

 © 2023 Ravi Kumar B. N. and Yeresime Suresh. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Software Development Effort Estimation Using Relational

Database and Optimized Learning Mechanism

1Ravi Kumar B. N. and 2Yeresime Suresh

1Department of Computer Science and Engineering, BMS Institute of Technology and Management, Bangalore, India
2Department of Computer Science and Engineering, Ballari Institute of Technology and Management, Ballari, India

Article history

Received: 06-01-2023

Revised: 28-02-2023

Accepted: 08-03-2023

Corresponding Author:

Ravi Kumar B. N.

Department of Computer

Science and Engineering, BMS

Institute of Technology and

Management, Bangalore, India
Email: ravikumarbn@bmsit.in

Abstract: Accurately estimating the cost of software development is crucial for

effective project planning and resource allocation. However, traditional cost

estimation methods rely heavily on expert judgment and historical data, which

can be time consuming and prone to errors. This study suggests a learning-based

cost estimation model that leverages relational databases to improve

accuracy. The proposed approach estimates project cost based on the effort

required to complete software development, which is a key driver of the

project cost. The proposed model is designed to address the challenges posed

by the variability in open-source development, including variable team sizes,

working hours, and expertise. The study collects and pre-processes data from

open-source platforms and selects cost drivers and metrics based on logical

rules and SQL queries. Moreover, we propose an optimized Artificial Neural

Network (ANN) with augmented topology to automate the selection of

neuron units, layers, and adjustment of learnable parameters according to the

input variables. The proposed model is evaluated on a 100 open-source software

repositories dataset and demonstrates its effectiveness in accurately estimating

development cost. The system is implemented using Python and evaluated using

performance parameters such as MSE, RMSE, MAE, and MMRE. Results

indicate that our proposed model offers a more accurate and efficient approach

to software cost estimation, especially for freelancers and outsourcing firms. The

proposed model has the potential to save time and resources and improve the

reliability and accuracy of software cost estimation.

Keywords: Software Project Development, Cost Estimation, Effort

Estimation, Relational Database, Artificial Intelligence, Machine Learning

Introduction

Unlike any product development, the Software

Development Process (SDP) also includes various

activities to be performed in a defined sequence. These

activities and the sequence depend on whether it is a

software product or a project (Berntsson-Svensson and

Aurum, 2006). Typically, in the software project process,

in the early stage, a User Requirement Specification

(URS) is an essential activity to understand the client's

expectations (McGraw and Harbison, 2020). Further, the

stages include activities like software or System

Requirement Specification (SRS) and Technical

Requirement Specification (TRS). Based on three

requirement specifications, including URS, SRS, and

TRS, the architect designs the software, and based on

design, the development, coding, and debugging take

place. In an organization, the overall effort varies

depending on the project to project. However, there has

been a continuous evolution into SDP from a simple

waterfall method to scrum and agile (Bilgaiyan et al.,

2017) to handle the uncertain dynamics of the context and

reduce the effort to build software either as a project or

product. Moreover, the effective Cost Estimation Model

(CEM) or Effort Estimation Model (EEM) for software

development provides an effective tool to manage the

project or product development process seamlessly and

cost effectively. The experiences gained during the past

project and their data correlated with the various software

development activities may provide heuristic information

for estimating the efforts. However, there exists a lack of

accessibility or availability of such past project

information (Usman et al., 2014). Thus, the algorithmic-

based traditional effort estimation models lack the

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

541

desirable accuracy because the complete information

about the effort driver is unavailable (Shepperd and

MacDonell, 2012). The accuracy of software cost

estimation also depends on the volume of the data

(Dolado, 2001).

The soft computing approaches nowadays are

gaining popularity in building the effort estimation

model even if the effort drivers are uncertain and

incomplete (Suresh Kumar and Behera, 2020). Depending

on the study and its goals, various Machine Learning (ML)

methods and implementations are used in different research

fields. Rapid development is taking place in estimating the

cost of building the program. Among these factors are

technological advancements, the skills of programmers

working on developing projects, their expertise, and the

programming languages they use. ML approaches are

developed instead of purely mathematical or statistical

calculations as in other approaches (Pospieszny et al., 2018).

To develop an effective software cost prediction model,

the application of ML can be an appropriate approach

because it is capable of learning from the data of previous

projects and adapting to significant differences that occur

during the development of software projects.

The proposed research aims to suggest an effective

process of the Software Development Effort Estimation

(SDEE) method that takes software project details as its input

and returns the estimated cost in terms of person hours

required to accomplish the software development project.

The data used in this study comes from Open-Source

Platform (OSP) repositories, which are not linked to fixed

work hours or patterns, limiting the scope of the study to

freelancers and outsourcing firms. Employees working on

proprietary software are typically scheduled based on a

fixed schedule, whereas those working on open-source

software are not. The proposed scheme offers accurate

cost estimates, useful for freelancers and outsourcing

firms, who often need to estimate costs for projects with

limited information and resources. The proposed scheme

can help these developers and organizations reduce costs

by preventing overestimating resources and time, leading

to more efficient project planning and resource allocation.

Methods for SDEE or Software Development Cost

Estimation (SDCE) that are currently available fall

primarily into three categories: (i) Algorithmic

approaches, (ii) Non-algorithmic approaches, and (iii)

Learning-based approaches. In SDCE, Constructive Cost

Model (COCOMO) is one of the traditional methods

which falls under the algorithmic category. This model

was suggested by the author (Boehm, 2002). This

COCOMO model has been around for quite some time

and its current status demonstrates how reliable it is as a

tool for assessing costs. In addition to failing early project

estimates, this paradigm has a drawback. The COCOMO

II model evolved as an improved version of COCOMO

(Boehm et al., 1995). COCOMO II is better as it provides

a more comprehensive and detailed approach to

estimating software development costs. More detailed

cost drivers can be applied to a wider range of software

development projects. Similarly, the authors in the study

(Khan et al., 2021; Keil et al., 2006; Menzies et al., 2013)

have introduced some improvements and customization

to the original COCOMO. However, in SDCE,

determining the software metrics is challenging

regarding their functional size.

The algorithmic approach includes function point

analysis in its methodology (Parthasarathy, 2007). This

strategy has the advantage of being able to be applied to

many different languages and technologies. In function

point analysis, measurements are based on two main

components. A function point analysis measures software

application functionality on data and transaction

attributes. In a similar line of research, (Putnam, 1978)

developed a multivariate cost estimation model. A major

advantage of this model is that it is based on two factors,

size and time, that are crucial to cost estimation and

requires fewer parameters than COCOMO II. It has also

been observed that the researchers have frequently

explored the effectiveness of non-algorithmic approaches

like expert judgment, Top-down, and bottom-up

estimation. In the early stages of the SDCE's

development, expert judgment was one of the

conventional methods used by (Boehm et al., 2000).

A large part of the method relies on the expertise and

experience of the expert. The expert's domain knowledge

is more important than historical data. (Leung and Fan,

2002) reported on the Delphi technique, which follows the

expert judgment approach. As far as understanding the

impacts of incorporating a system is concerned, an expert

can offer a knowledgeable and honest opinion. According

to the top-down estimation approach, the project cost is

estimated by taking into account the overall properties of

the project. Alternatively, the bottom-up estimation

method involves determining the cost of each software

component and combining these elements to obtain the

overall project cost estimate. In this method, smaller

software components are evaluated individually to arrive

at a final estimate. The literature has few recent works

based on hybridizing multiple approaches in context non-

algorithmic approaches. For example, (Nandal and

Sangwan, 2018) combined Bat and Gravitational

algorithms. (Nassif et al., 2019) reported a fuzzy

regression model for effort estimation. The adoption of

learning-based models is increasing with the availability

of datasets. Neural networks, fuzzy logic, genetic

algorithms, Bayesian networks, support vector

regression, and analogy-based learning algorithms have

all been used to estimate software costs (Wen et al., 2012;

Gray and MacDonell, 1999). In order to improve the

accuracy of estimation, researchers have proposed several

Machine Learning (ML) models for software cost

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

542

estimation (Jeffery et al., 2000).

The accuracy of the predicted model varies when

different historical project datasets or experimental

designs are used (Heiat, 2002; Myrtveit and Stensrud,

1999). The authors (Monika and Sangwan, 2017)

demonstrated that ANNs are the most effective model for

developing estimating models. It has been discussed

briefly how these models can be used to estimate software

costs and their strengths and weaknesses. Many other

research works explore ANN and ML approaches in

SDCE. Ravi and Suresh (2022) reported an efficient and

optimized neural network model to estimate the efforts in

the early stages of development of the software project.

The authors have adopted the COCOMO II dataset and

the ANN model is optimized using a genetic algorithm. In

a similar direction, the authors in the work of (Lee et al.,

2022) presented a conceptual framework based on the

ensemble of ANN and factor analysis methods to estimate

the cost of executing large scale construction projects.

Also, the usage of the fuzzy logic model for software

effort estimation is seen in the study of (Nassif et al.,

2019). In this study, the authors conducted a regression

analysis to explore the effectiveness of different fuzzy

models, namely Mamdani and Sugeno. The

experimental outcomes demonstrated that Sugeno

outperformed Mamdani fuzzy model when evaluated

with the ISBSG dataset.

The application of the nature inspired optimization

approach is used by (Ghatasheh et al., 2019). A firefly

optimization technique optimizes the parameters required

in the COCOMO based effort estimation models. The

research work towards extracting the most influential

cost drivers using statistical methods is conducted by

(De Carvalho et al., 2021). This study adopts an extreme

learning algorithm to predict software design efforts.

Similar work can also be seen by Velarde et al. (2016).

The variability in the cost variables is identified in the context

of Source Lines of Codes (SLOC), function points analysis,

and feature engineering tasks. The authors have also shown

the effectiveness of data mining and ML techniques.

Hence, it can be analyzed that despite many works

towards SDCE, none of the previous works have used a

relational database. The previous works are limited to

SDCE solutions, which only apply to scenarios with fixed

working hours and expertise. Further research is needed

to provide effective solutions for software projects,

particularly for freelancers and outsourcing firms, to plan

better and manage their projects.

Materials and Methods

The proposed system is specifically designed for

freelancers and outsourcing firms working on open-source

software projects, where fixed work hours or work patterns

are not linked to the repositories. In such cases, it becomes

difficult to estimate the cost of software development

accurately. The proposed system overcomes this challenge

by using a self-optimized learning mechanism and is trained

on open-source project data to predict the cost of software

development based on various cost drivers and metrics.

The research work reported in this study believes that

using a relational database can help improve the accuracy

of software effort estimation. By storing and managing

data in a structured way, a relational database can provide

a more detailed and reliable source of information for

estimating the cost and effort involved in software

development. Using an artificial neural network with

optimization can further enhance the accuracy and

efficiency of the cost estimation process.

The reason behind considering relational databases as

a data source for implementing the proposed scheme is

that it is designed to store and manage data in a structured

way. This makes it ideal for storing and analyzing large

amounts of data related to software development metrics.

The proposed study uses information from 1800

repositories on the GitHub open-source platform to

estimate a cost variable for software design effort

estimation. The dataset was then used to train an Artificial

Neural Network (ANN) based on the mechanism of

augmented topology, which can automate the selection of

adequate neuron units, layers, and adjustment of learnable

parameters according to the input dataset.

The proposed SDCE method has several advantages.

Firstly, it can provide accurate and fast development

estimates. Secondly, it is based on a comprehensive dataset

that takes into account various cost drivers related to different

software metrics, developer activity, and project description.

Thirdly, it can be used by freelancers and outsourcing firms

to estimate the cost of open-source software development

projects, which are not typically associated with fixed hours

or work patterns. Additionally, the system can provide more

transparency to clients by clearly outlining the costs

associated with the development process.

Dataset Description

The dataset used in the proposed work is available

in SQL format downloaded from the IEEE data port

(IEEE DataPort, 2022). The dataset consists of information

regarding software development metrics from 1800

repositories of the developers on an open-source platform,

namely GitHub. However, several other open-source

platforms exist, like GitLab, Bitbucket, Git bucket, source

forge, phabricator, and Gitea. However, these platforms do

not offer an efficient option to extract information about the

developer activity and source code details; some are very new

and contain fewer repositories. In contrast, GitHub serves all

the purposes that are letting people see the source code of the

repository and information about the developer's activity.

Figure 1 illustrates the contextual architecture of the

dataset preparation procedure where software available on

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

543

the GitHub repositories consists of project description,

Release, and Commits (RaC). Under RaC, software

development or developer activities are mentioned and

used as input for the logical engine driven by ANN.

Here, the logical engine is a computing module that

takes input as development activities and applies a set

of logical rules and SQL queries. These rules are used

to select the most optimal development metrics based

on the factors such as repo size in M.B., line of codes,

and stars. The top 100 repositories with more than 5

M.B. were selected using restful API to build the

dataset in SQL data format.

Dataset Exploratory Analysis

The proposed research adopts a methodical approach

to implementing a system for SDCE based on the given

requirements description of a software project. Firstly, a

web development platform, namely the WAMP server, is

installed to load and read the dataset in the development

environment since it is presented in the SQL data type.

Afterward, exploratory analysis is carried out to understand

the dataset characteristics and its property towards applying

suitable pre-processing operations. A Pandas library of

Python is connected to the MySQL server from the WAMP

dashboard. A web address http://localhost/phpmyadmin/ is

further entered in the browser, showing two tables in the

database, namely release_wise_effort, and

Repo_info_pv_vec, as illustrated in Fig. 2.

The dataset presented in Fig. 2 highlights the various

data types associated with cost variables, each carrying a

specific meaning as explained below:

• Text data type signifies that there is no limit on the

number of characters that can be accommodated

within the variable

• Varchar data type, on the other hand, refers to a string

that can only hold a limited number of characters. For

instance, varchar (100) would indicate that the string

can have a maximum of 100 characters

• Int data type denotes a numerical value without a

decimal point

• Float and double data types represent numerical

values with a decimal point. However, double has a

higher precision than float, meaning that while float

can accommodate up to 8 digits after the decimal

point, double can hold up to 32 digits

After conducting an initial analysis of the provided

dataset, it was observed that the tables within the dataset are

not linked and the unique repository names are not the same

in both tables. Therefore, each table needs to be handled

separately. Multiple libraries and packages are required to

read the MySQL database into a pandas data frame:

• SQL alchemy library is preferred since we can avoid

writing complicated statements

• Firstly, an Object Relational Model (ORM) is created

as a pre-requite for the further analysis

• ORM basically creates objects or classes in Python,

analogs to rows and tables in SQL

• Every table becomes a class in Python and every row

becomes an object in Python

• To convert SQL tables into python classes, a package

called sqlacodegen is used. Sqlacodegen means SQL

alchemy code generator

• The format of the sqlacodegen command is as follows

• Sacandaga <dbtype> + <python

library>://<user>:<pass>@<ip>/<dbname>

Once the above command is executed, it generates the

python file necessary for reading the database and is directly

converted to a panda's data frame. The attributes of the

dataset named 'release wise effort' are shown in Fig. 3.

Fig. 1: Contextual illustration of how the dataset is prepared

Fig. 2: Depiction of the dataset in SQL format

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

544

Fig. 3: Attributes of the dataset for release_wise_effort

Fig. 4: Topic modeling of owners based on the repo

Dataset Analysis (Release_Wise_Effort)

 From the above analysis, it can be observed that there

are 7400 entries ranging from the index number 0 to 7399

with 16 attributes in columns. The dataset comprises 16

variables with type 5 numeric and 11 categorical variables.

Further dataset analysis is done regarding the number of

owners (i.e., repositories owners) and it is observed that

1094 owners are associated with different projects. In order

to better understand, topic modeling is done, where the

owners are grouped according to different topics analyzed

from the repo column of the dataset. Figure 4 illustrates that

the owner belongs to distinct project topics.

Figure 4 it can be seen that the 1094 owners belong to

5 different groups, such as google, minio, vapor, instana,

and Netflix, with their corresponding number of projects

in the repo column. The study then identifies each

column's unique, missing, and repetitive values. The

analysis shows no missing and repetitive values in the

dataset. Therefore, the dataset does not require to be

processed with any kind of pre-processing operation

except the object data types conversion to the numerical

representation for feature analysis.

Descriptive Statistics

The dataset has a total of 16 variables and not all variables

are important from the modeling perspective. In this regard

only 11 variables are considered as illustrated below:

• Devoid typically refers to developer I.D. or identifier,

which is a unique code or number assigned to a developer

or a team member working on a software project

• Active days generally refer to the number of working

days taken for a software project to be completed. It

may include days when the developer worked on the

project and exclude days when they were not

working, such as weekends or holidays

• TotlDays refers to the total number of days taken for

a software project to be completed. It may include

both working days and non-working days

• Mode of Operation (MoD) is a factor used to adjust

the LOC measure to account for the complexity and

characteristics of the software project. It takes into

consideration factors such as the programming

language used, the development environment, the

level of documentation required, and the overall

complexity of the project

• Effort per Line of Code (EffLoC): It is a measure of

the average amount of effort required to develop one

line of code in a software project

• Defect Adjustment Factor (DAF): It is a multiplier

used to adjust the estimated effort required for a

software project based on the expected number of

defects or errors in the project. It is calculated based

on the complexity of the project, the experience level

of the development team, and other factors

• Effective Defect Adjustment Factor (EffDAF): It is

the product of the DAF and a factor that accounts for

the quality of the development process. This factor is

usually based on the historical defect rate of the

development team

• Effort PutnumTm: It is the estimated effort required

for a software project, calculated using the Putnam

model, which is a mathematical model for estimating

software development effort based on project size

and complexity

• EffEffort: It is the estimated effort required for a

software project, adjusted for factors such as team

experience, project complexity, and development

environment

• EffPutnumTm: It is the estimated effort required for

a software project, calculated using the Putnam

model and adjusted for factors such as team

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

545

experience, project complexity, and development

environment

• EffEffortToTalTm: It is the ratio of the estimated

effort required for a software project to the total time

available for the project. This metric is used to assess

the feasibility of a project within a given time frame

In order to understand the distribution of the data and

identify any outliers or unusual values that may need to be

addressed, a descriptive statistic such as mean, standard

deviation, minimum, maximum, and quartiles (such as 25,

50, and 75%). are computed for each input variable as shown

in Table 1. These descriptive statistics are used to summarize

and describe the characteristics of a data set, such as the

central tendency, variability, and distribution of the data.

By computing descriptive statistics for these variables,

significant insight can be gained into the characteristics of

the data, such as the average project size, the range of

project complexity, and the distribution of developer

experience levels. This information can be used to

develop more accurate cost estimation models, identify

areas where improvements can be made, and assess the

risks associated with a particular project.

It can be seen that the count for each variable is the

same i.e., 7400 which also indicates there is no ambiguity

or missing values. Similarly, the mean value for each

variable gives an idea of the typical value for that variable

across all the data points in the adopted dataset.

Specifically: For variable dev id, the mean value tells the

average number of developers who worked on each

project. For dev id, the mean value tells the average

number of developers who worked on each project. For

active days, the mean value tells the average number of

working days it took to complete a project. For totlDays,

the mean value tells the average number of days it took to

complete a project, including non-working days. For

LOC, the mean value indicates the average number of

lines of code in a project. For daft, the mean value tells

the average development adjustment factor for a project.

Like this, the mean statistics give the average analysis of

each variable related to cost analysis. Next, the Standard

Deviation (StD) value for each variable gives a measure

of the variability or spread of the data around the mean.

For dev id, the std value gives how much the number of

developers who worked on each project varied from the

average value. For active days, the std value exhibits how

much the number of working days it took to complete a

project varied from the average value. On the other hand,

the minimum (min), maximum (max) and quartile values

for each variable provide additional information about the

distribution of the data. The minimum value for each

variable gives the smallest observed value in the dataset.

For example, the minimum value for the dev id would be

the smallest number of developers who worked on a

project. The maximum value for each variable gives the

largest observed value in the dataset. For example, the

maximum value for LOC would be the largest number of

lines of code in a project. The quartile values (25th

percentile, 50th percentile, and 75th percentile) divide the

dataset into four equal parts. The 25th percentile (also

known as the first quartile) represents the value below

which 25% of the data falls. The 50th percentile (also

known as the median) represents the value below which

50% of the data falls. The 75th percentile (also known as

the third quartile) represents the value below which 75%

of the data falls. The quartile values can be useful in

understanding the distribution of the data, particularly

when the data is not normally distributed. For example, a

large difference between the 75th percentile and the

median may indicate that the data is skewed toward higher

values. On the other hand, a small difference between the

quartiles may indicate that the data is more evenly

distributed. In general, the minimum, maximum, and

quartile values can provide insight into the range and

distribution of the data, which can help in identifying any

outliers or unusual data points. Further, more insights are

drawn using the frequency distribution of each variable by

dividing the range of values into intervals, or "bins" and

counting the number of observations that fall into each bin.

By looking at the shape of the plot shown in Fig. 5 it can be

analyzed a sense of the central tendency and variability of the

data, as well as identify any skewness or outliers. As

observed in devId, most of the values are in the range of

14000 to 24000. However, the active days and totlDays

cannot be zero, but the zero indicates very small projects

requiring negligible effort. The attributes such as 'modLoC',

'effLOC', 'daf', 'effDaf', 'effort', 'PutnmTm', 'effEfort', and

'effPutnmTM', have a similar histogram pattern, which may

affect output effEffortTotlTm exponentially.

Dataset Analysis (t_repo_info_pv_vec)

The exploratory analysis is done for a second table of the

dataset, t_repo_info_pv_vec which has 5 attributes in the

column header and 13042 samples in the row, Table 2.

This dataset consists of project description details,

which are used to extract cosine similarity (cos_sim) among

the different projects using paragraph vector (pv_vec). Since

the project description is presented in the form of text data

and to process this text, it must be converted into numerical

representation as a finite length vector.
Basically, it is a feature representation of the project

description, which will be provided as input by the user to
the proposed cost estimation system. As software project
descriptions can be represented with vectors of the same
length, the cosine similarity threshold must be met to
categorize two-word vectors as similar. For implementing
an efficient and fast system, keeping the length of such
vectors constant for every source code sample is crucial.
In this way, the proposed cost estimation model is trained
and built from the input of both datasets, namely
release_wise_effort and t_repo_info_pv_vec.

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

546

Table 1: Descriptive statistics of the dataset attributes (input variables)

 Count Mean std min 25% 50% 75% max

devId 7400 18186.545270 1635.334306 16383.000000 16383.000000 17935.500000 1.95E+04 21503.000000
activDays 7400 2.235270 1.765530 1.000000 1.000000 2.000000 3.00E+00 18.000000
totlDays 7400 141.695676 216.275946 1.000000 16.000000 58.000000 1.74E+02 1865.000000
modLOC 7400 2107.307973 11670.106270 1.000000 20.000000 103.000000 5.62E+02 296396.000000
effLOC 7400 329.914189 6101.548859 -273940.000000 0.000000 20.000000 1.37E+02 94831.000000
daf 7400 963.241160 6272.901280 0.666667 13.000000 53.500000 2.34E+02 170795.000000
effDaf 7400 203.604147 3174.973469 -52185.000000 0.000000 11.071429 6.38E+01 94831.000000
effort 7400 11.969864 218.493036 0.000000 0.000127 0.297228 2.00E+00 12500.282390

putnmTm 7400 508.128779 1519.686391 0.153290 20.372171 79.731437 3.42E+02 31179.621150

effEffort 7400 3.030590 150.097236 -532.054300 0.000000 0.000056 6.75E-02 12481.527280

effPutnmTm 7400 116.158100 931.253909 -30563.312000 0.000000 16.434617 9.33E+01 16330.877750

effEffortTotlTm 7400 0.201634 7.184596 -124.125600 0.000000 0.000000 1.32E-07 328.067874

 Histogram for devid Histogram for activdays

 Histogram for totlDays
 Histogram for modLOC

 Histogram for effLOC
 Histogram for daf

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

547

Fig. 5: Histogram plot for correlation analysis

Table 2: Visual depiction of data attributed [t_repo_info_pv_vec]

 Category Owner Repo pv_vec cos_sim

0 Configuration_libraries Juxt Aero [-6.3111968e-03 7.2230858e-04 -4.5987987e-03 ... 1.000000
1 Configuration_libraries Pd Figgy [0.00492741 0.00173693 -0.00801723 0.005146... -0.122840
2 Configuration_libraries Kelseyhightower Envconfig [6.8379391e-04 8.3461199e-03 -3.9898441e-03 ... -0.129980
3 Configuration_libraries Jeffgarland Liaw2015 [2.9276814e-03 -7.2899782e-03 -7.2383620e-03 ... 0.240423
4 Configuration_libraries Taneryilmaz Libconfigini [-0.00100779 -0.00632555 0.00106837 -0.003088... -0.061510

Once the model is trained, it takes input from the user

as project description type of programming language,

operating system, software title, and features. A contextual

illustration of the cost estimation system is shown in Fig. 6.

Figure 6, the proposed SDEE system takes input from

the project description table (t_repo_info_pv_vec) and

multiple development metrics from the table of

development activities (release_wise_effort). The

proposed cost estimator model is then trained using

machine learning models.

Specifically, the study has implemented an ANN

which is configured with a self-optimization mechanism

 Histogram for effPutnmTm Histogram for effEffortTotlTm

 Histogram for putnmTm

Histogram for effEffort

 Histogram for effDaf Histogram for effort

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

548

based on the concept of Augmented Topologies (AT)

using an evolutionary algorithm. The mechanisms of AT

enable an optimal adjustment of the neuron units on each

layer, the number of the hidden layer, and learnable

parameters. The neural network optimization is done

using a genetic algorithm specifically designed for

evolving ANN. Figure 7 illustrates the mechanism of

augmenting neural network topology.

The algorithm starts with a population of small,

simple neural networks and evolves them over time by

applying genetic operations such as mutation,

crossover, and selection. It also introduces new,

randomly generated nodes and connections to the

network, allowing it to evolve more complex

topologies over time. A detailed discussion of this

optimized ANN model can be found in the work of

(Ravi and Suresh, 2022).

Once the model is trained, the user can give input

by taking different information associated with the

software projects, like a software project name or title,

a short description of the project, the programming

language preferred, operation system support, and

other features. After receiving this input from the user,

the system, based on its learning from a trained dataset

containing different attributes like developer activities

and project description. The algorithm then figures out

the different factors associated with cost in terms of the

number of developers required and time in months

numerically given as follows:

• Developers: The number of developers D involved in

making repository r

• Time: The cumulative time t spent in developing the

repository, expressed as follows:

()
1

/
jr i i

s ei
t t t j

=
= − (1)

where, i

st is the starting time of developing the ith release

of repository r, and i

et what represents the end-time of the

ith release? It is expressed in days, months, or years:

• Effort: Effort (e) required to develop a repository,

numerically given as follows:

| |r r re D t (2)

where, the effort is measured according to the units of

= |Dr| and tr i.e., developer days or developer’s month

or years. The next section presents the performance

analysis of the system with respect to multiple

performance parameters.

Fig. 6: The contextual architecture of the proposed system

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

549

 (a) (b)

Fig. 7: ANN using Augmentation; (a) Initial architecture of ANN (b) Augmented topologies of ANN

Results and Discussion

The design and development of the proposed system are

done using python programming language and execution on

Anaconda. This section discusses the performance metrics

followed by outcome analysis to justify the scope and

effectiveness of the proposed system.

• Mean Squared Error (MSE): MSE is being calculated to

determine how close a fitted line is to data points and

measure the quality of the numerically given as follows:

()
2

1

1 N

i
MSE y y

N =
= − (3)

In the above equation, y denotes actual effort and y'

refers to the estimated effort for software project i and N

represents the total software project:

• Root Mean Square Error (RMSE): RMSE is the

square root of MSE, numerically given as follows:

()
2

1

1 N

i
RMSE y y

N =
= − (4)

• Mean Absolute Error (MAE): The MAE represents

the average absolute error. The average is calculated

using the absolute function and has a lower sensitivity

to outliers. This can be given as follows:

()
1

1 n

i
MAE y y

N =
=   −   (5)

• Mean Magnitude of Relative Error (MMRE): In

MMRE, the estimated effort is compared to the actual

effort of software projects. The most accurate

estimation process has a minimum MMRE,

numerically given as follows:

()
1

1 n

i

y y
MMRE

N y=

 −  =  (6)

The study also has implemented other learning

classifiers such as Support Vector Regression (SVR) and

Linear Regression (LR) for extensive analysis. These

learning models have also been widely used in the literature.

Table 3 shows the numerical outcome obtained for

learning models implemented for estimating the SDCE

in terms of overall effort (number of developers and

month). The outcomes are given concerning different

performance metrics. The MSE measures the overall

training of a learning algorithm. Essentially, it shows

the difference between actual and projected data

observations. The analysis of the MSE score indicates

that the ANN outperforms other learning models as it

has got better generalization over the input data

distribution. Lower MSE shows effective training of

the learning model. It can also be evident in other cases

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

550

like RMSE, MAE, and MMRE. RMSE also helps in

understanding the pre-processing step of requirement

re-training. The analysis in Fig. 8 showed that the

proposed ANN achieved 82% improvement over LR

and 29% improvement over SVR. The above numerical

outcome and visual depiction of MRRE show the

proposed study's effectiveness. Here also, ANN

performs well compared to other techniques. ANN has

got 95% of improvement over LR, which is not below

30%, which is an acceptable cost overrun ratio for

software projects in general. In another case, it is also

far below 80%. The overall numerical outcome shows

the proposed ANN's effectiveness regarding the cost

overrun ratio. The figure above shows that MSE scores

for ANNs are higher in LRs and SVRs since they

contain fewer trainable parameters. Accordingly, SVR

and LR exhibit underfitting issues. Learning models are

also evaluated using the metric RMSE.

Advantages and Scope of the Proposed System

The proposed system for software cost estimation

using a relational database and optimized evolving

learning method has several advantages over traditional

methods. Some of the advantages are:

1. Improved accuracy: The proposed system uses

machine learning algorithms that are trained on a

large dataset to estimate the software development

costs. This results in more accurate cost estimations

compared to traditional methods

2. Speed: The proposed system is designed to provide

fast development estimates, which can save time and

resources for software development teams

3. Scalability: The proposed system can handle large

datasets, making it suitable for use in enterprise level

software development projects

4. Customization: The proposed system can be

customized to suit the specific needs of different

software development projects

5. Cost reduction: Accurate cost estimations can help

organizations reduce costs by preventing

overestimating resources and time

Some Real Time Use Cases

1. Software development firms: Software development

firms can use the proposed system to estimate the cost

and resources required for different software

development projects

2. Freelance developers: Freelance developers can use

the proposed system to estimate the cost of their

services for different software development projects

3. Outsourcing firms: Outsourcing firms can use the

proposed system to estimate the cost and resources

required for different software development projects

outsourced to them

4. Project management: Project managers can use the

proposed system to estimate the cost and resources

required for different software development projects

and plan the project accordingly

Table 3: Comparative analysis

Learning model MSE score RMSE score MAE score MMRE score

LR 17930.60 133.9051 120.18 288.79

SVR 935.84 30.5915 24.09 52.11

ANN 480.82 21.9276 10.53 38.07

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

551

Fig. 8: Analysis of ANN improvement over SVR and L R

Conclusion

In this study, we propose an augmented learning-based

effort estimation model that leverages relational databases to

improve cost estimation accuracy in open-source software

development. Our model addresses the challenges

posed by the variability in team sizes, working hours,

and expertise by collecting and pre-processing data

from open-source platforms and selecting cost drivers

and metrics based on logical rules and SQL queries. To

automate the selection of adequate neuron units and

layers and the adjustment of learnable parameters

according to the input dataset, we propose an optimized

form of Artificial Neural Network (ANN) based on the

mechanism of augmented topology. The experimental

results demonstrate that our proposed model provides a

more accurate and efficient approach to software cost

estimation, particularly for freelancers and outsourcing

firms. Our proposed model has the potential to save

time and resources and improve the reliability and

accuracy of software cost estimation in open-source

software development.

There are several directions for future work that can

build on our proposed augmented learning-based effort

estimation model. The model can be extended to

incorporate data from other sources, such as enterprise

software development projects, to improve cost

estimation accuracy further. Secondly, our proposed

model can be enhanced by incorporating more

advanced machine learning techniques such as

ensemble, transfer, and deep learning algorithms to

improve the model's ability to learn from complex and

diverse datasets. Thirdly, we plan to extend our model

to include software development efforts beyond just

coding, such as project management and testing, to

provide a more comprehensive cost estimation model

that takes into account all aspects of software

development. Lastly, we can plan to explore the

application of our proposed model to other domains

such as healthcare and finance, where accurate cost

estimation is also critical for project planning and

resource allocation.

Overall, our proposed model provides a strong

foundation for future research in software cost estimation

and we believe that future work in this area will continue

to improve the accuracy, reliability, and efficiency of cost

estimation methods.

Acknowledgment

The authors of this manuscript would like to express

their gratitude to the department of computer science

and engineering, BMS institute of technology, for their

efforts in guiding in the context of the current research

work with for the constructive feedback which

improved the submission. No funding was received to

assist with the preparation of this manuscript. The

authors have no conflicts of interest to declare relevant

to this article's content.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

Ravi Kumar B. N.: Work implementation and drafted

the article.

Yeresime Suresh: Reviewed, guidance on ideology

and implementation.

Ethics

This article is original and contains unpublished

material. The corresponding author confirms that all other

authors have read and approved the manuscript and no

ethical issues are involved.

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

552

References

Berntsson-Svensson, R., & Aurum, A. (2006, September).

Successful software project and products: An

empirical investigation. In Proceedings of the 2006

ACM/IEEE International Symposium on Empirical

Software Engineering (pp. 144-153).

 https://doi.org/10.1145/1159733.1159757

Bilgaiyan, S., Sagnika, S., Mishra, S., & Das, M. (2017).

A Systematic Review on Software Cost Estimation in

Agile Software Development. Journal of

Engineering Science & Technology Review, 10(4).

https://doi.org/10.25103/jestr.104.08

Boehm, B. W. (2002). Software engineering

economics. Software pioneers: Contributions to

Software Engineering, 641-686.

 https://doi.org/10.1007/978-3-642-59412-0_38

Boehm, B., Abts, C., & Chulani, S. (2000). Software

development cost estimation approaches-A

survey. Annals of Software Engineering, 10(1-4),

177-205. https://doi.org/10.1023/A:1018991717352

Boehm, B., Clark, B., Horowitz, E., Westland, C.,

Madachy, R., & Selby, R. (1995). Cost models for

future software life cycle processes: COCOMO

2.0. Annals of Software Engineering, 1, 57-94.

https://doi.org/10.1007/BF02249046

De Carvalho, H. D. P., Fagundes, R., & Santos, W.

(2021). Extreme learning machine applied to

software development effort estimation. IEEE

Access, 9, 92676-92687.

 https://doi.org/10.1109/access.2021.3091313

Dolado, J. J. (2001). On the problem of the software cost

function. Information and Software Technology,

43(1), 61-72. https://doi.org/10.1016/s0950-

5849(00)00137-3

Ghatasheh, N., Faris, H., Aljarah, I., & Al-Sayyed, R. M.

(2019). Optimizing software effort estimation models

using firefly algorithm. arXiv preprint

arXiv:1903.02079.

https://doi.org/10.4236/jsea.2015.83014

Gray, A. R., & MacDonell, S. G. (1999). Software metrics

data analysis-exploring the relative performance of

some commonly used modeling techniques.

Empirical Software Engineering, 4, 297-316.

 https://doi.org/10.1023/A:1009849100780

Heiat, A. (2002). Comparison of artificial neural network

and regression models for estimating software

development effort. Information and Software

Technology, 44(15), 911-922.

 https://doi.org/10.1016/S0950-5849(02)00128-3

IEEE DataPort. (2022). Software development effort

estimation," [Online]. https://ieee-

dataport.org/keywords/software-development-effort-

estimation

Jeffery, R., Ruhe, M., & Wieczorek, I. (2000). A

comparative study of two software development cost

modeling techniques using multi-organizational and

company-specific data. Information and Software

Technology, 42(14), 1009-1016.

 https://doi.org/10.1016/S0950-5849(00)00153-1

Keil, P., Paulish, D. J., & Sangwan, R. S. (2006, May).

Cost estimation for global software development.

In Proceedings of the 2006 International Workshop

on Economics Driven Software Engineering

Research (pp. 7-10).

 https://doi.org/10.1145/1139113.1139117

Khan, J. A., Khan, S. U. R., Khan, T. A., & Khan, I. U. R.

(2021). An amplified COCOMO-II based cost

estimation model in global software development

context. IEEE Access, 9, 88602-88620.

 ahttps://doi.org/10.1109/access.2021.3089870

Lee, J. G., Lee, H. S., Park, M., & Seo, J. (2022). Early-

stage cost estimation model for power generation

project with limited historical data. Engineering,

Construction and Architectural Management, 29(7),

2599-2614.

 https://doi.org/10.1108/ecam-04-2020-0261

Leung, H., & Fan, Z. (2002). Software cost estimation.

In Handbook of Software Engineering and

Knowledge Engineering: Volume II: Emerging

Technologies (pp. 307-324).

 https://doi.org/10.1142/9789812389701_0014

McGraw, K. L., & Harbison, K. (2020). User-centered

requirements: The scenario-based engineering

process. CRC Press.

 https://doi.org/10.1201/9781003064138

Menzies, T., Brady, A., Keung, J., Hihn, J., Williams, S.,

El-Rawas, O., ... & Boehm, B. (2013). Learning

project management decisions: A case study with

case-based reasoning versus data farming. IEEE

Transactions on Software Engineering, 39(12),

1698-1713. https://doi.org/10.1109/tse.2013.43

Monika, & Sangwan, O. P. (2017). Software effort

estimation using machine learning techniques. 2017

7th International Conference on Cloud Computing,

Data Science & Engineering-Confluence.

https://doi.org/10.1109/confluence.2017.7943130

Myrtveit, I., & Stensrud, E. (1999). A controlled

experiment to assess the benefits of estimating with

analogy and regression models. IEEE Transactions

on Software Engineering, 25(4), 510-525.

 https://ieeexplore.ieee.org/abstract/document/799947/

Nandal, D., & Sangwan, O. P. (2018). Software cost

estimation by optimizing COCOMO model using

hybrid BATGSA algorithm. International Journal of

Intelligent Engineering and Systems, 11(4), 250-263.

https://doi.org/10.22266/ijies2018.0831.25

Ravi Kumar B. N. and Yeresime Suresh / Journal of Computer Science 2023, 19 (4): 540.553

DOI: 10.3844/jcssp.2023.540.553

553

Nassif, A. B., Azzeh, M., Idri, A., & Abran, A. (2019).

Software development effort estimation using

regression fuzzy models. Computational Intelligence

and Neuroscience, 2019.

 https://doi.org/10.1155/2019/8367214

Parthasarathy, M. A. (2007). Practical software

estimation: Function point methods for insourced

and outsourced projects. Pearson Education India.

ISBN-10: 9788131711460

Pospieszny, P., Czarnacka-Chrobot, B., & Kobylinski, A.

(2018). An effective approach for software project

effort and duration estimation with machine learning

algorithms. Journal of Systems and Software, 137,

184-196. https://doi.org/10.1016/j.jss.2017.11.066

Putnam, L. H. (1978). A general empirical solution to the

macro software sizing and estimating problem. IEEE

Transactions on Software Engineering, (4), 345-361.

https://doi.org/10.1109/tse.1978.231521

Ravi, K., & Suresh, Y. (2022). Effective ANN model

based on neuro-evolution mechanism for realistic

software estimates in the early phase of software

development. International Journal of Advanced

Computer Science and Applications: IJACSA, 13(2).

https://doi.org/10.14569/ijacsa.2022.0130223

Shepperd, M., & MacDonell, S. (2012). Evaluating

prediction systems in software project estimation.

Information and Software Technology, 54(8), 820-827.

 https://doi.org/10.1016/j.infsof.2011.12.008

Suresh Kumar, P., & Behera, H. S. (2020). Role of soft

computing techniques in software effort estimation:

An analytical study. In Computational Intelligence

in Pattern Recognition: Proceedings of CIPR

2019 (pp. 807-831). Springer Singapore.

 https://doi.org/10.1007/978-981-13-9042-5_70

Usman, M., Mendes, E., Weidt, F., & Britto, R. (2014,

September). Effort estimation in agile software

development: A systematic literature review.

In Proceedings of the 10th International Conference on

Predictive Models in Software Engineering (pp. 82-91).

https://doi.org/10.1145/2639490.2639503

Velarde, H., Santiesteban, C., Garcia, A., & Casillas, J.

(2016). Analyzing the effect of variables in the

software development effort estimation. IEEE Latin

America Transactions, 14(8), 3797-3803.

 https://doi.org/10.1109/tla.2016.7786366

Wen, J., Li, S., Lin, Z., Hu, Y., & Huang, C. (2012).

Systematic literature review of machine learning based

software development effort estimation models.

Information and Software Technology, 54(1), 41-59.

https://doi.org/10.1016/j.infsof.2011.09.002

