6 Kbytes. We noticed that DS and MRLTD 

decoders follow a different decoding scheme but they 

require the same amount of calculation. They require 1800 

GF(+), 20769 R(+) and 900 times search. 

Similarly, let's look at Algorithm 1 is chiefly based on 

two major nested loops. The initial loop, in line 4, requires 

not circular permutations and is in charge of the cyclic 

shift of the received word. The second loop is a power 

permutation of the shifted received word and is require m - 2 

permutations. So, for a given ω and µ the LPD algorithm 

permutes the received word by (27). Then, computes a 

syndrome s and its weight wt(s). It means that require 24 

GF(+), 23 R(+) and 1 GF(<<) for second iteration. It 

requires nopt ×(m-2) iterations in the worst case. Then, the 

amount of calculation of the LPD algorithm is 17136 

GF(+), 16422 R(+), and 714 GF(<<). 

Now we want to study the general case. It means that 

we will extend the complexity study for DS and LPD to 

decode systematic QR codes of greater length. 

The choice to compare only with DS is not arbitrary, 

but because it is better than CW and MRLTD as Table 5 

shows. Let’s analyze Fig. 5, we can extract two important 

remarks: 

 

• From length n = 41 the number of operations R(+) 

used by DS is higher than the one proposed (graph 

(a)). In fact, the same thing happens for longer 

quadratic code lengths, where the number of R(+) 

operations used by DS is 108 higher than the one LPD 

algorithm (graph (c)) 

• For code lengths less than 100, the DS decoder requires 

a lower number of GF(+) operations than the LPD 

algorithm with a small difference (graph (a) and (b)). 

But for code lengths greater than 100, the DS decoder 

requires a very large number of GF(+) operations 

compared to the LPD algorithm 
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Fig. 5: The computational complexity comparison between the DS algorithm and the LPD algorithm for higher systematic QR code length 

 
Table 5: The computational amount of each step in the CW algorithm, the DS algorithm, the MRLTD algorithm, and the LPD 

algorithm when we're used to decode QR (47, 24, 11) 

Decoder Iteration number Algorithm steps description GF(+) R(+) GF(<<) Search Time Memory storage (Kbytes) 

CW 2 Compute syndrome 𝑠 and 𝑤(𝑠) 24 23 - - - 

  Search whether 𝑠 is in the CLT - - - 2 324 - 

  Sdj = s + Sj and 

  Whether w(Sdj) + w(ej) 6 648 53 452 23 2 324 - 

  Total 13 344 106 950 46 9 296 20.43 

DS 3 Compute syndrome s and w(s) 24 23 - - - 

  Sdi = s + Si and 

  whether w(Sdi)  t -1 24 552 - 24 - 

  sdij = s + si + sj and 

  whether w(sdij)  t -2 552 6 348 - 276 - 

  Cyclically shift the received word - - 24 - - 
  Total 1 800 20 769 48 900 0.07 

MRLTD 1 Compute syndrome s and w(s) 24 23    

  s(i) = s + si and 576 6 900  300  

  whether w(s(i))  t -1 24 23 23 - - 

  Compute syndrome s' and w(s')      
  s'(i) = s' + si and 576 6 900  300  

  whether w(s'(i))  t -1      

  Flip the first bit and 24 23 - - - 

  compute syndrome s'      

  s'(i) = s' + si and 576 6 900 - 300 - 

  whether w(s'(i))  t -1      

  Total 1 800 20 769 23 900 2.6 

LPD 714 Compute syndrome s and w(s) 24 23 1 - - 

  Total 17 136 16 422 714 - - 

 

Through these two remarks, we can say that the LPD 

is a good competitor to decoding QR codes of lower 

length but is the best for QR codes of higher length. In 

addition to the above mentioned, there are other factors 

such as storage capacity and table lookup process which 

must be considered. Hence, these two factors increase 

exponentially with the increase in the length of the code. 

The light permutation decoding algorithm avoids 

constructing and stocking a sizeable pre-calculated table 

that needs real storage capacity. 

Conclusion 

In this study, we propose an efficient hard decoding 

algorithm for binary QR codes. This decoding algorithm 

corrects t erroneous bits or less, in the received word, 

based on a reduced set of permutations derived from the 

large automorphism group of QR codes. This set of 

permutations is applied to the received word to move the 

error positions and trap all of them in redundancy. We 

showed that the binary QR codes are suitable for light 

permutation decoding and we have confirmed 

MacWilliams’s conjecture. Then, the proposed method was 

assessed by applying it to the aforementioned binary QR 

codes with reducible and irreducible generator polynomials. 

The proposed decoder output behavior was examined by 

computing the success rate of the decoder for all the QR 

codes tested. We have inserted ni
 error patterns with 0 < i ≤ t 

as input and the decoder success rate is 100%. Then we could 
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go so far as to affirm that the proposed decoder is a t-bounded 

decoder of the aforementioned QR codes. Furthermore, 

comparing this new decoding scheme with the previously 

known decoding algorithms, the LPD algorithm has a similar 

error correction performance to that of the QR hard decoding 

algorithms in the theory. So, it can be utilized to decode any 

binary QR code in the theory. In addition, we compare the 

computational complexity, in the worst case, of the LPD 

algorithm with the best existing decoding techniques. The 

results are attractive in practice because the LPD 

algorithm significantly decreases the number of 

operations in the decoding process and avoids 

constructing and stocking a sizeable pre-calculated table. 

It is more feasible for hardware implementation. 

The main limitation of the present study is that the 

proposed method is valid only for binary QR codes 

below 200 and not for non-binary QR codes. So, in the 

near future, the authors of this study will devote their 

efforts to decoding QR codes beyond 200 efficiently 

and to make them more useful in practical systems as a 

short error correcting code. 
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