

© 2023 Aradhana Kar and Sateesh Kumar Pradhan. This open-access article is distributed under a Creative Commons

Attribution (CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

An Approach to Recognise Odia Characters by Extracting

Features from Fragmented Quadrants

Aradhana Kar and Sateesh Kumar Pradhan

Department of Computer Science and Applications, Utkal University, Bhubaneswar, Odisha, India

Article history

Received: 18-10-2022

Revised: 09-11-2022

Accepted: 15-11-2022

Corresponding Authors:

Aradhana Kar

Department of Computer

Science and Applications,

Utkal University,

Bhubaneswar, Odisha, India
Email: aradhana140587@gmail.com

Abstract: The system introduced in this study concentrates on the

recognition of Odia characters. The input to the system is an image in .jpg

format which has been created by scanning a document or converting a

document to an image by software. The document consists of all Odia

alphabets written using the font family 'AkrutiOriAshok-99' in a particular

font size in bold style. The font sizes that have been considered are 18, 20,

22, 24, 26, 28, 36, 48, and 72. The noise is removed and line texts are

segmented from the input image. Then individual alphabets are

segmented from a line text using the Character_Segment part of the

system proposed in this study. Then the features are extracted from the

segmented individual alphabet and the features are searched in the

dictionary of features stored in an excel file for a correct match one by

one. The proposed system is also responsible for creating the dictionary

of features of all Odia alphabets. Hence, the system in this study has four

parts, Segment_Line, Character_Segment, Build_Dictionary, and

Recognise_Character. According to the testing results, the system

proposed in this study has achieved a correctness accuracy of recognition

of Odia alphabets of 99.8%.

Keywords: Recognise Odia Characters, Extracting Features, Odia

Characters, Fragmented Quadrants

Introduction

Recognition of characters in an image by following

several steps of an algorithm is known as Optical Character

Recognition (OCR). Old scripts can be damaged as a result

the knowledge in those scripts can get lost. Digitization of

the scripts and recognition of text in the old scripts save the

knowledge in it as well as convert the digitized script in an

editable form. Nowadays, hard copies of documents are

frequently scanned and posted in many digital forums. OCR

can convert these scanned documents into an editable form.

This study concentrates on the recognition of the Odia

characters. Odia language consists of three categories of

the alphabet: “Swara Barna”, “Byanjana Barna” and

“Atirikta Barna”. All the alphabets in these categories

sum up to 48 alphabets (excluding 0, ʘ and 8) (Rao, 1901)

(Fig. 1). When “Swara Barna” is used with “Byanjana

Barna” or “Atirikta Barna”, the “Swara Barna”

becomes a symbol and gets associated with “Byanjana

Barna” and “Atirikta Barna”. This symbol is known as

“Matra” (Mohapatra and Das, 1952). Only 0, ʘ, and 8

are used with all alphabets of “Swara Barna”, the

remaining alphabets of “Byanjana Barna” and all

alphabets of “Atirikta Barna”.

This study concentrates on a system that takes an

image in .jpg format which has been created by scanning

a document or converting a document to an image by

software. The document consists of all Odia alphabets

written using the font family 'AkrutiOriAshok-99' in a

particular font size in bold style. The font sizes that are

been considered are 18, 20, 22, 24, 26, 28, 36, 48, and 72.

The process of extraction of features from a character and

finding a correct match follows all the sub-modules of the

find match module of the system (Kar and Pradhan, 2022).

Unlike the system in (Kar and Pradhan, 2022) where

the image was divided into four quadrants, the proposed

system divides the images of the Odia alphabets stored in

a directory named ‘Dictionary’ and the input image is

divided into sixteen quadrants. As per the research, the

system in (Kar and Pradhan, 2022) is not able to trace a

lot of features in a quadrant. Hence, it has been decided to

break the image into sixteen quadrants so that more

features can be extracted from an image which will result

in greater accuracy.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

58

Fig. 1: Alphabets of Odia language

This study consists of four parts: Build_Dictionary,

Segment_Line, Character_Segment, and

Recognise_Character. The Build_Dictionary part has the

following modules: Pre-Processing, Find_Direction,

Get_Pattern_Left, Get_Pattern_Right, Sub_Quad_Pattern,

Remaining_Part, Write_Excel, Find_Common_Feature, and

Group_Vacant_Quads. The modules Get_Pattern_Left,

Get_Pattern_Right, Sub_Quad_Pattern, Remaining_Part,

and Write_Excel follow the steps of the modules

GettingFeaturesLeft, Getting_Features_Right, Visit Sub

Quad, Remaining Sub_Quad and Write_To_Excel of

Feature Extraction in Dictionary_Building of the system in

(Kar and Pradhan, 2022) respectively. The

Find_Common_Feature module explained in this system,

finds common features of each Odia alphabet by applying

Longest Common Subsequence (LCS) on the features

extracted from the Odia alphabet in all font sizes repeatedly.

The Find_Common_Feature consists of two sub-modules;

Create_LCS and Find_LCS. The Group_Vacant_Quads

module explained in this system groups Odia alphabets

based on the first vacant quadrant found. When an Odia

alphabet is divided into sixteen quadrants, it may

happen that some quadrants do not contain any part of

the alphabet. These quadrants are known as Vacant

Quadrants. An Odia alphabet may or may not have at

least one vacant quadrant. The work of the

Group_Vacant_Quads is to iterate through the

quadrants of an alphabet and group it based on the first

vacant quadrant found. The Segment_Line part segments

line texts from the document image using the Line

Segmenting module of the system described in the research

paper (Kar and Pradhan, 2021). The Character_Segment part

has been explained in this study and this part segments each

character from the segmented line texts. The

Recognise_Character part consists of modules: Pre-

Processing, Find_Direction, Get_Pattern_Left,

Get_Pattern_Right, Sub_Quad_Pattern, and

Remaining_Part for extraction of features and these features

are written to the excel file, ‘InputFile16.xlsx’ using the

module Write_Excel. The Search_For_Match module has

been used to find the correct match of the input image. The

system proposed in this study has achieved correctness

accuracy in the recognition of Odia alphabets of 99.8%.

Python programming language has been used for

implementing the system. List and Dictionary concepts of

python have been used in the proposed system. List

behaves as a dynamic array in python in which data can

be easily appended and removed (Solem, 2012; Shaw,

2013; Lee, 2014; Beazley and Jones, 2011; Downey,

2019). Dictionary is an unordered collection of data where

items are stored in a particular index. Unlike a list, the

indices of the dictionary can be defined by the

programmer (Solem, 2012; Shaw, 2013; Lee, 2014;

Beazley and Jones, 2011; Downey, 2019). Files of a

directory have been accessed using the so package of

python (Summerfield, 2009). Finding the ceiling and

usage of arrays have been done with the help of the

NumPy package of python (Idris, 2011; 2012). The image

processing operations such as reading an image,

converting an image to a gray or binary image, and

resizing images have been done using the cv2 package of

python (Howse et al., 2016). The binary image is a two-

tone image where the value of pixels can either be 0 or 1

(Otsu, 1979; Chityala and Pudipeddi, 2020; Howse et al.,

2016; Nixon and Aguado, 2019). A Gray-scale image is

an image where the value of intensities of pixels ranges

from 0 to 255 (Sridhar, 2013; Gonzalez and Woods,

2017). The images have been generated for display or

saved in a directory by using the matplotlib package of

python (Johansson, 2019; Poladi, 2018). The extracted

features have been written to the excel file using the openpyxl

package of python (Gazoni and Clark, 2022). LCS has been

used to find the common features from the features extracted

from the Odia alphabets in all font sizes and stored in an excel

file, ‘CFeature16.xlsx’. LCS finds the longest subsequence

when two strings are given as input (Cormen et al., 2009;

Agarwal, 2008; Narasimha Karumanchi, 2017; Skiena,

2013; Vermani and Vermani, 2019). In other words, the

Build_Dictionary part takes the images of Odia alphabets

from the ‘Dictionary’ directory and the extracted features

from the images are written in an excel file named

'DictionaryFeatures16.xlsx'. On the other side, an image

of a document is given as input to the proposed system.

The image consists of Odia alphabets in the font family

‘AkrutiOriAshok-99’ in a particular font size in bold style.

The input goes through three parts Segment_Line,

Character_Segment, and Recognise_Character to segment

the lines from the document, segment characters from the

lines, and recognize segmented characters respectively.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

59

In past works, recognizing characters in any language

went through steps like pre-processing, line segmentation,

word segmentation, character segmentation, features

extraction from the character, and finding a match for

the extracted features in a dictionary. Significant work

had been done both for hand-written documents and

printed documents.

For feature extraction from characters, different ways

had been adopted in past works. The system in (Kar and

Pradhan, 2022) created a dictionary of images of Odia

alphabets in different font sizes and stored them in a

directory Dictionary. The features were extracted from the

images present in Dictionary by following some number

of modules and the extracted features were written in an

excel file, DictionaryFeatures.xlsx. A common feature

has been extracted for each Odia alphabet by applying

Longest Common Subsequence (LCS) repeatedly on the

extracted features of Odia alphabets in different font sizes

and the common feature for each Odia alphabet is written

in the excel file, CommonFeature.xlsx. In the system

(Tripathy and Pal 2006) and in the system (Pal et al.,

2003), features were extracted from the characters by

using the technique called water reservoir. The reservoir

was obtained by the accumulation of water poured from

the top or the bottom of the numerals. Top reservoirs were

formed when water was poured from the top and bottom

reservoirs were formed when water was poured from the

top after rotating the component by 180o. Water reservoirs

were the white regions of the component. The features

that were considered in the scheme were: The number of

reservoirs, position of reservoirs concerning the bounding

box of the touching pattern, shape, and size of the

reservoirs, center of gravity of the reservoirs, and relative

positions of the reservoirs. The system in (Das et al.,

2017) divided the image of each character into 9 zones

and in each zone found 12 strokes. Hence, the feature of a

character was represented in 1 × 108 vector format. This

research was carried out on Kalinga font. In the system

(Padhi et al., 2013), features were extracted by finding

the mid value of the image called the centroid. In the

first phase, the image was then divided into three equal

halves row-wise and two halves column-wise, making

it six zones. The distance between the pixel value and

the centroid was calculated and this was done for all

pixels for a zone and then the average distance was

calculated for that zone. The angle between the image

centroid and the pixel was calculated and this was done

for each pixel in a zone. Then the average of the angles

was calculated. In the second phase, the image was

divided into nine zones and the procedure that was carried

out in the first phase was also followed in the second

phase. The first phase output six average distances and six

average angles. The second phase also outputs nine

standard deviations, nine average distances, and nine

average angles as features. The system in (Goswami and

Mitra, 2016) concentrated on Gujarati characters. The

features in this system were extracted by finding high-

level as well as low-level strokes. The high-level strokes

were described in (Goswami and Mitra, 2018) and the

low-level strokes were described in (Goswami and
Mitra, 2016). The proposed method by the system by

(Goswami and Mitra, 2016) started scanning from the

center region of the character in left to right order and

extracts all junction points. The 3  3 neighborhood of

each junction point was then scanned in clockwise

order to obtain the starting point of each high-level

stroke. The high-level stroke ends at the endpoint or

until the next junction point is not reached using the

contour tracing method.
For recognition of characters based on the extracted

features, the system in (Kar and Pradhan, 2022) searched
the extracted features of the input image in the
CommonFeature.xlsx excel file. The accuracy achieved in
the recognition of the character was 98.1%. In the system
(Tripathy and Pal 2006) and in the system (Pal et al.,
2003), the recognition was done based on the features that
consist of several reservoirs, the position of reservoirs
concerning the bounding box of the touching pattern,
shape, and size of the reservoirs, center of gravity of the
reservoirs and relative positions of the reservoirs. The
accuracy achieved in the character recognition by the
system (Tripathy and Pal 2006) and the system (Pal et al.,
2003) was 95.1% and 94.8% respectively. The system
proposed by Das et al. (2017) used Structural Similarity
Index as it is based on the concept that the structure of the
image is independent of the illumination. The accuracy
achieved in character recognition was 92%. The system in
(Padhi and Senapati, 2013) used Artificial Neural
Network for classification. The system in (Goswami and
Mitra, 2018) used a finite state machine to identify a high-
level stroke. For classification, the system used Naive
Bayes Classifier and Hidden Markov Model. The overall
accuracy achieved using the Naive Bayes Classifier and
Hidden Markov Model in recognizing characters were
93.26 and 96.87% respectively.

To segment lines, the system in (Tripathy and Pal,

2006) divided the document to find vertical stripes. For

segmenting words from lines, the system in (Tripathy and

Pal, 2006) divided the document to find vertical stripes.

Based on the vertical projection profile and structural

features of Odia characters, text lines were segmented

into words.

Materials and Methods

System Architecture

The overall system consists of four parts,

‘Build_Dictionary’,‘Segment_Line’,‘Character_Segment

’, and ‘Recognise_Character’. Build_Dictionary part is

responsible for building a dictionary of features from a

directory named ‘Dictionary’ that contains the images of

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

60

Odia alphabets in the font family ‘AkritiOriAshok-99’ in

different font sizes in bold style. On the other side, a

document consisting of Odia alphabets in the font family

‘AkritiOriAshok-99’ in a particular font size in bold style,

is given as input to the Segment_Line part that segments

the line texts from the document, and the segmented line

texts are stored in the directory, ‘Line Segments’. Then

Character_Segment part segments the individual alphabet

from the segmented line texts present in the directory,

‘Line Segments’, and the segmented alphabets are stored

in the directory, ‘alphabets’. Then segmented alphabets

are accessed one at a time and given as input to the

‘Recognise_Character’ part. The Recognise_Character part

first extracts features from the input alphabet using some

modules and then finds the appropriate match in the

repository of common features.

Build_Dictionary

This part concentrates on creating a dictionary of

extracted features by applying a feature extraction

procedure on the images of Odia alphabets present in a

directory ‘Dictionary’. The document consists of Odia

alphabets which are written in the font family

‘AkrutiOriAshok-99’ in a particular font size in bold

style. In this way, 9 documents consisting of 48 alphabets

are created in nine different font sizes such as 18, 20, 22,

24, 26, 28, 36, 48, and 72. These documents are either

scanned or converted to an image by the software. From

each document, 48 images have been created and they are

stored in a directory. For example, a document consisting

of Odia alphabets in font size 18 is stored in a directory.

In this way, nine directories are created and these nine

directories are stored in the directory ‘Dictionary’. The

nine directories in the directory ‘Dictionary’ are accessed

one by one and for each directory, a sheet is created in an

excel file, ‘DictionaryFeatures16.xlsx’. In Fig. 2, the

image of each Odia alphabet, ‘A’ is accessed from each

directory of ‘Dictionary’ and it goes through the modules,

Pre-Processing, Find_Direction, Get_Pattern_Left,

Get_Pattern_Right, Sub_Quad_Pattern and

Remaining_Part for feature extraction. The extracted

feature is written in the particular row and column of a

particular sheet of the excel file,

‘DictionaryFeatures16.xlsx’ using the module,

Write_Excel. Then, the excel file,

‘DictionaryFeatures16.xlsx’ is given as input to the

Find_Common_Feature to find the common feature of an

alphabet and this common feature is written in the excel file,

‘CFeature16.xlsx’. Then, the Group_Vacant_Quads module

takes ‘CFeature16.xlsx’ as input and groups the features of

the alphabets based on vacant quadrants, and these grouped

features are written in the excel file, ‘VacantQuadrants.xlsx’

in different sheets.

Fig. 2: Overall working of Build_Dictionary

Pre-Processing Module

The images of the Odia alphabet are accessed one by

one from each directory in ‘Dictionary’. The image ‘A’ in

any of the directories of ‘Dictionary’ is given as input to

this module.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

61

Algorithm:

1. The image ‘A’ is converted to a gray-scale image and

stored in ‘B’.

2. The white spaces at the margins that enclose the text

in image 'B’ are removed using the

RemoveBoundarySpaces phase of the RemoveNoise

module of (Kar and Pradhan, 2021), and the result is

stored in ‘C’.

3. The image ‘C’ has been transformed into a dimension

of 64 x 64 by using inter-cubic interpolation and the

result is stored in ‘D’.

4. The image ‘D’ is then transformed into a binary

image and stored in ‘E’.

5. Image ‘E’ is partitioned into four equal slices, both in

the horizontal and vertical directions. In this way,

image ‘E’ is partitioned into sixteen equal quadrants.

The dimension of the image ‘E’ is row16 x col16

(row16 = 64 and col16 = 64), where ‘row16’ is the

number of rows and ‘col16’ is the number of

columns.

6. The values needed for dividing the image ‘E’

horizontally are calculated in the following ways:

16
1

4

row
row

 
=  
 

2 2* 1row row=

3 2 1row row row= +

7. The values needed for dividing the image ‘E’

vertically are calculated in the following ways:

16
1

4

col
col

 
= 
 

2 2* 1col col=

3 2 1col col col= +

8. The sixteen quadrants are found from ‘E’ by using

the values calculated in steps 6 and 7. The sixteen

quadrants are identified as ‘First’, ‘Second’, ‘Third’,

‘Fourth’, ‘Fifth’, ‘Sixth’, ‘Seventh’, ‘Eighth’,

‘Ninth’, ‘Tenth’, ‘Eleventh’, ‘Twelfth’,

‘Thirteenth’, ‘Fourteenth’, ‘Fifteenth’ and

‘Sixteenth’.

First = E[0:row1, 0:col1]

Second = E[0:row1, (col1 + 1):col2]

Third = E[0:row1, (col2 + 1):col3]

Fourth = E[0:row1, (col3 + 1):col16]

Fifth = E[(row1 + 1):row2, 0:col1]

Sixth = E[(row1 + 1):row2, (col1 + 1):col2]

Seventh = E[(row1 + 1):row2, (col2 + 1):col3]

Eighth = E[(row1 + 1):row2, (col3 + 1):col16]

Ninth = E[(row2 + 1):row3, 0:col1]

Tenth = E[(row2 + 1):row3, (col1 + 1):col2]

Eleventh = E[(row2 + 1):row3, (col2 + 1):col3]

Twelfth = E[(row2 + 1):row3, (col3 + 1):col16]

Thirteenth = E[(row3 + 1):row16, 0:col1]

Fourteenth = E[(row3 + 1):row16, (col1 + 1):col2]

Fifteenth = E[(row3 + 1):row16, (col2 + 1):col3]

Sixteenth = E[(row3 + 1):row16, (col3 + 1):col16]

9. Call Find_Direction(QNo, quad, DItem, DInItem,

DPath, SName) for the quadrants First, Second,

Third, Fourth, Fifth, Sixth, Seventh, Eighth, Ninth,

Tenth, Eleventh, Twelfth, Thirteenth, Fourteenth,

Fifteenth, and Sixteenth where QNo is the quadrant

number among the sixteen quadrants. Here, QNo = 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, and 16

quads can be First, Second, Third, Fourth, Fifth,

Sixth, Seventh, Eighth, Ninth, Tenth, Eleventh,

Twelfth, Thirteenth, Fourteenth, Fifteenth, and

Sixteenth.

DItem is the ith sub-directory in ‘Dictionary’.

DItem = 1, 2, 3, 4, 5, 6, 7, 8 and 9. For any value of

DItem, a sheet in ‘DictionaryFeatures16.xlsx’ is

created with the name the same as the value of DItem.

For example, if DItem = 2 then a sheet with the name

‘2’ is created in the excel file.

DInItem is the ith image file of the DItemth

subdirectory of ‘Dictionary’. DInItem = 1, 2, 3,.........,

48 where ‘48’ is the total number of image files in the

DItemth directory.

DPath is the absolute path of the excel file,

‘DictionaryFeatures16.xlsx’, in which the features

of the alphabet are being written.

SName is the file name of the image file present in

any DItemth sub-directory of ‘Dictionary’.

Suppose QNo = 11, quad = eleventh, DItem = 4,

DInItem = 14 then a sheet with the name ‘4’ is created

in the excel file, ‘DictionaryFeatures16.xlsx’ and its

path has been stored in the ’DPath’ parameter and

then the extracted feature is written in the ‘14th’ row

(as DInItem = 14) and ‘11th’ column (as QNo = 11)

of the sheet. The value, that is, the file name stored in

the parameter ‘SName’ is written in the seventeenth

column.

Find_Direction Module

This module is executed for each of the quadrants

First, Second, Third, Fourth, Fifth, Sixth, Seventh, Eighth,

Ninth, Tenth, Eleventh, Twelfth, Thirteenth, Fourteenth,

Fifteenth, and Sixteenth. Each quadrant is scanned from a

particular corner to find the first black pixel and when the

first black pixel is found, the coordinates of that black

pixel are passed to Get_Pattern_Right or

Get_Pattern_Left module. Quadrants First, Second,

Third, Fifth, Sixth, Seventh, Tenth, and Thirteenth are

passed to Get_Pattern_Right, and quadrants Fourth,

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

62

Eighth, Ninth, Eleventh, Twelfth, Fourteenth, Fifteenth,

and Sixteenth are passed to Get_Pattern_Left for the

extraction of features.

Qrow = Number of rows of ‘quad’

Qcol = Number of columns of ‘quad’

Algorithm:

Find_Direction(QNo, quad, DItem, DInItem, DPath,

SName)

1. ii and jj are initialized to ‘Qrow – 1’ and ‘0’

respectively.

2. IF QNo = 1 OR QNo = 5 OR QNo = 10 THEN DO

FROM STEP 3 TO 6

3. REPEAT FROM STEP 4 TO 6 WHILE jj < Qcol

4. REPEAT FROM STEP 5 TO 6 WHILE ii >0

5. IF quad[ii][jj] = 0 THEN DO STEP 6

6. CALL Get_Pattern_Right(ii, jj, quad,

QNo, DItem, DInItem, DPath, SName)

7. ii and jj are initialized to ‘0’.

8. IF QNo = 2 OR QNo = 3 OR QNo = 13 THEN DO

FROM STEP 9 TO 12

9. REPEAT FROM STEP 10 TO 12 WHILE ii < Qrow

10. REPEAT FROM STEP 11 TO 12 WHILE jj <

Qcol

11. IF quad[ii][jj] = 0 THEN DO STEP 12

12. CALL Get_Pattern_Right(ii, jj, quad,

QNo, DItem, DInItem, DPath, SName)

13. ii and jj are initialized to ‘Qrow – 1’ and ‘Qcol – 1’

respectively.

14. IF QNo = 4 OR QNo = 8 OR QNo = 12 OR QNo = 14

OR QNo = 16 THEN DO FROM STEP 15 TO 18

15. REPEAT FROM STEP 16 TO 18 WHILE ii>0

16. REPEAT FROM STEP 17 TO 18 WHILE jj>0

17. IF quad[ii][jj] = 0 THEN DO STEP 18

18. CALL Get_Pattern_Left(ii, jj, quad,

QNo, DItem, DInItem, DPath, SName)

19. ii and jj are initialized to ‘Qrow – 1’ and ‘0’.

20. IF QNo = 6 OR QNo = 7 THEN DO FROM STEP 21

TO 24

21. REPEAT FROM STEP 22 TO 24 WHILE ii>0

22. REPEAT FROM STEP 23 TO 24 WHILE jj <

Qcol

23. IF quad[ii][jj] = 0 THEN DO STEP 24

24. CALL Get_Pattern_Right(ii, jj, quad,

QNo, DItem, DInItem, DPath, SName)

25. ii and jj are initialized to ‘0’ and ‘Qcol - 1’.

26. IF QNo = 9 OR QNo = 11 OR QNo = 15 THEN DO

FROM STEP 27 TO 30

27. REPEAT FROM STEP 28 TO 30 WHILE ii <

Qrow

28. REPEAT FROM STEP 29 TO 30 WHILE jj>0

29. IF quad[ii][jj] = 0 THEN DO STEP 30

30. CALL Get_Pattern_Left(ii, jj, quad,

QNo, DItem, DInItem, DPath, SName)

31. EXIT

Get_Pattern_Left Module

The format of the Get_Pattern_Left module is

Get_Pattern_Left (ii, jj, quad, QNo, DItem, DInItem,

DPath, SName). ‘row’ and ‘col’ are the number of rows

and columns of ‘quad’ respectively. This module scans in

the left direction and this starts from the first black pixel

that is found in the Find_Direction Module to find a

continuous trace of the black pixel in ‘quad’. There are

some scenarios.

For scenario ‘ii = 0’, three conditions are considered

and they are,

 If quad[ii + 1][jj – 1] = 0 then

 ii = ii + 1

 jj = jj – 1

 LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

 Get_Pattern_Left(ii, jj, quad, QNo, DItem,

 DInItem, SName)

Else If quad[ii][jj – 1] = 0 then

 ii = ii

 jj = jj – 1

 LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0,col)

 Get_Pattern_Left(ii, jj, quad, QNo, DItem,

 DInItem, SName)

Else If quad[ii][jj – 1] = 1 Or quad[ii + 1][jj – 1] = 1

Or ii = 0 Or jj = 0 Or ii = row – 1 Or jj = col -1 then

 Remaining_Part(quad)

 Write_Excel(DItem,DInItem,QNo,LSubQ,

DPath, SName)

 Return

For scenario ‘ii = row – 1’, three conditions are considered

and they are,

If quad[ii – 1][jj – 1] = 0 then

 ii = ii – 1

 jj = jj – 1

 LSubQ = Sub_Quad_Pattern(ii, jj, 0,row,0,col)

 Get_Pattern_Left(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii][jj – 1] = 0 then

ii = ii
jj = jj – 1
 LSubQ = Sub_Quad_Pattern(ii, jj,0,row, 0, col)
Get_Pattern_Left(ii, jj, quad, QNo, DItem,
DInItem, SName)

Else If quad[ii – 1][jj – 1] = 1 Or quad[ii][jj – 1] = 1
Or ii = 0 or jj = 0 Or ii = row – 1 Or jj = col -1 then

 Remaining_Part(quad)
 Write_Excel(DItem, DInItem, QNo, LSubQ,
 DPath, SName)

Return
For scenario ‘ii ≠ row – 1 and ii ≠ 0’ four conditions are
considered and they are,
 If quad[ii – 1][jj – 1] = 0 then
 ii = ii – 1
 jj = jj – 1
 LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

63

 Get_Pattern_Left(ii, jj, quad, QNo, DItem,
 DInItem, SName)

Else If quad[ii][jj – 1] = 0 then

ii = ii

jj = jj – 1

LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Get_Pattern_Left(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii + 1][jj – 1] = 0 then

ii = ii + 1

jj = jj – 1

LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Get_Pattern_Left(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii – 1][jj – 1] = 1 Or quad[ii + 1][jj – 1]

= 1 Or quad[ii][jj – 1] = 1 Or ii = 0 Or jj = 0 Or ii =

row – 1 Or jj = col -1 then

 Remaining_Part(quad)

 Write_Excel(DItem, DInItem, QNo, LSubQ,

 DPath, SName)

 Return

Get_Pattern_Right Module

The format of the Get_Pattern_Left module is

Get_Pattern_Right(i, j, quad, QNo, DItem, DInItem,

DPath, SName). ‘row’ and ‘col’ are the number of rows

and columns of ‘quad’ respectively. This module scans in

the right direction and this starts from the first black pixel

that is found in the Find_Direction Module to find a

continuous trace of the black pixel in ‘quad’. There are

some scenarios.

For scenario ‘ii = 0’, three conditions are considered

and they are,

 If quad[ii +1][jj + 1] = 0 then

 ii = ii + 1

 jj = jj + 1

 LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

 Get_Pattern_Right(ii, jj, quad, QNo, DItem,

 DInItem, SName)

Else If quad[ii][jj + 1] = 0 then

ii = ii

jj = jj + 1

LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Get_Pattern_Right(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii][jj + 1] = 1 Or quad[ii + 1][jj + 1] = 1 Or

ii = 0 Or jj = 0 Or ii = row – 1 Or jj = col -1 then

Remaining Part (quad)

Write_Excel(DItem, DInItem, QNo, LSubQ,

DPath, SName)

 Return

For scenario ‘ii = row – 1’, three conditions are

considered and they are,

If quad[ii – 1][jj + 1] = 0 then

 ii = ii – 1

 jj = jj + 1

 LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

 Get_Pattern_Right(ii, jj, quad, QNo, DItem,

 DInItem, SName)

Else If quad[ii][jj + 1] = 0 then

ii = ii

jj = jj + 1

LSubQ = Sub_Quad_Pattern(ii,jj,0,row,0,col)

Get_Pattern_Right(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii – 1][jj + 1] = 1 Or quad[ii][jj + 1] = 1

Or ii = 0 Or jj = 0 Or ii = row – 1 Or jj = col -1 then

Remaining_Part(quad)

Write_Excel(DItem, DInItem, QNo, LSubQ,

DPath, SName)

Return

For scenario ‘ii ≠ row – 1 and ii ≠ 0’, four conditions are

considered and they are,

If quad[ii – 1][jj + 1] = 0 then

ii = ii – 1

jj = jj + 1

LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Get_Pattern_Right(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii][jj + 1] = 0 then

ii = ii

jj = jj + 1

LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Get_Pattern_Right(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii + 1][jj + 1] = 0 then

ii = ii + 1

jj = jj + 1

LSubQ = Sub_Quad_Pattern(ii, jj, 0, row, 0, col)

Get_Pattern_Right(ii, jj, quad, QNo, DItem,

DInItem, SName)

Else If quad[ii – 1][jj + 1] = 1 Or quad[ii][jj + 1] = 1

Or quad[ii + 1][jj + 1] = 1 Or ii = 0 Or jj = 0 Or ii =

row – 1 Or jj = col -1 then

Remaining_Part(quad)

Write_Excel(DItem, DInItem, QNo, LSubQ,

DPath, SName)

Return

Sub_Quad_Pattern Module

Each of the sixteen quadrants is again partitioned into

four sub-quadrants identified as 'a’, ‘b’, ‘c’, and ‘d’. The

format of the procedure of this module is

Sub_Quad_Pattern (i, j, sr, er, sc, ec) where, i, j, sr, er, sc

and ec are the y-coordinate of the black pixel, x-

coordinate of the black pixel, start row coordinate of the

quadrant, end row coordinate of the quadrant, start

column coordinate of the quadrant and end column

coordinate of the quadrant respectively. A list data

structure identified as ‘SQu’ in which the name of the sub-

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

64

quadrant (‘a’ or ‘b’ or ‘c’ or ‘d’) holding the first black

pixel that is found in the Find_Direction Module is first

appended. Then the names of the sub-quadrants for each

black pixel found while scanning by Get_Pattern_Left

or Get_Pattern_Right module is appended. The

following values are calculated that define the

boundaries of the sub-quadrants:

2

er sr
mrow

− 
= 
 

2

ec sc
mcol

− 
= 
 

The area from the ‘(sr)th’ row to ‘(mrow – 1)th’ row

and from the ‘(sc)th’ column to ‘(mcol – 1)th’ column

forms the ‘a’ sub-quadrant. If the value of ‘i’ lies between

‘(sr)th’ row and ‘(mrow – 1)th’ row and the value of ‘j’ lies

between ‘(sc)th’ column and ‘(mcol – 1)th’ column, ‘a’ is

appended in the list ‘SQu’.

The area from the ‘(sr)th’ row to ‘(mrow – 1)th’ row

and from the ‘(mcol)th’ column to ‘(sc)th’ column forms

the ‘b’ sub-quadrant. If the value of ‘i’ lies between ‘(sr)th’

row and ‘(mrow – 1)th’ row and the value of ‘j’ lies

between ‘(mcol)th’ column and ‘(sc)th’ column, ‘b’ is

appended in the list ‘SQu’.

The area from the ‘(mrow)th’ row to ‘(er)th’ row and

from the ‘(sc)th’ column to ‘(mcol – 1)th’ column forms

the ‘d’ sub-quadrant. If the value of ‘i’ lies between

‘(mrow)th’ row and ‘(er)th’ row and the value of ‘j’ lies

between ‘(sc)th’ column and ‘(mcol – 1)th’ column, ‘d’ is

appended in the list ‘SQu’.

The area from the ‘(mrow)th’ row to ‘(er)th’ row and

from the ‘(mcol)th’ column to ‘(ec)th’ column forms the

‘c’ sub-quadrant. If the value of ‘i’ lies between

‘(mrow)th’ row and ‘(er)th’ row and the value of ‘j’ lies

between ‘(mcol)th’ column and ‘(ec)th’ column, ‘c’ is

appended in the list ‘SQu’.

Remaining_Part Module

The format of this module is Remaining_Part (quad).

This module is applied to all sixteen quadrants. If

Get_Pattern_Left or Get_Pattern_Right is unable to scan

some continuous trace of black pixels of a particular

quadrant that is stored in ‘quad’, then to have all those

missed areas that are acquired by a continuous trace of

black pixels of ‘quad’, the Remaining_Part has been used.

First, this module checks if the names of all the sub-

quadrants are found in the ‘LSubQ’ list. If any of the

names of the sub-quadrants is not found then that sub-

quadrant is checked for the presence of a continuous trace

of black pixels and if it is found then the name of the sub-

quadrant is added in ‘LSubQ’. If the names of all the sub-

quadrants that have black pixels are present at least once in

‘LSubQ’ then, Remaining_Part stops executing.

The final value returned by this module is stored in

‘LSubQ’ of either Get_Pattern_Left or the

Get_Pattern_Right module. The final value that is found in

the list, ‘LsubQ’ is the whole feature that is extracted from a

particular quadrant of an alphabet.

Write_Excel Module

This module first converts the final features stored in

‘LSubQ’ to string format by concatenating all the

elements of ‘LSubQ’. Then the final feature in string

format has been pushed into the ‘(DItem)th’ sheet,

‘(DInItem)th’ row, and ‘(QNo)th’ column of

‘DictionaryFeatures16.xlsx’. The path of the excel file is

stored in the ‘DPath’. The ‘SName’ is the file name and

it is pushed into the seventeenth column of the

‘(DInItem)th’ row of the ‘(DItem)th’ sheet of the excel

file. For example, the alphabet in font sizes 18, 20,

22, 24, 26, 28, 36, 48, and 72 is pushed into the first row of

the sheet with names 1, 2, 3, 4, 5, 6, 7, 8 and 9 respectively.

Find_Common_Feature Module

Now, ‘DictionaryFeatures16.xlsx’ consists of the

extracted features of all alphabets in all font sizes. Sheets

1, 2, 3, 4, 5, 6, 7, 8, and 9 consist of the extracted features

of all alphabets in font size 18, 20, 22, 24, 26, 28, 36, 48,

and 72 respectively. The idea of this module is to find a

common feature of an alphabet by applying LCS (Longest

Common Subsequence) on the extracted features in all

font sizes repeatedly of that alphabet. The common feature

which has been found by the repeated application of LCS is

pushed into an excel file identified as ‘CFeature16.xlsx’ and

this excel file consists of only one sheet.

‘sr16’ is initialized to 1.

‘sh16’ is initialized to 1.

‘sheet’ is initialized to 9.

‘row16’ is the number of rows in
‘DictionaryFeatures16.xlsx’.

Algorithm:

Find_Common_Feature()

1. REPEAT STEP 2 WHILE sr16 < row16

2. REPEAT STEP FROM 3 TO 21 WHILE sh16

<=sheet

3. APPEND the extracted feature in the first,

second, third, fourth, fifth, sixth, seventh, eighth,

ninth, tenth, eleventh, twelfth, thirteenth,

fourteenth, fifteenth, and sixteenth column of the

‘sr16th’ row of ‘sh16th’ sheet of

‘DictionaryFeatures16.xlsx’ in ‘FiQuList’,

‘SeQuList’, ‘ThQuList’, ‘FoQuList’,

‘FifQuList’, ‘SiQuList’, ‘SevQuList’,

‘EiQuList’, ‘NiQuList’, ‘TeQuList’,

‘EleQuList’, ‘TweQuList’, ‘ThiQuList’,

‘FouQuList’, ‘FiftQuList’ and ‘SixQuList’

respectively.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

65

4. Text1 = Create_LCS(FiQuList)

5. Text2 = Create_LCS(SeQuList)

6. Text3 = Create_LCS(ThQuList)

7. Text4 = Create_LCS(FoQuList)

8. Text5 = Create_LCS(FifQuList)

9. Text6 = Create_LCS(SiQuList)

10. Text7 = Create_LCS(SevQuList)

11. Text8 = Create_LCS(EiQuList)

12. Text9 = Create_LCS(NiQuList)

13. Text10 = Create_LCS(TeQuList)

14. Text11 = Create_LCS(EleQuList)

15. Text12 = Create_LCS(TweQuList)

16. Text13 = Create_LCS(ThiQuList)

17. Text14 = Create_LCS(FouQuList)

18. Text15 = Create_LCS(FiftQuList)

19. Text16 = Create_LCS(SixQuList)

20. WRITE the contents of ‘Text1’, ‘Text2’,

‘Text3’, ‘Text4’, ‘Text5’, ‘Text6’, ‘Text7’,

‘Text8’, ‘Text9’, ‘Text10’, ‘Text11’, ‘Text12’,

‘Text13’, ‘Text14’, ‘Text15’ and ‘Text16’ in the

first, second, third, fourth, fifth, sixth, seventh,

eighth, ninth, tenth, eleventh, twelfth,

thirteenth, fourteenth, fifteenth and sixteenth

column of ‘srth’ row of the excel file,

‘CFeature16.xlsx’ respectively.

21. INITIALIZE ‘Text1’, ‘Text2’, ‘Text3’, ‘Text4’,

‘Text5’, ‘Text6’, ‘Text7’, ‘Text8’, ‘Text9’,

‘Text10’, ‘Text11’, ‘Text12’, ‘Text13’,

‘Text14’, ‘Text15’ and ‘Text16’ to the empty

string.

22. EXIT

a) Create_LCS (li)

This procedure takes a list ‘li’ as input. This list

consists of the extracted features of a quadrant of an

alphabet in all font sizes. Every iteration calls Find_LCS

to find the LCS of two strings that have been passed as

parameters and the result is stored in ‘SText’. At last, the

contents of ‘SText’ are returned to

Find_Common_Feature.

Algorithm:

1. f=0

2. SText = li[0]

3. REPEAT STEP 4 WHILE f < LENGTH(li)

4. SText = Find_LCS(SText, li[f + 1])

5. RETURN SText

6. EXIT

b) Find_LCS (Str1, Str2)

Find_LCS calculates and returns the LCS (Longest

Common Subsequence) of ‘Str1’ and ‘Str2’. The format

of this procedure is Find_LCS(Str1, Str2).

The aim is to find the LCS of ‘Str1’ and ‘Str2’. If both

‘Str1’ and ‘Str2’ are equal to null then ‘lss’ is assigned

null and the same is returned. If ‘Str1’ is not equal to null

and ‘Str2’ is equal to null then ‘Str1’ is stored in ‘lss’ and

the value of ‘lss’ is returned. If ‘Str1’ is equal to null and

‘Str2’ is not equal to null then ‘Str2’ is stored in ‘lss’ and

the value of ‘lss’ is returned. If ‘Str1’ and ‘Str2’ are equal

and none of them are equal to null values then ‘Str1’ is

stored in ‘lss’ and it is returned. If neither of the above

conditions is true then the LCS of ‘Str1’ and ‘Str2’ is

found and it is stored in ‘rev’ and returned. To find the

LCS, the two arrays ‘LcsF’ and ‘bb’ are used. The array

‘LcsF’ stores the length of the LCS and the array ‘bb’

stores the information about the traversing direction of the

LCS. ‘sl’, ‘up’ and ‘lo’ denote ‘traversing diagonally’,

‘traversing in upward direction’ and ‘traversing in left

direction’ respectively. After all the values of ‘LcsF’ and

‘bb’ are found, both arrays are traversed from the bottom-

most corner and right-most side to get the value of ii and

jj where LcsF[ii][jj] = MaxVal and bb[ii][jj] = ‘sl’ and

for each ‘sl’ in ‘bb’ array, the common item in both the

strings (Str1 and Str2) is added in ‘lss’. The ‘MaxVal’ is

the maximum length of LCS in ‘LcsF’. At last ‘lss’ is

reversed and the resultant LCS is stored in ‘rev’.

Algorithm:

Find_LCS (Str1, Str2)

1. IF Str1 = NULL AND Str2 = NULL THEN DO

FROM STEP 2 TO 3

2. lss = NULL

3. RETURN ‘lss’

4. ELSE IF Str1 != NULL AND Str2 = NULL THEN

DO FROM STEP 5 TO 6

5. lss = Str1

6. RETURN ‘lss’

7. ELSE IF Str1 = NULL AND Str2 != NULL THEN

DO FROM STEP 8 TO 9

8. lss = Str2

9. RETURN ‘lss’

10. ELSE IF Str1 = Str2 THEN DO FROM STEP 11 TO

12

11. lss = Str1

12. RETURN ‘lss’.

13. ELSE DO FROM STEP 14 TO 46

14. m = LENGTH(Str1)

15. n = LENGTH(Str2)

16. INITIALIZE the array ‘LcsF’ with dimensions+ 1,

n + 1) to zero.

17. INITIALIZE the array ‘bb’ with dimensions (m +

1, n + 1) to zero.

18. ii = 0

19. jj = 0

20. REPEAT STEP 21 WHILE ii < (m + 1)

21. REPEAT FROM STEP 22 TO 30 WHILE jj <(n

+ 1)

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

66

22. IF Str1[ii – 1] = Str2[jj – 1] THEN DO

FROM STEP 23 TO 24

23. LcsF[ii][jj] = LcsF[ii][jj] + 1

24. bb[ii][jj] = ‘sl’

25. ELSE IF LcsF[ii – 1][jj] >= LcsF[ii][jj – 1]

THEN DO STEP 26 TO 27

26. LcsF[ii][jj] = LcsF[ii – 1][jj]

27. bb[ii][jj] = ‘up’

28. ELSE DO STEP 29 TO 30

29. LcsF[ii][jj] = LcsF[ii][jj – 1]

30. bb[ii][jj] = ‘lo’

31. Search the maximum value in the array ‘LcsF’ and

store it in ‘MaxVal’.

32. Traverse the array ‘LcsF’ from the right-most side

and bottom-most corner of the array and find the

value of ii and jj in the array where LcsF[ii][jj] =

MaxVal and bb[ii][jj] = ‘sl’.

33. After values of ii and jj are found for LcsF[ii][jj] =

MaxVal and bb[ii][jj] = ‘sl’, DO STEP 34

34. REPEAT FROM STEP 35 TO 44 WHILE ii > 0

AND jj > 0

35. IF bb[ii][ii] = ‘sl’ THEN DO FROM STEP 36

TO 38

36. APPEND the value in Str1[ii][jj] in the list

‘lss’.

37. ii = ii – 1

38. jj = jj – 1

39. ELSE IF bb[ii][jj] = ‘up’ DO FROM STEP 40

TO 41

40. ii = ii – 1

41. jj = jj

42. ELSE IF bb[ii][jj] = ‘lo’ DO FROM STEP 43 TO

44

43. ii = ii

44. jj = jj – 1

45. REVERSE the elements of ‘lss’ and store them in

‘rev’.

46. RETURN ‘rev’.

47. EXIT

Group_Vacant_Quads Module

This module deals with grouping the extracted features

of Odia alphabets according to the vacant quadrants. The

concept is that, when an Odia alphabet image is divided

into sixteen quadrants, some quadrants do not have any

black pixels. These quadrants are known as vacant

quadrants. These vacant quadrants produce no extracted

feature. There may be alphabets that have more than one

vacant quadrant. Hence, the grouping has been done based

on the first vacant quadrant that is found. This grouping

has been done for making the searching process to find a

correct match for the input image present in the

‘alphabets’ directory less time-consuming. The input to

this module is the excel file, ‘CFeature16.xlsx’. This

excel file has only one sheet and sixteen columns. The

columns of the excel file, ‘CFeature16.xlsx’ are accessed

one at a time and if in any row of that column, a null value

is found then a new sheet is created in an excel file,

‘VacantQuadrants.xlsx’ and all the sixteen values of that

row are written in that sheet. For example, the ‘1st’ column

has been traversed for the total number of rows in the

excel file, ‘CFeature16.xlsx’. Suppose, in the ‘4th’ row,

the ‘1st’ and ‘7th’ column consists of null value (due to a

vacant quadrant), the grouping is done based on the ‘1st’

column with a null value as it appeared before the ‘7th’

column in the iteration of columns. The features of Odia

alphabets having a null value in the 1st, 2nd, 3rd, 4th, 5th, 6th,

7th, 8th, 9th, 10th, 11th, 12th, 13th, 14th, 15th, and 16th

quadrant, those features are put in the sheet named as 1,

2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15 and 16 of the

excel file ‘VacantQuadrants.xlsx’.

Hence, the final output of the ‘Build_Dictionary’ is

the ‘VacantQuadrants.xlsx’ excel file which consists of

the common feature for each alphabet in different sheets.

For example, the common features of the alphabet are

found in the sheet named 11 and they are:

1st – dddddddbbbbbbbbbaabbbc

2nd – aaaaaabbbbbbbbcccccddaaaaa

3rd – aaaaaaabccccccccaaaaaaaadcccccccc

4th – cccccbbbbb

5th – aaaaabbbbbb

6th – ddddddcccccccaabbb

7th – dddddbbbbbbbbbcaaaa

8th – cccccbbbbbb

9th – bbbbbbbaccccdddd

10th – aaaaaaabbbb

11th – null value

12th – ccccccbbbbbbdcccccccc

13th – aaaabbbbccccccaaaaadcccccccc

14th – cccccccdd

15th – ccddddddddd

16th – cccccccaaaaaaaaabbbbbbbbaaaddd

Segment_Line

This is the second part of the system. This part takes

an image ‘IM’ which has been created by scanning or

converting a document consisting of Odia alphabets into

an image by using the software. Each document is written

using the font family ‘AkrutiOriAshok-99’ in a

particular font size in bold style. The font sizes that have

been considered are 18, 20, 22, 24, 26, 28, 36, 48, and 72.

The ‘IM’ is given as input to the Preprocessing

module. This module converts ‘IM’ to a grayscale image

and the result is stored in ‘GY’. The ‘GY’ image is

converted to a binary image and the result is stored in

‘BIN’. The pixels that consist of the Odia alphabets are

represented as 0 and other pixels are represented as 1.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

67

 The image ‘BIN’ is given as input to the Remove

Noise module, where it goes through three phases: Phase

I – Remove Boundary Spaces, Phase II-Remove Noise

Row Wise, and Phase III- Remove Noise Column Wise

for noise removal and provides the resultant binary image

named, ‘NoFr’.

The image ‘NoFr’ is given as input to the Line

Segmenting module. In this module, total counts of black

pixels are calculated for each row and they are stored in

the list ‘BCt’. The list ‘BCt’ is traversed from the start to

end and the indices of the non-zero items which are

preceded by an item equal to 0 are stored in a list ‘Tpl’.

The list ‘BCt’ is again traversed from the end to the start

and the indices of non-zero items that are succeeded by 0

are stored in a list ‘Bopl’. Then the list ‘Bopl’ is reversed

and stored in ‘BoplRe’. Then the lists ‘Tpl’ and ‘BoplRe’

are merged and stored in the list ‘Finl’. At last, the list

‘Finl’ is iterated to get the required line segments and the

line segments are stored in the directory ‘Line Segments’.

Character_Segment

This is the third part of the system in which individual

Odia alphabets are segmented from the line segments.

This part takes the directory ‘Line Segments’ as input.

The idea is to calculate the total count of black pixels in

each column and store it in the list ‘BcntList’. By

traversing the list both from start to end and from end to

start, two lists are formed and they are ‘BcntRi’ and

‘BcLiRev’. The lists, ‘BcLiRev’ and ‘BcntRi’ consist of

the start and end x-coordinates of an alphabet in the line

segment respectively. Both lists are merged to form the

final list named, ‘BcFinal’. The list, ‘BcFinal’ is

traversed to get the segments of alphabets and they are

stored in the directory ‘alphabets’. The line segments are

accessed one at a time and stored in ‘Lseg’. The ‘Lseg’ is

converted to gray-scale image ‘GLseg’ and the ‘GLseg’ is

converted to binary image ‘BiGLseg’. ‘Lrow’ is the

number of rows of the binary image ‘BiGLseg’.

‘Lcol’ is the number of columns of the binary image

‘BiGLseg’.

Algorithm:

1. The image ‘Lseg’ is converted to a grayscale image

and stored in ‘GLseg’.

2. The image ‘GLseg’ is converted to a binary image

and stored in ‘BiGLseg’.

3. The boundary spaces that encapsulate the whole text

in ‘BiGLseg’ are removed using the Remove

Boundary Spaces of Remove Noise module of (Kar

and Pradhan, 2021).

4. INITIALIZE ‘irr’ and ‘icc’ to 0.

5. REPEAT FROM STEP 6 TO 9 WHILE icc < Lcol

6. REPEAT FROM STEP 7 TO 8 WHILE irr < Lrow

7. IF BiLseg[irr][icc] = 0 THEN DO STEP 8

8. Bcnt = Bcnt + 1

9. APPEND ‘Bcnt’ in the list ‘BcntList’.

10. INITIALIZE ‘bii’ to 0.

11. REPEAT FROM STEP 12 TO 13 WHILE bii <

LENGTH (BcntList) - 1

12. IF BcntList[bii] != 0 AND BcntList[bii + 1] = 0

THEN DO STEP 13

13. APPEND (bii + 1) in the list ‘BcntRi’.

14. INITIALIZE ‘bii’ to LENGTH (BcntList).

15. REPEAT FROM STEP 16 TO 17 WHILE bii > 1

16. IF BcntList[bii] != 0 AND BcntList[bii – 1] = 0

THEN DO STEP 17

17. APPEND (bii - 1) in the list ‘BcntLi’.

18. REVERSE the list ‘BcntLi’ and store it in the list

‘BcLiRev’.

19. Merge the lists, ‘BcntRi’ and ‘BcLiRev’ and store

them in the list ‘BcFinal’.

20. Iterate through the list ‘BcFinal’ to get the segment

of the individual alphabet and store it in the directory

‘alphabets’.

21. EXIT

Recognise_Character

This is the fourth part of the system in which the

images of the Odia alphabets present in the directory

‘alphabets’ are accessed for feature extraction and then

the features are searched in the excel file,

‘VacantQuadrants.xlsx’ to get a correct match. Figure 3

shows the flow of control when the image ‘IM’ is given

as input to the system. The ‘IM’ is an image of a document

that has been written in the font family

‘AkrutiOriAshok-99’ in a particular font size. The ‘IM’

is given as input to the Segment_Line part where it

undergoes certain steps to form line segments and these

line segments are stored in the ‘Line Segments’ directory.

Then each line segment ‘LSeg’ from ‘Line Segments’ is

accessed and given as input to the Character_Segment

part for the segmentation of the Odia alphabet from the

line segment. All segmented Odia alphabets are stored in

the directory, ‘alphabets’, and each image of an Odia

alphabet, ‘Inp’ undergoes the modules like PreProcessing,

Find_Direction, Get_Pattern_Left, Get_Pattern_Right,

Sub_Quad_Pattern, Remaining_Part, and Write_Excel for

extraction of features, and the extracted features are written

in an excel file, ‘InputFile16.xlsx’.

Pre-Processing Module

Each segmented Odia alphabet present in the directory

‘alphabets’ is given as input to this module and is stored

in ‘Inp’.

 Algorithm:

1. The image ‘Inp’ is converted to a gray-scale image

and stored in ‘BInp’.

2. The white spaces that enclose the text in the image

‘BInp’ are removed using RemoveBoundarySpaces

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

68

of the RemoveNoise module of (Kar and Pradhan,

2021) and the result is stored in ‘CInp’.

3. The image ‘CInp’ is transformed into a size of 64 x

64 by using inter-cubic interpolation and the result is

stored in ‘DInp’.

4. The image ‘DInp’ is transformed into a binary image

and stored in ‘EInp’.

5. The ‘EInp’ is partitioned into four equal slices, both

in horizontal and vertical directions. In this way, this

image ‘EInp’ is partitioned into sixteen equal

quadrants. The dimension of this image ‘EInp’ is

rowIn16 x colIn16 (rowIn16 = 64 and colIn16 = 64),

where ‘rowIn16’ is the number of rows and ‘colIn16’

is the number of columns.

6. The values for dividing the image ‘EInp’

horizontally are calculated in the following ways:

16
1

4

rowIn
rowIn

 
= 
 

2 2* 1rowIn rowIn=

3 2 1rowIn rowIn rowIn= +

7. The values for dividing the image ‘EInp’ vertically

are calculated in the following ways:

16
1

4

colIn
colIn

 
= 
 

2 2* I 1colIn col n=

2 2* I 1colIn col n=

8. The sixteen quadrants are found from the ‘EInp’ by

using the values calculated in steps 6 and 7. The

sixteen quadrants are named ‘FirstIn’, ‘SecondIn’,

‘ThirdIn’, ‘FourthIn’, ‘FifthIn’, ‘SixthIn’,

‘SeventhIn’, ‘EighthIn’, ‘NinthIn’, ‘TenthIn’,

‘EleventhIn’, ‘TwelvthIn’, ‘ThirteenthIn’,

‘FourteenthIn’, ‘FifteenthIn’ and ‘SixteenthIn’.

FirstIn = EInp[0:rowIn1, 0:colIn1]

SecondIn = EInp[0:rowIn1, (colIn1 + 1):colIn2]

ThirdIn = EInp[0:rowIn1, (colIn2 + 1):colIn3]

FourthIn = EInp[0:rowIn1, (colIn3 +1):colIn16]

FifthIn = EInp[(rowIn1 + 1):rowIn2, 0:colIn1]

SixthIn = EInp[(rowIn1 + 1):rowIn2, (colIn1 +

1):colIn2]

SeventhIn = EInp[(rowIn1 + 1):rowIn2, (colIn2 +

1):colIn3]

EighthIn = EInp[(rowIn1 + 1):rowIn2, (colIn3 +

1):colIn16]

NinthIn = EInp[(rowIn2 + 1):rowIn3, 0:colIn1]

TenthIn = EInp[(rowIn2 + 1):rowIn3, (colIn1 +

1):colIn2]

EleventhIn = EInp[(rowIn2 + 1):rowIn3, (colIn2

+ 1):colIn3]

TwelfthIn = EInp[(rowIn2 + 1):rowIn3, (colIn3

+1):colIn16]

ThirteenthIn = EInp[(rowIn3 + 1):rowIn16,

0:colIn1]

FourteenthIn = EInp[(rowIn3 + 1):rowIn16,

(colIn1 + 1):colIn2]

FifteenthIn = EInp[(rowIn3 + 1):rowIn16,

(colIn2 + 1):colIn3]

SixteenthIn = EInp[(rowIn3 + 1):rowIn16,

(colIn3 + 1):colIn16]

9. Call Find_Direction(QNo, quad, DItem, DInItem,

DPath, SName) for the quadrants FirstIn,

SecondIn, ThirdIn, FourthIn, FifthIn, SixthIn,

SeventhIn, EighthIn, NinthIn, TenthIn,

EleventhIn, TwelvthIn, ThirteenthIn,

FourteenthIn, FifteenthIn, and SixteenthIn where

QNo is the number of quadrants among the sixteen

quadrants. Here, QNo = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10,

11, 12, 13, 14, 15, 16 quad can be FirstIn,

SecondIn, ThirdIn, FourthIn, FifthIn, SixthIn,

SeventhIn, EighthIn, NinthIn, TenthIn,

EleventhIn, TwelvthIn, ThirteenthIn,

FourteenthIn, FifteenthIn, and SixteenthIn.

‘DItem’ and ‘DInItem’ are constants and are set

to 1 as at a particular time only one Odia alphabet

is accessed.

SName is the name of the image file present in

‘Inp’.

Find_Direction Module

The procedure followed in this section is the same as

described in the Find_Direction module of

‘Build_Dictionary’ except that the procedure of the

Find_Direction is performed for the quadrants ‘FirstIn’,

‘SecondIn’, ‘ThirdIn’, ‘FourthIn’, ‘FifthIn’, ‘SixthIn’,

‘SeventhIn’, ‘EighthIn’, ‘NinthIn’, ‘TenthIn’,

‘EleventhIn’, ‘TwelvthIn’, ‘ThirteenthIn’, ‘FourteenthIn’,

‘FifteenthIn’ and ‘SixteenthIn’. Here ‘DItem’ and

‘DInItem’ are constants and are set to 1 as at a particular time

only one Odia alphabet is accessed. The ‘DPath’ parameter

holds the absolute path of the excel file named

‘InputFile16.xlsx’ and in this file, features of all the sixteen

quadrants of the input image are written. The features of

‘FirstIn’, ‘SecondIn’, ‘ThirdIn’, ‘FourthIn’, ‘FifthIn’,

‘SixthIn’, ‘SeventhIn’, ‘EighthIn’, ‘NinthIn’, ‘TenthIn’,

‘EleventhIn’, ‘TwelvthIn’, ‘ThirteenthIn’, ‘FourteenthIn’,

‘FifteenthIn’ and ‘SixteenthIn’ are pushed into the first,

second, third, fourth, fifth, sixth, seventh, eighth, ninth, tenth,

eleventh, twelfth, thirteenth, fourteenth, fifteenth and

sixteenth column of ‘InputFile16.xlsx’ respectively.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

69

Get_Pattern_Left Module

The procedure followed in this section is the same as

described in the Get_Pattern_Left module of

‘Build_Dictionary’ except that the procedure here is applied

to the quadrants ‘FourthIn’, ‘EighthIn’, ‘NinthIn’,

‘EleventhIn’, ‘TwelvthIn’, ‘FourteenthIn’, ‘FifteenthIn’

and ‘SixteenthIn’.

Get_Pattern_Right Module

The procedure followed in this section is the same

as described in the Get_Pattern_Right module of

‘Build_Dictionary’ except that the procedure here is

applied to the quadrants ‘FirstIn’, ‘SecondIn’,

‘ThirdIn’, ‘FifthIn’, ‘SixthIn’, ‘SeventhIn’,

‘TenthIn’ and ‘ThirteenthIn’.

 Sub_Quad_Pattern Module

The procedure followed in this section is the same

as described in the Sub_Quad_Pattern module of

‘Build_Dictionary’ except that the procedure is

applied to the quadrants ‘FirstIn’, ‘SecondIn’,

‘ThirdIn’, ‘FourthIn’, ‘FifthIn’, ‘SixthIn’,

‘SeventhIn’, ‘EighthIn’, ‘NinthIn’, ‘TenthIn’,

‘EleventhIn’, ‘TwelvthIn’, ‘ThirteenthIn’,

‘FourteenthIn’, ‘FifteenthIn’ and ‘SixteenthIn’.

Remaining_Part Module

The procedure followed in this section is the same as

described in the Remaining_Part module of

‘Build_Dictionary’ except that the procedure is applied to

the quadrants ‘FirstIn’, ‘SecondIn’, ‘ThirdIn’,

‘FourthIn’, ‘FifthIn’, ‘SixthIn’, ‘SeventhIn’,

‘EighthIn’, ‘NinthIn’, ‘TenthIn’, ‘EleventhIn’,

‘TwelvthIn’, ‘ThirteenthIn’, ‘FourteenthIn’,

‘FifteenthIn’ and ‘SixteenthIn’.

Write_Excel Module

The procedure followed in this section is the same as

described in the Write_Excel module of

‘Build_Dictionary’ except that the procedure here is

applied for the features extraction from the quadrant

‘FirstIn’, ‘SecondIn’, ‘ThirdIn’, ‘FourthIn’, ‘FifthIn’,

‘SixthIn’, ‘SeventhIn’, ‘EighthIn’, ‘NinthIn’,

‘TenthIn’, ‘EleventhIn’, ‘TwelvthIn’, ‘ThirteenthIn’,

‘FourteenthIn’, ‘FifteenthIn’ and ‘SixteenthIn’ are

written in an excel file named as ‘InputFile16.xlsx’. The

absolute path of ‘InputFile16.xlsx’ is stored in the

‘DPath’ parameter and the file name of the input image is

stored in ‘SName’. The value in the ‘SName’ parameter

is written in the seventeenth column of

‘InputFile16.xlsx’.

Fig. 3: Extraction of feature from input document image IM

Hence, the feature extracted from any of the above

sixteen quadrants and the value in the ‘SName’ parameter

is written in the first, second, third, fourth, fifth, sixth,

seventh, eighth, ninth, tenth, eleventh, twelfth, thirteenth,

fourteenth, fifteenth, sixteenth and seventeenth column of

the first row of the excel file, ‘InputFile16.xlsx’

respectively and there is only one sheet present in the

excel file. For example, the final features for the input

image ‘Inp’ are:

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

70

1st – dddddddbbbbbbbbbaaabbbbbbbbccdddddda

2nd – aaaaaaabbbbbbbbbcccccdddaaaaa

3rd – aaaaaaabbbbbbccccccccaaaaaaaadcccccccc

4th – cccccccbbbbbbbb

5th – aaaaaabbbbbbccc

6th – dddddddcccccccbbaaaabbbbb

7th – dddddaabbbbbbbbbcdaaaaaaa

8th – cccccccbbbbbbbb

9th – bbbbbbbaaccccddddd

10th – aaaaaaabbbb

11th – null value

12th – cccccccbbbbbbbbdddcccccccc

13th – aaaabbbbbccccccbbaaaaadcccccccc

14th – cccccccdddaaaaaa

15th – bbbbbccddddddddd

16th–cccccccaaaaaaaaabbbbbbbbaaaaaaaadddddddaccccc

Search_For_Match

This module consists of two sub-modules,

‘Check_Common’ and ‘Match_Common’. The

submodule, ‘Check_Common’ takes the features

extracted from the input image, ‘Inp’ which are stored in

the excel file, ‘InputFile16.xlsx’ as input. Figure 4 shows

the overall process of finding a correct match. In the left

part of Fig. 4, the extracted features in ‘InputFile16.xlsx’

are accessed and searched in the sheets of the excel file,

‘VacantQuadrants.xlsx’. If any of the sixteen columns in

‘InputFile16.xlsx’ has a null value, then the sheet named

with the column number having null is accessed. For

example, if the 6th and 10th columns consist of null values,

the sheet with the name ‘6’ in ‘VacantQuadrants.xlsx’ is

searched for finding a correct match using the

Check_Common sub-module. If multiple matches are

found in the 6th sheet then, the Match_Common sub-

module is applied. After this, if a correct match is not

found then a sheet named ‘10’ is searched using the

Check_Common sub-module. Again, if multiple matches

are found then the Match_Common sub-module is applied

to get a correct match.

The right part of Fig. 4 shows the process if none of

the columns of ‘InputFile16.xlsx’ have null values. If

none of the columns of ‘InputFile16.xlsx’ have null

values then the extracted features in ‘InputFile16.xlsx’

are searched in ‘CFeature16.xlsx’ using the

Check_Common sub-module. As explained earlier in the

Find_Common_Feature module of ‘Build_Dictionary’,

the ‘CFeature16.xlsx’ is a repository of the common

features of all Odia alphabets. After the application of the

Check_Common sub-module, if multiple matches are

found then the Match_Common sub-module is applied to

get a correct match.

Check_Common

The common features present in all the columns in

each row of ‘CFeature16.xlsx’ are traversed to find

whether the common features are found in the

corresponding columns of ‘InputFile16.xlsx’. For this,

Check_Common has been used. The format of

Check_Common is Check_Common (String1,

String2). If the features in all the columns of

‘InputFile16.xlsx’ are present in the respective

columns of ‘CFeature16.xlsx’ in a particular row, then

the parameter ‘P1’ is made equal to 1 otherwise it is

made equal to 0. If P1 = 1 then the parameter ‘P3’ is

incremented by 1. For example, if the value of P3 is 16

after all the columns of ‘InputFile16.xlsx’ have been

checked with the corresponding columns for a row ‘r’

in ‘CFeature16.xlsx’, then the file name is retrieved

from the seventeenth column of the row ‘r’ in

‘CFeature16.xlsx’. The file name from the seventeenth

column of row ‘r’ is added to the list ‘MFirst’ and the

row number of row ‘r’ is added to the list ‘MRow’. In

some scenarios, the list ‘MFirst’ has more than one

correct match and in these scenarios ‘Match_Common’

is called.

Fig. 4: Process of finding the correct match

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

71

Match_Common

If there is more than one value in the list ‘MFirst’ then,

this module is called. In this module, for each row number in

‘MRow’, the common features of all the columns are

retrieved from ‘CFeature16.xlsx’ and appended in the list

‘QList’. The features present in all the sixteen columns of

‘InputFile16.xlsx’ are retrieved and appended in the list

‘InpPattern’. Then the LCS of the two strings, ‘Str1’ and

‘Str2’ is found where Str1 = QList[ee] and Str2 =

InpPattern[ee] where, ee = 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12,

13, 14, 15, 16 and the resultant LCS is matched with ‘Str2’.

If there is a match with ‘Str2’ then the parameter ‘P2’ is set

to 1, otherwise 0. If P2 = 1 then, the parameter ‘P4’ is

incremented by 1. These steps are carried out for each item

present in the list ‘MRow’. If P4 = 16 for the row number in

‘MRow’, then the index of that row number is retrieved and

stored in ‘mrw’. The file name at the index ‘mrw’ in the list

‘MFirst’ is copied to the list ‘MSecond’. The list ‘MSecond’

consists of the correct match for the input image.

Results and Discussion

Though the proposed system in this study follows some

parts of the system described in (Kar and Pradhan, 2022),

some other parts are newly added to the system. The system

described in this study differs from the system described by

(Kar and Pradhan, 2022) in the number of parts, division of

the image of the Odia alphabet, direction which is followed

to get a continuous trace of the black pixel, finding features

of the images in ‘Dictionary’, input to the system and the

correctness accuracy in the recognition of Odia alphabets;

and the all the differences of the proposed system and the

system described in the system (Kar and Pradhan, 2022) are

tabulated in Table 1.

The proposed system has been implemented using

Lenovo Ideapad 310 Laptop, 4GB RAM, Intel(R) Core

(TM) i5-7200U CPU @ 2.50GHz 2.70 GHz, and the

JetBrains PyCharm Community Edition 2019.1.

Correctness Accuracy

For testing, 100 documents consisting of Odia

alphabets written in the font family, ‘AkrutiOriAshok-

99’ in a particular font size in bold style are taken. The

font sizes that are considered are 18, 20, 22, 24, 26, 28,

36, 48, and 72. For each font size, 100 scanned documents

or documents converted to images by using the software

are created. In this way, 900 images of documents are

tested. The groups are created for each set of 100

documents in a particular font size. The groups are named

Doc18, Doc20, Doc22, Doc24, Doc26, Doc28, Doc32,

Doc48, and Doc72 for the font size 18, 20, 22, 24, 26,

28, 36, 48, and 72 respectively. Hence, the proposed

system has been tested on 900 document images. An

image from group Doc36 as an example for testing has

been shown in Fig. 5.

Table 1: Difference between the system described in this study and the system described in (Kar and Pradhan, 2022)

 Features of the system described in this study Features the system described in (Kar and Pradhan, 2022)

1. Both the dictionary images and input images are Both dictionary images and input images were divided into

 divided into 16 quadrants 4 quadrants

2. In the Pre-Processing module of the Build_Dictionary In the Preprocessing module of Dictionary Building, both the

 part, both the dictionary images and the input image are dictionary images and the input image was divided into 2 parts

 divided into 4 parts both vertically and horizontally both vertically and horizontally

3. This system consists of four parts, Build_Dictionary, This system consists of two parts, Dictionary Building

 Segment_ Line, Character _ Segment, and Finding Match

 Recognise_Character

4. Out of sixteen quadrants, 8 quadrants are scanned using Out of four quadrants, 1 quadrant was scanned using Getting

 Get_Pattern_Left and 8 quadrants are scanned using Get_Pattern_ Features Left and 3 quadrants were scanned using Getting

 Right in the Find_Direction module Features Right in the Find Path module

5. When an image of an Odia alphabet is divided into None of the 4 quadrants were vacant

 sixteen quadrants, some quadrants do not have any

 black pixels. These quadrants are known as

 Vacant Quadrants

6. Based on vacant quadrants, features of images of Odia As there were no vacant quadrants hence

 alphabets are grouped and stored in an excel file, there was no such module

 VacantQuadrants.xlsx’. This is done by the

 Group_Vacant_Quads module

7. For finding a correct match, the extracted feature of For finding a correct match, the extracted feature of the input

 the input image is searched in the excel file, ‘VacantQuadrants.xlsx’ image was searched in the excel file, ‘CommonFeature.xlsx’

 and if a correct match is not found then the ‘CFeature16.xlsx’ and if a correct match was not found then the input alphabet

 excel file is searched. There are no steps for tracing the input was traced in another direction using the module,

 alphabet in another direction as by searching the above two excel Trace Another Direction

 files a correct match can be found

8. For testing, images of documents are given as input and a For testing, images of Odia alphabets were given as input and

 correctness accuracy of 99.8% has been achieved a correctness accuracy of 98.1% had been achieved

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

72

Fig. 5: Image of a Document Given for Testing

The image shown in Fig. 5 is stored in ‘IM’ and goes

through the steps that are shown in Fig. 3 for feature

extraction and follows the steps shown in Fig. 4 for

finding a correct match.

 Each segmented Odia alphabet finds a match in the excel

file, ‘VacantQuadrants.xlsx’ using the Search_For_Match

module. In the row of the excel file, ‘VacantQuadrants.xlsx’

where a segmented Odia alphabet finds a match, a variable

‘count’ is incremented by 1. In the same way, for each

different Odia alphabet, a different variable is created and

incremented by 1. In this way, there are a total of 48

variables, each variable dedicated to a particular Odia

alphabet. Initially, the number of times a particular

alphabet appears in the input image ‘IM’ has been counted

manually. The value of the variable for a particular

alphabet is compared with the count that has been

manually found for each alphabet.

This process is repeated for all 100 documents in a

particular font size to find the correctness and accuracy of

the recognition of the Odia alphabets in a particular font

size. The correctness accuracy of recognition of

Segmented Odia alphabets is calculated as:

100NumOf Cor Mat
Correctness Accuracy

To NumOf Al


=

where:
Num Of Cor Mat = Number of Correct Matches in all the

input documents in a particular font size
To Num Of Al = Total Number of Alphabets in all the

input documents in a particular font size

The correctness accuracy of segmentation of

individual Odia alphabets is calculated as:

100NumOf Char
Correctness Accuracy

To NumOf Char


=

where:

Num Of Char = Number of Correctly Segmented

Alphabets in all the input documents

in a particular font size

To Num Of Char = Total Number of Alphabets in all the

input documents in a particular font size

According to the testing results, the system has achieved

an overall accuracy of 99.97 and 99.8% in the segmentation

of individual Odia alphabets from line segments and

recognition of segmented Odia alphabets respectively. The

results related to the correctness accuracy for the recognition

of segmented Odia alphabets have been shown in Fig. 6.

Comparison with other Approaches

In this section, the proposed system in this study is

compared with other approaches. The comparison has

been shown in Table 2.

Table 2 shows the comparison of the correctness accuracy

of the recognition of alphabets in different languages with the

correctness accuracy of the proposed system.

Fig. 6: Correctness Accuracy of the Recognition of Segmented

Odia Alphabets

Table 2: Comparison of accuracy

Accuracy achieved by
other approaches

--- Accuracy achieved by the

Approaches Language Accuracy % approach in this study

Kar and Pradhan (2022)
Pal et al. (2003) Printed odia 98.10

Das et al. (2017) Handwritten English Numerals 94.80 99.8%

Padhi and Senapati (2013) Printed odia 92.00
Goswami and Mitra (2018) Printed odia 91.30
 Printed gujarati 96.87

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

73

Conclusion

The system explained in this study has four parts,

‘Build_Dictionary’,‘Segment_Line’,‘Character_Segme

nt’, and ‘Recognise_Character’. In this system, features

are extracted from the Odia alphabet images present in the

directory ‘Dictionary’ and stored in the excel file,

‘DictionaryFeatures16.xlsx’. From this excel file,

common features are extracted and stored in

‘CFeature16.xlsx’ and the data in ‘CFeature16.xlsx’ are

grouped based on vacant quadrants. These groups are

stored in separate sheets of an excel file,

‘VacantQuadrants.xlsx’. The final output of the

‘Build_Dictionary’ is the excel file,

‘VacantQuadrants.xlsx’. On the other side, a document

image consisting of Odia alphabets is given as input to the

‘Segment_Line’ part which helps in creating images of

line segments from the input document and stores them in

the ‘Line Segments’ directory. The ‘Character_Segment’

part creates images of individual Odia alphabets from the

line segments and stores them in the directory

‘alphabets’. One alphabet at a time is given as input to the

‘Recognise_Character’ part where features are extracted

and these features are searched in

‘VacantQuadrants.xlsx’ to get a correct match. If a

correct match is not found, then features extracted from

the input image of the Odia alphabet are searched in

‘CFeature16.xlsx’ to get a correct match. The system has

achieved an overall accuracy of 99.8%.

In the future, research can be done to reduce the number

of modules thereby increasing the accuracy. This system can

be tested on other font families of the Odia language. The

system can be tested on the distorted images of Odia

alphabets to observe the amount of accuracy.

Acknowledgment

The authors acknowledge the support received from

the Department of Computer Science and Applications,

Utkal University, Bhubaneswar, Odisha, India.

Funding Information

There was no outside funding for the research

presented in the manuscript.

Author’s Contributions

Aradhana Kar: System design and acquisition of

data, drafted of the article, final approval of the version of

the article.

Sateesh Kumar Pradhan: System designed, analysis

of data and interpretation, reviewing of the article, final

approval of the version of the article.

Ethics

The article is original in its approach and all the

authors have read and approved the manuscript and no

ethical issues are involved.

References

Agarwal, U. (2008). Algorithms Design and
Analysis. Dhanpat Rai & Co.

Beazley, D., & Jones, B. K. (2011). Python Cookbook:
Recipes for Mastering Python 3. O'Reilly Media, Inc.

Bigun, J. (2006). Vision with Direction: A Systematic
Introduction to Image Processing and Computer
Vision. Springer.

https://link.springer.com/book/10.1007/b138918

Chityala, R., & Pudipeddi, S. (2020). Image processing

and acquisition using Python. Chapman and

Hall/CRC.

Cormen, T. H., Leiserson, C. E., Rivest, R. L., & Stein, C.

(2009). Introduction to algorithms. MIT Press.

 Das, D., Dash, R., & Majhi, B. (2017). Odia Compound

Character Recognition Using Stroke Analysis. In

Computational Intelligence in Data Mining.

Advances in Intelligent Systems and Computing, Vol

556, (pp. 325-332). Springer Singapore.

https://doi.org/10.1007/978-981-10-3874-7_30

Downey, A. B. (2019). Think Python. Green Peas Press.
https://www.greenteapress.com/thinkpython/thinkpy

thon.pdf

 Gonzalez, R. C., & Woods, R. E. (2017). Digital Image

Processing. Pearson Education India.

Gazoni, E., & Clark, C. (2022). openpyxl-A Python

library to read/write Excel 2010 xlsx/xlsm files.

https://openpyxl.readthedocs.io/en/stable/

Goswami, M.M., & Mitra, S.K. (2018). Printed Gujarati

Character Classification Using High-Level Strokes.

Proceedings of 2nd International Conference on

Computer Vision & Image Processing vol 2.

Advances in Intelligent Systems and Computing, vol

704. Springer, Singapore.

https://doi.org/10.1007/978-981-10-7898-9_16
Goswami, M. M., & Mitra, S. K. (2016). Classification of

printed Gujarati characters using low-level stroke
features. ACM Transactions on Asian and Low-
Resource Language Information Processing
(TALLIP), 15(4), (pp. 1-26).

 https://doi.org/10.1145/2856105
Howse, J., Joshi, P. & Beyeler, M. (2016). OpenCv:

Computer Vision Projects with Python. Packt
Publishing.

Idris, I. (2011). Numpy 1.5 Beginner’s Guide. Packt
Publishing.

Idris, I. (2012). Numpy Cookbook. Packt Publishing.

Johansson, R. (2019). Numerical Python: Scientific

Computing and Data Science Applications with

Numpy, Scipy and Matplotlib. Apress.

Aradhana Kar and Sateesh Kumar Pradhan / Journal of Computer Science 2023, 19 (1): 57.74

DOI: 10.3844/jcssp.2023.57.74

74

 Kar, A., & Pradhan, S. K. (2022) Recognition of Odia

Character in an Image by Dividing the Image into

Four Quadrants. In International Journal of Advanced

Computer Science and Applications (IJACSA),

13(8), (pp. 116 – 129).

Kar, A., & Pradhan, S. K. (2021). A Three-Phase Noise

Removal Approach to Achieve Accuracy in Line

Segmentation of Odia Text. In 2021 19th OITS

International Conference on Information Technology

(OCIT) (pp. 54-59). IEEE.

https://doi.org/10.1109/OCIT53463.2021.00022

Narasimha Karumanchi, N. K. (2017). Data Structures

and Algorithms Made Easy.
https://eprints.triatmamulya.ac.id/1694/

Lee, K. D. (2014). Python Programming Fundamentals.

SpringerLink.

Nixon, M., & Aguado, A. (2019). Feature Extraction

and Image Processing for Computer Vision.

Academic Press.

Otsu, N. (1979). A Threshold Selection Method from

Gray-Level Histograms. IEEE Transactions on

Systems, Man and Cybernetics, 9(1), (pp. 62-66).

Padhi, D., & Senapati, D. (2013). Zone Centroid Distance

and Standard Deviation Based Feature Matrix for

Odia Handwritten Character Recognition. In

Proceedings of the International Conference on

Frontiers of Intelligent Computing: Theory and

Applications (FICTA) (pp. 649 – 658). Springer-

Verlag Berlin Heidelberg.

https://doi.org/10.1007/978-3-642-35314-7_73

Pal, U., Belaıd, A., & Choisy, C. (2003). Touching

Numeral Segmentation using Water Reservoir

Concept. Pattern Recognition Letters, 24(1-3), (pp.

261-272).

https://doi.org/10.1016/S0167-8655(02)00240-4

Mohapatra, P. N., & Das, S. (1952). Sarbasara

Byakarana. ISBN: 8186085009, Published by New

Students’ Store.

https://drive.google.com/file/d/11RNY6zXN-

NmE_GeEVDYtsKxrNghHtsF3/view

Poladi, S. R. (2018). Matplotlib 3.0 Cookbook. Packt

Publishing.

Rao, M. (1901). Chabila Madhu Barnabodha, Odisha

Book Emporium.

https://drive.google.com/file/d/1djPXDN4nmoVhg

AdWzNkG8Yn14nhsOb8m/view

Shaw, Z. A. (2013). Learn Python 3 the Hard Way: A

Very Simple Introduction to the Terrifyingly

Beautiful World of Computers and Code. Addison-

Wesley.

Skiena, S. S. (2013). The Algorithm Design

Manual. Springer.

Solem, J. E. (2012). Programming Computer Vision

with Python: Tools and Algorithms for Analyzing

Images. O'Reilly Media, Inc.

Sridhar, S. (2013). Digital Image Processing. OXFORD

University Press.

Summerfield, M. (2009). Programming in Python 3: A

Complete Introduction to the Python Language.

Addison-Wesley.

 Tripathy, N., & Pal, U. (2006). Handwriting

Segmentation of Unconstrained Oriya Text. In

Sadhana, Vol. 31, (pp. 755-769).

 https://doi.org/10.1007/BF02716894

Vermani, L. R., & Vermani, S. (2019). An Elementary

Approach to Design and Analysis of Algorithms.

World Scientific Europe Ltd.

https://doi.org/10.1109/OCIT53463.2021.00022

