
© 2025 Samsul Arifin, Kevin Tan, Felix Indra Kurniadi, Muhammad Faisal, Amril Mutoi Siregar, Edwin Kristianto Sijabat, Dwi
Wijonarko and Puguh Wahyu Prasetyo. This open-access article is distributed under a Creative Commons Attribution (CC-BY) 4.0

license.

Research Article

Enhancing Data Transmission Security through the Modified
Hill Cipher and Henon Map Chaos Function

1Samsul Arifin, 2Kevin Tan, 2Felix Indra Kurniadi, 1Muhammad Faisal, 3Amril Mutoi Siregar, 4Edwin
Kristianto Sijabat, 5Dwi Wijonarko and 6Puguh Wahyu Prasetyo
1Department of Data Science, Faculty of Engineering and Design, Institut Teknologi Sains Bandung, Bekasi, West Java,
Indonesia
2Department of Computer Science, School of Computer Science, Bina Nusantara University, Jakarta, Indonesia
3Department of Informatics, Faculty of Engineering and Design, Institut Teknologi Sains Bandung, Bekasi, West Java,
Indonesia
4Department of Pulp and Paper Processing Technology, Faculty of Vocational, Institut Teknologi Sains Bandung, Bekasi, West
Java, Indonesia
5Department of Information Technology, Faculty of Computer Science, University of Jember, Jember, East Java, Indonesia
6Department of Mathematics Education, Faculty of Teacher Training and Education, Universitas Ahmad Dahlan, Yogyakarta,
Indonesia

Article history
Received: 22-09-2024
Revised: 25-12-2024
Accepted: 03-03-2025

Corresponding Author:
Samsul Arifin
Department of Data Science,
Faculty of Engineering and Design,
Institut Teknologi Sains Bandung,
Bekasi, West Java, Indonesia
Email:
samsul.arifin212@gmail.com

Abstract: The advancement and sophistication of technology in the present
era have resulted in millions of people interacting and sharing data through
the internet using various platforms such as email, chat applications, and
others. This has led to the dissemination of personal information and data
worldwide through the internet, which also poses the possibility of data
interception by unauthorized parties. Data breaches occur when data is not
securely protected. One way to secure data is by using the concept of
cryptography. In this paper, a modification will be made to the classical
cryptography algorithm, Hill Cipher, by incorporating the chaos function of
Henon Map in generating unimodular key matrices. Based on the design and
development results, the modified algorithm of Hill Cipher is capable of
securing data quite effectively with a sufficiently large key space and a wide
encryption set. The modified algorithm of Hill Cipher will be implemented
in a data sender application.

Keywords: Cryptography, Unimodular Hill Cipher, Henon Map,
Unimodular Matrix, next.js

Introduction
The progress and sophistication of technology in the

present era greatly influence our daily lives. Millions
upon millions of people interact and share data using
email, messaging applications and various other
available platforms (Kamalakannan and Tamilselvan,
2015). This has led to an increase in information and
privacy data being spread worldwide through the internet
network. Especially in terms of data transmission, which
has now become an essential tool for people to share
information quickly. Moreover, our world has just been
shocked by the arrival of the Covid-19 virus pandemic,
which has forced many tasks to be carried out online. We
all have had to rely on data transmission to facilitate our
connectivity needs and work. The extensive use of data
transmission for all activities, including work, brings
new concerns about the security of our data. This is
because users also send data containing sensitive work

information or confidential documents, making it
essential for them to have a secure pathway to transmit
this data (Fadlan et al., 2020). One of the security issues
related to data transmission is the possibility of data
breaches and cyber-attacks. If these occur, sensitive
information such as financial data, business secrets and
so on, which are compromised, can pose a danger or
harm to both organizations and individuals (Khalaf et al.,
2016; Arifin et al., 2022).

The science of cryptography is the most suitable
technique to be implemented in a data transmission
application to enhance its security. Cryptography is a
discipline that operates by transforming a text to be
protected into an unreadable form. In cryptography, the
text to be protected is called plaintext and the unreadable
text is called ciphertext. The transformation of plaintext
into ciphertext is a technique commonly known as
“encryption”. Conversely, the technique to reverse

Journal of Computer Science

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1441

on the data to be transmitted, it will make it more
difficult for hackers to capture and interpret the
information they obtain, even if they manage to acquire
the encrypted files (Arifin et al., 2021; Arifin and
Muktyas, 2021).

One of the cryptographic algorithms that has been
used, is easy to implement and requires minimal
computational resources is the Hill Cipher (Ismail et al.,
2006). The Hill Cipher, discovered by Lester Hill in
1929, is a classical cryptographic algorithm that utilizes
symmetric block cipher techniques (Paragas et al., 2019).
The Hill Cipher operates by using an > matrix as
the key matrix in encryption and decryption operations,
making this technique primarily reliant on the inverse of
the key matrix, which significantly enhances its
resilience against brute-force attacks. However, the Hill
Cipher algorithm is fundamentally limited to an
encryption range modulo 26, covering the alphabet from
A to Z with corresponding representation values ranging
from 0 to 25. This imposes a limitation on the Hill
Cipher, allowing it to only perform encryption and
decryption on words or sentences containing the alphabet
from A-Z (Rubinstein-Salzedo, 2018). In this study, the
provided alternative modifications will expand the
encryption and decryption scope of the Hill Cipher,
enabling it to accommodate and process all existing
characters, including symbols and characters from all
languages, with the assistance of Unicode understanding.
This algorithm is also vulnerable to known plaintext
attacks, where hackers have access to plaintext-
ciphertext pairs, allowing them to uncover the key matrix
used (Arifin and Muktyas, 2018; Arifin, 2023).

Hill Cipher is a matrix-based encryption algorithm
that belongs to symmetric cryptography, where the same
key is used for encryption and decryption processes. In
Hill Cipher, keys in the form of invertible matrices are
used to convert the original message into an encrypted
form. This matrix serves as the encryption key and for
decryption, the inverse matrix of the key is used to return
the original message. As a form of block cipher,
Unimodular Hill Cipher processes data by dividing it
into blocks that are then encrypted using a key matrix.
Due to its simple and efficient nature, Hill Cipher
provides good speed in the encryption and decryption
process, making it suitable for applications that require
high performance. However, like other symmetry
methods, Hill Cipher is vulnerable to attacks if the key or
matrix pattern is guessable, or if too much data is
encrypted without a key change. Therefore, while
effective in certain situations, Hill Cipher is often
combined with stronger symmetric encryption
algorithms to enhance security and protect data from
more sophisticated cryptographic threats (Arifin et al.,
2022; Paragas, 2020; Jin et al., 2025). This is stated in
Figure (1).

A known-plaintext attack can be considered a highly
dangerous form of cryptanalysis because the attacker can
more easily obtain the encryption key used to encrypt
data. With the encryption key in hand, the attacker can
perform decryption on other pieces of information
encrypted using the same key (Rajput and Nishchal,
2013). This attack technique is usually aided by brute-
force methods to attempt many potential key values that
could be the actual encryption key. With the advanced
and modern computational power, techniques requiring
brute force have become easier and faster to accomplish
(Abd-Elmonim et al., 2011). By incorporating other
algorithms that utilize complex mathematical functions,
it is possible to enhance the randomness of the key and
also expand the keyspace to reduce the susceptibility to
brute-force attempts at guessing the key (Reddy et al.,
2012; Arifin et al., 2021).

Fig. 1: Symmetric and asymmetric encryption concepts (Awati
et al., 2024)

One of the studies conducted to counter known
plaintext attacks is the research carried out by Paragas et
al. (2019). This study modified the key matrix generation
phase using layered matrix functions to enhance the
randomness of values within the key matrix. The added
steps involve creating an initial random matrix, followed
by performing inverse and transpose operations,
converting to binary form and applying XOR to produce
the key matrix. This research was evaluated using the
Avalanche Effect, demonstrating that the results from
this method are more secure against known plaintext
attacks compared to the basic form of the Hill Cipher
algorithm (Paragas et al., 2019; Safitri et al., 2023).

Another researcher who also modified the Hill Cipher
to mitigate vulnerability against known plaintext attacks
is Reddy et al. (2012). In their study, a circulant matrix
of prime numbers was employed as the key matrix for
the Hill Cipher. A circulant matrix is a square matrix
where each row is generated by shifting the previous row

m × m

http://192.168.1.15/data/13049/fig1.png
http://192.168.1.15/data/13049/fig1.png

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1442

to the right by one position and taking the last element
from the previous row as the first element of the next
row. The research demonstrated that utilizing a circulant
matrix of prime numbers can effectively address known
plaintext attacks (Reddy et al., 2012; Wen et al., 2024).
Another study was also conducted by Ismail et al.
(2006), adjusting the key matrix by multiplying a vector
with each row of the key matrix to generate a new key
matrix. The results of this research also demonstrated
that making modifications to the key matrix calculation
significantly enhances the resilience of the Hill Cipher
against known plaintext attacks (Ismail et al., 2006;
Mahmoud and Chefranov, 2010; Pribadi et al., 2023).

Based on the research conducted previously, this
study will present an alternative modification in the
creation of the key matrix, albeit with a different
approach. The method to be employed involves
incorporating chaos functions into the key matrix
computation to leverage the properties of chaotic
functions that generate more unpredictable and chaotic
random numbers. Since the Hill Cipher utilizes matrices
and matrix inverses as its foundation, finding a reversible
matrix becomes challenging, especially when the matrix
size is larger than . To expand the key space, the
key matrix will be transformed into an unimodular
matrix (Arifinet al., 2021). The chaos function to be used
is the Henon Map Function, which is a chaotic function
that generates chaotic values in the form of a two-
dimensional map (Wen, 2014). With the assistance of the
chaos function, the generated values are then arranged
into an upper triangular matrix. Through the use of
elementary row operations, this upper triangular matrix
can then be transformed into a key matrix with a
determinant value of either one or negative one,
signifying an unimodular matrix (Arifin et al., 2021;
Rrghout et al., 2024; Ibrahim et al., 2022).

The research conducted by Paragas et al. (2019)
involves modifying the Hill Cipher algorithm by
employing a block cipher consisting of three phases: Key
matrix formation, encryption process and decryption
process. The researchers divided the plaintext into parts
consisting of 128-bit blocks and used the character
"space" to fill empty sections. SHA256 was also utilized
to create the key matrix, perform the CBC (Ciphertext
Block Chaining) process, generate a hexadecimal
substitution box, circular shifting, XOR operations and
multiple rounds of encryption processing. With multiple
layers of operations involved in key matrix formation
and encryption processing, the researchers concluded
that the algorithm provides a considerably strong level of
security. The research conducted involves the fusion of
the concepts of Affine Cipher and Hill Cipher, combined
with the modern cryptographic concept of Public-Key
Cryptography. The researchers first used the Fibonacci
Q-Matrix as a public key, where q is a prime number.
They then execute the encryption process using a
modified Affine Hill Cipher algorithm, with each

element within the modulo of the prime number q. As a
result, both the sender and receiver of the encrypted
output must possess matching keys to achieve the desired
encryption outcome. The researchers state that this
method is secure due to requiring multiple elements to
align for successful decryption. The algorithm also
employs a large key space, ensuring a high level of
security (Muktyas et al., 2021; Liew and Nguyen, 2020).

The research conducted by Fadlan et al. (2020)
involves the use of two encryption layers, consisting of
Beaufort Cipher and Hill Cipher. The researchers first
perform the encryption process using Beaufort Cipher as
the initial layer. The first process yields a ciphertext
resulting from the encryption using Beaufort Cipher.
This ciphertext is then further encrypted using Hill
Cipher to produce a new ciphertext. For decryption, the
researchers follow the reverse process: Decryption using
Hill Cipher to obtain the original plaintext. This is
followed by the decryption using Beaufort Cipher,
resulting in the final plaintext. The researchers state that
the encryption outcome achieves higher security by using
two encryption layers compared to just one. The research
conducted involves modifying the Hill Cipher by
incorporating the Playfair Cipher and utilizing a block
cipher concept with a block size of 128 bits and a key
size of 256 bits. The researchers employ the Playfair
Cipher to determine a rectangular matrix key which,
according to research from other papers, is considered
safer than a square matrix key as the resulting ciphertext
will be longer than the plaintext. The researchers state
that the security level of the Hill Cipher is significantly
enhanced because the encryption results make it
challenging to find linear equations between the
ciphertext and the key matrix. The research conducted by
Qowi and Hudallah (2021) involves the use of Vigenere
Cipher, Caesar Cipher and Hill Cipher for encryption.
The researchers aimed to strengthen the key generation
process of the Vigenere Cipher, which tends to result in
repetitive keys. By adding Hill Cipher and Caesar
Cipher, the researchers were able to significantly reduce
the level of key repetition in the encryption process. The
researchers first created an encryption key using Caesar
Cipher. This key was then used in the encryption process
of the Modified Vigenere Cipher, which incorporates the
concept of Hill Cipher multiplication. The researchers
state that the encryption outcome thoroughly eliminates
the weaknesses of the Vigenere Cipher, thus providing a
very high level of security (Arifin et al., 2021; Ahmed et
al., 2020; Abdillah et al., 2021).

Materials and Methods
This methodology section explains two major

concepts, namely Key Matrix Generation, which covers
the process of generating a key matrix using elements
from Unicode or binary value ranges to encrypt text and
digital files and Modified Hill Cipher Algorithm, which
involves the use of two keys (key1 and key2) and

4 × 4

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1443

modification of the traditional Hill Cipher algorithm to
produce more secure encryption capable of handling a
wider range of characters in Unicode or binary data. Hill
Cipher fundamentally employs the method of matrix
multiplication, using the plaintext matrix with the key
matrix to generate the ciphertext matrix, which is the
outcome of the encryption process. Then, the ciphertext
matrix can be decrypted by multiplying it with the
inverse of the key matrix to regain the plaintext matrix.
However, in standard Hill Cipher, the resulting ciphertext
tends to be confined within the scope of the alphabet A-Z
because the elements of the key matrix lie within .
In this study, two types of encryption modes can be used:
The first is text encryption and the second is digital file
encryption (Rubinstein-Salzedo, 2018). For text
encryption, the range of key matrix elements used is
from 0 to 1,114,110, with 1,114,110 being the maximum
size for Unicode. By utilizing the Unicode element
range, all language characters that are part of Unicode
can be encrypted, resulting in encrypted output that is
also random characters encompassing various languages.
By using Unicode, the elements in the key matrix will be
modulo 1,114,111 (Alex Martelli et al., 2023). For digital
file encryption, the optimal choice of element range is
from 0-255, resulting in the elements being modulo 256.
Encryption of digital files is performed by modifying the
binary values within the file, causing the encrypted file
to produce errors such as unsupported format or others,
depending on the operating system and the file extension
being encrypted (Paragas et al., 2019a-b; Safitri et al.,
2023).

One constraint of using Unicode is that not all points
within Unicode represent valid characters to be displayed
on a computer (Alex Martelli et al., 2023). Examples of
invalid characters are control characters, unprintable
characters and Unicode points that remain unassigned.
To prevent encryption failures when encountering invalid
characters, the process of multiplying the key matrix
with the plaintext matrix will be repeated. With each
multiplication result, every element will be checked for
the presence of invalid characters. If invalid characters
are found, the matrix multiplication will be redone by
multiplying the key matrix with the previous
multiplication result. Once no invalid characters are
present, the encryption process concludes and the
number of repetitions is recorded. This repetition count
will also be used during the decryption process, where
the inverse of the key matrix will be multiplied with the
ciphertext matrix for the same number of repetitions
(Alex Martelli et al., 2023). The key matrix created will
always be a unimodular matrix, formed through the aid
of elementary row operations. The purpose of using a
unimodular matrix is to ensure that the matrix is
invertible, allowing for an enlarged key space/size of the
key matrix without concerns of non-invertibility. The
elements of the key matrix will be generated using the
assistance of the Henon Map chaos function to enhance

the randomness level of each element (DeBonis, 2022).
A 10-character alphanumeric passkey is required and will
be modified for use as an initial value in the Henon Map
chaos function. The passkey's ASCII codes will be
extracted from each character and then processed into
decimal form Rrghout et al. (2024); Safitri et al. (2023);
Azanuddin et al., (2024). In Figure (2), we can see a
glimpse of the Modified Hill Cipher algorithm.

Fig. 2: Modified Hill Cipher algorithm

This modified Hill Cipher algorithm employs two
keys, namely key1 and key2. Key1 functions as a
determinant of the key matrix size, which will be derived
from one of the divisor factors of the plaintext size. In
this study, the divisor factor will be selected by the
program based on the following conditions: (i) If the size
of the numpy array of plaintext/ciphertext is larger than
200, then select the nearest divisor factor to 100. (ii) If
the size of the numpy array of plaintext/ciphertext is
larger than 200, but the nearest divisor factor to 100
exceeds 500, then the algorithm will select the nearest
divisor factor to 100 that is smaller than 100. (iii) If the
size of the numpy array of plaintext/ciphertext is smaller
than 200, then the algorithm will select the nearest
divisor factor to 200 that is smaller than 200 (Arifin et
al., 2022; Muralidharan et al., 2023; Petrenko and
Dehtiarova, 2025).

The basis for selecting a factor value around 100 is
the observation of encryption and decryption times about
the key matrix size. It is observed that if the size of the
key matrix used exceeds 100, the encryption and
decryption times increase significantly, making it
unsuitable for use (Arifin et al., 2023). For key2, it
serves as the initial value for the Henon Map chaos
function. With the presence of both key1 and key2, the
key matrix can be formed. The following is the process
of key matrix formation: (a) Obtain the size of the matrix
(n) from key1. (b) Calculate the number of elements
required to create an upper triangular matrix that will be
populated within the size of an matrix. (c)
Generate matrix elements according to the required
number of elements using the Henon Map chaos function
with the initial value of key2. (d) Create an identity
matrix of size . (e) Arrange the generated matrix
elements into the identity matrix to form the upper

Z/26Z

n × n

n × n

http://192.168.1.15/data/13049/fig2.png
http://192.168.1.15/data/13049/fig2.png

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1444

triangular matrix. (f) Perform elementary row operations
on the upper triangular matrix to fill the lower diagonal
portion of the matrix. (g) A unimodular key matrix is
successfully formed (Sulaiman and Hanapi, 2021;
Chauhdary et al., 2022).

For decryption, the passkey is also required and
serves the same purpose as in the encryption process.
Decryption also utilizes key1 and key2, like the
encryption process. The decryption process involves the
use of the inverse of the key matrix. The following is the
process of finding the inverse of the key matrix:

1. The key matrix is formed using the key matrix
formation process from the encryption process.

2. With the matrix size (n) from key1, create a zero
matrix of size .

3. With the newly created zero matrix, fill the left side
of the matrix with the key matrix and the right side
of the matrix with the identity matrix (Arifin et al.,
2024; Hamissa et al., 2010). Let's assume n = 3,
thus the created zero matrix will be :

Fill the zero matrix, with representing the key
matrix element:

4. Perform elementary row operations to transform the
left side matrix (filled with the key matrix) into an
identity matrix.

5. Once the elementary row operations are completed,
the left-side matrix will become an identity matrix
and the right-side matrix will become the inverse of
the key matrix (Fadlan et al., 2020; Keserwani and
Govil, 2020; Udayan et al., 2024).

The modified Hill Cipher algorithm will be
developed in the Python programming language and will
require the NumPy and OS libraries. For a
comprehensive explanation, the following outlines the
workings of the encryption process of the modified Hill
Cipher algorithm: (1) Receive the passkey and the
text/digital file to be encrypted. (2) For text, convert each
text character into its Unicode code and store it in a
numpy array. For files, NumPy can directly convert file
data into numbers stored in a Numpy array. (3) Calculate
the size of the numpy array and ensure that the size is not
odd. (4) Find a divisor factor that can evenly divide the
size of the numpy array. (5) Determine a divisor factor
that meets the criteria to become key1, which is used as
the key matrix size. (6) Process the passkey into decimal
form and use it as key2, which serves as the initial value
for the Henon Map chaos function. (7) Create the key
matrix. (8) Reshape the original 1-dimensional numpy

array into a suitable shape for multiplication with the key
matrix. (9) Multiply the key matrix with the reshaped
numpy array. (10) Reshape the multiplication result back
into a 1-dimensional form, which is also the encrypted
result. (11) For text, reverse the encrypted numpy array
numbers according to the Unicode characters represented
by the values of the elements in the encrypted numpy
array. For files, the encrypted numpy array will be
directly converted back into an encrypted file. Below is
the working process of the decryption process of the
modified Hill Cipher algorithm: (i) Receive the passkey
and the text/digital file to be decrypted. (ii) For text,
convert each text character into its Unicode code and
store it in a numpy array. For files, numpy can directly
convert file data into numbers stored in a numpy array.
(iii) Calculate the size of the numpy array and ensure that
the size is not odd. (iv) Find a divisor factor that can
evenly divide the size of the numpy array. (v) Determine
a divisor factor that meets the criteria to become key1,
which is used as the key matrix size. (vi) Process the
passkey into decimal form and use it as key2, which
serves as the initial value for the Henon Map chaos
function. (vii) Find the inverse of the key matrix. (viii)
Reshape the original 1-dimensional numpy array into a
suitable shape for multiplication with the inverse key
matrix. (ix) Multiply the inverse key matrix with the
reshaped numpy array. (x) Reshape the multiplication
result back into a 1-dimensional form, which is also the
decrypted result. (xi) For text, reverse the decrypted
numpy array numbers according to the Unicode
characters represented by the values of the elements in
the decrypted numpy array. For files, the decrypted
numpy array will be directly converted back into a
decrypted file (Arifin, 2023; Indriani et al., 2020; Pine,
2024).

The modified Hill Cipher offers significant
advantages in scenarios requiring lighter computational
loads, such as Internet of Things (IoT) applications,
where resource constraints are a critical consideration. Its
design ensures efficient encryption and decryption
processes, making it suitable for devices with limited
processing power. Unlike RSA, which is optimized for
asymmetric encryption and excels in scenarios
demanding higher levels of security, the modified Hill
Cipher provides a balanced approach by leveraging the
simplicity of symmetric encryption while maintaining
adequate protection. A key feature of the modified Hill
Cipher is its use of the Henon Map chaos function,
which generates a larger and more unpredictable
keyspace. This enhancement not only increases security
against cryptanalysis but also enables the algorithm to
achieve comparable levels of protection to advanced
cryptographic techniques like AES in specific
applications. As a result, the modified Hill Cipher is
highly effective for secure communications in

n × 2n

3 × 6

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

k

ij

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

0
0
0

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1445

environments requiring both efficiency and reliability
(Arifin et al., 2024; Marquez et al., 2024; Landau et al.,
2024).

Results and Discussion
This results and discussion section covers five major

concepts, namely Output Visualization, which displays
the encryption and decryption results in a visual form to
make it easier to understand; Estimated Time
Comparison, which compares the time required between
the modified Hill Cipher algorithm and the standard
version; Passkey Strength, which evaluates the strength
of the passkey used in the encryption process; Histogram
Comparison of File Binary, which compares the
distribution of file binaries before and after encryption to
measure the changes that occur; and Data Sender
Application, which demonstrates the implementation of
the modified Hill Cipher algorithm in a data sending
application (Arifin et al., 2022-2023; Arifin, 2023; Safitri
et al., 2023).

Here is a simple example. Using the modified Hill
Cipher, a plaintext such as 'HELLO' is first converted
into numerical values based on its Unicode
representation. For instance, the characters 'H', 'E', 'L', 'L'
and 'O' correspond to the numerical values [72, 69, 76,
76, 79] respectively. These numerical values are then
arranged into a matrix, preparing them for encryption.
This preprocessing step ensures that the plaintext is in a
suitable format for matrix operations. Next, the plaintext
matrix is multiplied by the key matrix, which is
generated using the Henon Map chaos function to ensure
randomness and security. The resulting ciphertext matrix
contains transformed numerical values, representing the
encrypted text. This ciphertext is then converted back
into an encoded textual format, producing an unreadable
output that secures the original message. This process
highlights the effectiveness of the modified Hill Cipher
in encrypting text. In this section, the encryption and
decryption processes will be demonstrated from start to
finish. A paragraph will be used as the plaintext (Reddy
et al., 2012; Toorani and Falahati, 2011; Muttoo et al.,
2011). The plaintext used:

“In the Pride Lands of Africa, a pride of lion’s rule over
the kingdom from Pride Rock. King Mufasa and Queen
Sarabi's newborn son, Simba, is presented to the
gathering animals by Rafiki the mandrill, the kingdom's
shaman and advisor. Mufasa's younger brother, Scar,
covets the throne. After Simba grows into a cub, Mufasa
shows him the Pride Lands and explains the
responsibilities of kingship and the 'circle of life,' which
connects all living things. One day, Simba and his best
friend Nala explore an elephant graveyard, where the two
are chased by three spotted hyenas named Shenzi, Banzai
and Ed. Mufasa is alerted by his majordomo, the hornbill
Zazu and rescues the cubs. Though disappointed with
Simba for disobeying him and putting himself and Nala in
danger, Mufasa forgives him and explains that the great
kings of the past watch over them from the night sky, from
which he will one day watch over Simba. Scar, having

planned the attack, visited the hyenas and convinced them
to help him kill both Mufasa and Simba in exchange for
hunting rights in the Pride Lands. Scar sets a trap for
Simba and Mufasa, luring Simba into a gorge and having
the hyenas drive a large herd of wildebeests into a
stampede to trample him. Mufasa saves Simba but winds
up hanging perilously from the gorge's edge; he begs for
Scar's help, but Scar throws Mufasa back into the
stampede to his death. Scar tricks Simba into believing
that the event was his fault and tells him to leave the
kingdom and never return. Once Simba flees, Scar orders
the hyenas to kill Simba, who manages to escape.
Unaware of Simba's survival, Scar tells the pride that the
stampede killed both Mufasa and Simba and steps
forward as the new king, allowing the hyenas into the
Pride Lands. After he collapses in a desert, Simba is
rescued by two outcasts, a meerkat and warthog named
Timon and Pumbaa. Simba grows up with his two new
friends in their oasis, living a carefree life under their
motto 'hakuna matata' ('no worries' in Swahili). Years
later, an adult Simba rescues Timon and Pumbaa from a
hungry lioness, who turns out to be Nala. Simba and Nala
fall in love and she urges him to return home, telling him
that the Pride Lands have become drought-stricken under
Scar's reign. Still feeling guilty over Mufasa's death,
Simba refuses and storms off. He encounters Rafiki, who
tells Simba that Mufasa's spirit lives on in him. Simba is
visited by the spirit of Mufasa in the night sky, who tells
him that he must take his place as king. After Rafiki
advises him to learn from the past instead of running from
it, Simba decides to return to the Pride Lands.”
(https://en.wikipedia.org/wiki/The_Lion_King)

Below is the process of encrypting the plaintext:
Plaintext Size:
Plaintext Unicode:

Divisor factor of the plaintext size (up to the first 3 digits):

Passkey: qu8s9201iw
key2 derived from the processed passkey:
key1 from the chosen factor:

Random sequence from the Henon Map chaos function:

Identity Matrix:

Upper Triangular Matrix:

2632

73, 110, 32, … , 100, 115, 46[]

1, 2, 4, 7, 8, 14, 28, 47, 56, 94, 188[]

0.936789699446426

188

12068, 20191, 3485, 21665, 1106458, 7631, 9352, 19679, 3516,
21658, 1106546, 7815, 9188, 19826, 3054, 21462, 1106563, 7866,

9146, 19863, 2935, 21406, 1106582, 7909, 9108, 19895, 2831,
21355, 1106603, 7956, 9066, 19931, 2714, 21296, 1106631, 8020,

9008, 19979, 2556, 21213, 1106679, 8124, 8914, 20057, 2299,
21069, 1106778, 8337, 8717, 20211, …

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
0
0
0

12068
1
0
0
0
0

20191
16506

1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

1112336
1109971
10393

1
0
0

17481
14081
6600
14617

1
0

1111558
2038
21329
1409
20399

1

https://en.wikipedia.org/wiki/The_Lion_King

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1446

The key matrix is filled entirely through row elementary
operations:

Reshape the numpy array plaintext to enable multiplication
with the key matrix:

Numpy array ciphertext (result of multiplying the plaintext
matrix with the key matrix):

Reshape the numpy array ciphertext into 1 dimension:

Below is the process of decryption:
Ciphertext Size:
Ciphertext Unicode:

Divisor factor of the plaintext size (up to the first 3 digits):

Passkey: qu8s9201iw
key2 derived from the processed passkey:
key1 from the chosen factor:

Random sequence from the Henon Map chaos function:

Identity Matrix:

Upper Triangular Matrix:

The key matrix is filled entirely through row elementary
operations:

Create an empty matrix with size n × 2n:

Fill left-hand side with key matrix and right-hand side with
identity matrix:

Turn lower left triangle into zero (row ops):

Turn upper right triangle into zero (row ops):

The right-hand side matrix is the inverse of the key matrix:

Reshape ciphertext matrix to enable multiplication with inverse
matrix:

Plaintext matrix (after multiplication with inverse matrix):

Reshape plaintext matrix into 1-dimensional numpy array:

Figure (3) presents the result of the encryption
process, illustrating how the original plaintext data has
been successfully transformed into an unreadable
ciphertext format using the applied cryptographic
algorithm. This transformation ensures that the
information is securely protected from unauthorized

1
1107967
10703

1108316
11274
5592

12068
499646
1041039
254933
133090
637596

20191
743434
1080851
1088921
354690
382861

⋯
⋯
⋯
⋯
⋯
⋯

1112336
874461
1066566
259127
42648
101199

17481
679584
1049206
96323
997259
826095

1111558
90116
549345
312601
204763
207068

73
97
44
105
111
101

110
110
32
109
32
32

32
100
97
98
114
80

⋯
⋯
⋯
⋯
⋯
⋯

101
105
102
115
32
100

32
99
32
32
116
115

76
97
108
116
104
46

379932
598560
515426
924447
1071224
256538

184740
28865
809454
350360
1077438
249439

433078
846924
423317
918287
725097
167318

⋯
⋯
⋯
⋯
⋯
⋯

737930
1095604
95155
929333
485576
548029

672466
236498
423248
1066408
265219
82481

1076590
1084943
934161
269060
78996
484719

379932, 184740, 433078, … , 548029, 82481, 484719[]

2632

379932, 184740, 433078, … , 548029, 82481, 484719[]

1, 2, 4, 7, 8, 14, 28, 47, 56, 94, 188[]

0.936789699446426

188

12068, 20191, 3485, 21665, 1106458, 7631, 9352, 19679, 3516,
21658, 1106546, 7815, 9188, 19826, 3054, 21462, 1106563, 7866,

9146, 19863, 2935, 21406, 1106582, 7909, 9108, 19895, 2831,
21355, 1106603, 7956, 9066, 19931, 2714, 21296, 1106631, 8020,

9008, 19979, 2556, 21213, 1106679, 8124, 8914, 20057, 2299,
21069, 1106778, 8337, 8717, 20211, …

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
0
0
0

12068
1
0
0
0
0

20191
16506

1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

1112336
1109971
10393

1
0
0

17481
14081
6600
14617

1
0

1111558
2038
21329
1409
20399

1

1
1107967
10703

1108316
11274
5592

12068
499646
1041039
254933
133090
637596

20191
743434
1080851
1088921
354690
382861

⋯
⋯
⋯
⋯
⋯
⋯

1112336
874461
1066566
259127
42648
101199

17481
679584
1049206
96323
997259
826095

1111558
90116
549345
312601
204763
207068

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
0
0
0

0
0
0
0
0
0

0
0
0
0
0
0

1
1107967
10703

1108316
11274
5592

12068
499646
1041039
254933
133090
637596

20191
743434
1080851
1088921
354690
382861

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
0
0
0

12068
1
0
0
0
0

20191
16506

1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

0
0
0
1
0
0

0
0
0
0
1
0

0
0
0
0
0
1

1
0
0
0
0
0

0
1
0
0
0
0

0
0
1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

455740
468578
1058564

1
0
0

188693
1012345
498861
1099494

1
0

335173
147894
660879
703137
1093712

1

880754
333976
619542
779151
420612
1108519

1102043
1
0
0
0
0

862459
1097605

1
0
0
0

⋯
⋯
⋯
⋯
⋯
⋯

455740
468578
1058564

1
0
0

188693
1012345
498861
1099494

1
0

335173
147894
660879
703137
1093712

1

379932
598560
515426
924447
1071224
256538

184740
28865
809454
350360
1077438
249439

433078
846924
423317
918287
725097
167318

⋯
⋯
⋯
⋯
⋯
⋯

737930
1095604
95155
929333
485576
548029

672466
236498
423248
1066408
265219
82481

1076590
1084943
934161
269060
78996
484719

73
97
44
105
111
101

110
110
32
109
32
32

32
100
97
98
114
80

⋯
⋯
⋯
⋯
⋯
⋯

101
105
102
115
32
100

32
99
32
32
116
115

76
97
108
116
104
46

73, 110, 32, … , 100, 115, 46[]

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1447

access, as the encrypted data cannot be understood
without the corresponding decryption key. The figure
visually demonstrates the effectiveness of the encryption
method in safeguarding data confidentiality, which is a
crucial aspect in maintaining information security in
digital communication systems (Ibrahim et al., 2022;
Tarigan et al., 2021; Arifin et al., 2022).

Fig. 3: Encryption result

In this section, a comparative analysis of encryption
and decryption times will be conducted, specifically
focusing on digital files, as digital files generally have
larger sizes compared to text. The digital files used for
comparison will be audio files with sizes ranging from 1-
25 megabytes. The 25-megabyte limit is based on the
attachment size limit of Gmail. The variations in
encryption and decryption times for different file sizes
are influenced by the matrix size, which is determined by
the algorithm's divisor factor selection criteria. The
algorithm selects matrix orders based on file size,
ensuring compatibility with the encryption process while
maintaining optimal security. However, this approach
occasionally results in fluctuations in computational
complexity, as seen in the decryption time for a 25 MB
file, where a higher matrix order significantly increases
processing time. This anomaly reflects the deterministic
nature of the key generation process, where security and
efficiency are carefully balanced. The use of larger
matrix orders enhances the randomness and strength of
the encryption, providing greater protection against
cryptographic attacks. While this trade-off leads to
slightly increased decryption times for certain file sizes,
the algorithm remains efficient and suitable for practical
applications (Toorani and Falahati, 2011; Hamissa et al.,
2011; Praveenkumar et al., 2017). Table (1) presents the
comparison of encryption and decryption times for
digital files.

Based on Table (1), the encryption and decryption
times increase as the size of the digital file increases, but
these times are still relatively fast. The encryption and
decryption times in the modified Hill Cipher algorithm
depend on the size of the key matrix, which is also

influenced by the selected divisor factor based on the
criteria outlined in section 2.5. It can be observed that for
a file size of 25 megabytes, the decryption time is longer
compared to a digital file size of 50 megabytes. This is
because the smallest selected factor in the hundreds
range is 389, meaning that the required matrix size is
389x389, leading to a relatively longer processing time.
Table 1: Estimated time comparison

File Size Encryption Time (in
seconds)

Decryption Time (in
seconds)

1 megabyte 0.07481670379638672 0.08078384399414062
5
megabytes

0.29917144775390625 0.5396807193756104

10
megabytes

0.5571625232696533 0.5764575004577637

15
megabytes

0.8887159824371338 1.5647499561309814

20
megabytes

1.2621512413024902 1.4089264869689941

25
megabytes

1.8236854076385498 6.56545615196228

50
megabytes

3.6591148376464844 3.5725536346435547

The passkey used consists of 10 characters
comprising a combination of 26 lowercase alphabets, 26
uppercase alphabets and 10 numeric digits from 0 to 9.
This implies that the used passkey has a combination of

, which is possible passkey
combinations. The strength of the passkey is evaluated
using the brute-force method. Brute-force attempts were
also made based on the passkey criteria. With the
computational power of the system used by the author, a
brute-force attempt involving 100,000 passkey
combinations takes approximately 754 sec or 12 min and
34 sec. Based on the obtained computation time, an
approximation of the time (in years) required to compute
all passkey combinations can be calculated:

The calculation yields a result of approximately
200,669,622.6 years, indicating that the passkey is highly
secure against brute-force attacks. The encryption of
digital files is carried out by transforming the binary data
of the digital file, making the resulting encrypted file
unable to be opened. To visualize the changes,
histograms will be created for both the original and
encrypted files to see if there are any differences between
the two histograms. This experiment will be conducted
on four digital files with different extensions: .jpg, .mp3,
.mp4, .pdf.

Figures (4) through 7 present binary value histograms
for various file formats, illustrating the distribution of
byte-level data across different types of digital content.
Figure (4) displays the histogram for a JPG file,
characterized by distinct patterns resulting from image
compression and encoding schemes. Figure (5) shows
the histogram for an MP3 file, highlighting the unique

(26 + 26 + 10)10 6210

6210

60×60×24×365
62 /(100,000/754) 10

http://192.168.1.15/data/13049/fig3.png
http://192.168.1.15/data/13049/fig3.png

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1448

binary structure shaped by audio compression
techniques. Figure (6) depicts the binary distribution of
an MP4 file, where the data layout reflects the
complexity of multimedia encapsulation involving both
audio and video streams. Lastly, Figure (7) illustrates the
binary value histogram for a PDF file, showcasing a
distribution influenced by document structure, embedded
objects and text encoding. These histograms provide
visual insight into the inherent structural differences
among file types at the binary level (Porter and Zingaro,
2024; Ansari and Bajaj, 2024). The following are the
histograms resulting from the experiment on the four
files:

Fig. 4: JPG binary value histogram

Fig. 5: MP3 binary value histogram

Fig. 6: MP4 binary value histogram

Fig. 7: PDF binary value histogram

The author developed a web-based data sender
application using the Next.js framework. The modified
Hill Cipher algorithm will be implemented into the data
sender application in the form of an API. The application
consists of two pages: The first is the encryption page,
which also serves as the home page and the second is the
decryption page. On the encryption page, users will be
prompted to enter a passkey or generate one randomly by
clicking the “Generate Passkey” button. Users can then
choose between two modes: Write Text and Upload File
and input the text/file to be encrypted. Subsequently,
users will be asked to provide the recipient's email and
phone number. Once all inputs are filled, users can press
the “Encrypt” button. The data sender application will
call the API with endpoints “/encrypt” or “/encrypt-file”
depending on the chosen mode and perform the
encryption. The encrypted result will be sent to the
recipient's email and the passkey will be sent to the
recipient's phone number. On the decryption page, users
will also be asked to enter the passkey sent to their phone
number. Then users will be prompted to choose a mode
and input the encrypted text/file. After that, users can
directly press the decryption button. The data sender
application will call the API with endpoints “/decrypt” or
“/decrypt-file” based on the selected mode. The API
endpoint will return the decryption result to the user.

This algorithm is particularly well-suited for Internet
of Things (IoT) devices, as its low computational
overhead ensures efficient performance on devices with
limited processing power. By minimizing resource
requirements, it enables secure communication in IoT
networks without significantly impacting device
functionality or battery life, making it an ideal choice for
lightweight encryption needs. In addition to IoT
applications, the algorithm is highly adaptable for use in
cloud storage systems to ensure secure file sharing. Its
versatility also extends to mobile applications, where it
can be utilized for encrypted messaging, offering robust
security for sensitive communications. This flexibility
highlights its potential to function effectively across a
wide range of technological ecosystems.

In the program we developed, the graphical user
interface (GUI) is designed to be as user-friendly as
possible, ensuring that users can easily navigate and
operate the available features without requiring advanced
technical knowledge. This intention is clearly reflected in
the intuitive and responsive design of the Encrypt and
Decrypt pages, as shown in Figs. (8-9). These interface
layouts not only simplify the encryption and decryption
processes but also provide a more comfortable and
efficient user experience overall.

Below is the procedure for using the data sender
application on the encryption page: (1) Users/Senders are
asked to input the passkey, or they can generate one
randomly by pressing the Generate Passkey button. (2)
Users/Senders are prompted to choose between two
modes: Write Text and Upload File. (3) If users select

http://192.168.1.15/data/13049/fig4.png
http://192.168.1.15/data/13049/fig4.png
http://192.168.1.15/data/13049/fig5.png
http://192.168.1.15/data/13049/fig5.png
http://192.168.1.15/data/13049/fig6.png
http://192.168.1.15/data/13049/fig6.png
http://192.168.1.15/data/13049/fig7.png
http://192.168.1.15/data/13049/fig7.png

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1449

Write Text, a textbox will appear and if users choose
Upload File, an upload button will appear. (4) Then
users/senders are asked to provide the recipient's email
and phone number. (5) Users/Senders can press the Send
button after filling in all the data and the application will
initiate the encryption process. The result will be sent to
the recipient's email and the passkey will be sent to the
recipient's phone number. Below is the procedure for
using the data sender application on the decryption page:
(i) Users/Recipients are asked to input the passkey sent
to their phone number. (ii) Users are prompted to choose
between two modes: Write Text and Upload File. (iii) If
users/recipients select Write Text, a textbox will appear
and if users choose Upload File, an upload button will
appear. (iv) Users/recipients can press the decrypt button
and the application will initiate the decryption process. If
the chosen mode is Write Text, the decryption result will
appear in the application. If the chosen mode is Upload
File, the decryption result will be downloaded directly to
the user/recipient's computer.

Fig. 8: Encrypt page

Fig. 9: Decrypt page

The incorporation of chaos functions and unimodular
matrices enhances the security of the modified Hill
Cipher by significantly increasing the randomness and
unpredictability of the key. The chaos function, such as
the Henon Map, generates a highly non-linear and
complex sequence of numbers, making the key matrix
resistant to patterns that could be exploited in
cryptanalysis. Additionally, the use of unimodular
matrices ensures the invertibility of the key matrix,
further strengthening its cryptographic robustness.
Compared to the classical Hill Cipher, these
modifications effectively mitigate vulnerabilities to
known plaintext attacks. By expanding the keyspace and
introducing chaotic elements, the algorithm makes it
considerably more difficult for attackers to deduce the
encryption key, even if they possess plaintext-ciphertext
pairs. This enhancement also reduces the feasibility of
brute-force methods, as the increased complexity of the
key matrix demands exponentially higher computational
resources to crack.

The proposed algorithm employs modular arithmetic
and chaotic functions, making it highly compatible with
modern computational capabilities. This compatibility
allows it to take advantage of GPUs and parallel
processing, significantly enhancing the efficiency of the
encryption process, even for large datasets or real-time
applications. Furthermore, the algorithm's adaptability to
diverse platforms, such as IoT and cloud-based systems,
highlights its robustness in addressing emerging
technological advancements. Its lightweight
computational requirements and scalability make it
particularly well-suited for resource-constrained
environments, ensuring secure and efficient data
encryption across various modern technologies.

Conclusion
The modified Hill Cipher algorithm has been

successfully implemented in the data sender application
and can effectively protect information with reliable
encryption and accurate decryption. A comparison of
encryption time can be observed by comparing it with
research conducted where that study used the Strassen
algorithm to optimize the computational time required
for Hill Cipher. According to that research, matrix
multiplication with N order = 32 took 18.7068 seconds,
while the modified Hill Cipher algorithm used in this
study requires less than 1 second for matrix
multiplication with N order >100 (due to the matrix size
always being around 100). The addition of the Henon
Map chaos function has been successfully incorporated,
generating a sequence of random elements for use in key
matrix formation. The constructed key matrix is
unimodular, achieved through row operations and
contains random elements generated by the Henon Map
chaos function. The modified Hill Cipher can be further
extended by incorporating other techniques, such as
combining it with other cryptographic algorithms to add
additional layers of security or utilizing different

http://192.168.1.15/data/13049/fig8.png
http://192.168.1.15/data/13049/fig8.png
http://192.168.1.15/data/13049/fig9.png
http://192.168.1.15/data/13049/fig9.png

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1450

mathematical functions to enhance the strength of
various aspects of cryptographic security. This algorithm
can also be implemented in various applications or
devices to test its compatibility and security level.

The lightweight nature of the modified Hill Cipher
enables seamless integration into IoT devices with
limited processing power, ensuring secure
communication between connected systems. This feature
is particularly advantageous for IoT ecosystems, where
efficient encryption is critical to maintaining data
integrity without overburdening the hardware. By
leveraging its computational efficiency, the algorithm
enhances the security of real-time data transmission in
resource-constrained environments. In addition to IoT,
the modified Hill Cipher demonstrates strong
adaptability for encrypting large datasets, making it an
excellent choice for mobile and cloud-based applications.
Its ability to balance efficiency and security allows it to
handle the demands of modern data-intensive platforms,
such as secure file sharing and encrypted messaging.
This versatility underscores its potential as a robust
cryptographic solution across various technological
ecosystems.

Acknowledgment
The authors sincerely appreciate the reviewers for

their valuable feedback, constructive suggestions and
insightful ideas, all of which have significantly enhanced
the quality of this manuscript and contributed to its
readiness for publication. We are also grateful that this
research has finally reached completion, marking an
important milestone in our academic journey. Their
commitment to the advancement of research in data
science and cryptography is truly commendable and
greatly acknowledged.

Funding Information
This research was generously supported and funded

by the Lembaga Penelitian dan Pengabdian kepada
Masyarakat (LPPM) of Institut Teknologi Sains Bandung
(ITSB). The support provided by LPPM ITSB played a
vital role in facilitating various stages of this study, from
initial planning and data collection to implementation
and final analysis. Their commitment to fostering
academic research and community engagement has been
instrumental in enabling the successful completion of
this project. The authors are deeply grateful for the trust
and resources extended throughout the research process.

Author’s Contributions
Samsul Arifin: As the lead author, was responsible

for the primary concept of this research, including the
design of the modified Hill Cipher algorithm
incorporating the Henon Map chaos function. He also led
the development of the methodology, result analysis and

the overall manuscript writing. His role laid the
foundation for the success and completion of this study.

Kevin Tan: Contributed to the technical
implementation of the algorithm in a data transmission
application, integrating it with frameworks such as
Next.js. He also participated in testing and validating the
algorithm to ensure its encryption effectiveness.

Felix Indra Kumadi: Focused on the mathematical
computation required to generate unimodular matrices
used in the algorithm. He also made significant
contributions to the literature review on cryptography
and chaos theory and was involved in revising the
manuscript to maintain its academic quality.

Muhammad Faisal: Was involved in designing the
system architecture and the security model for the data
sender application. He also helped evaluate the
robustness of the encryption through simulation-based
analysis and contributed to proofreading the manuscript.

Amril Mutoi Siregar: Contributed to the
development and implementation of the backend
infrastructure that supports cryptographic operations.
Additionally, he assisted in preparing visual illustrations
and algorithm flowcharts for the manuscript.

Edwin Kristianto Siaibat: Supported the integration
of the modified Hill Cipher algorithm into practical use
cases, particularly in secure communication modules. He
also contributed to the literature review and identifying
recent threats in data transmission security.

Dwi Wijonarko: Played a key role in testing and
validating the modified algorithm using various datasets
to ensure consistent performance. He also worked on
documentation and code optimization for deployment
purposes.

Puguh Wahyu Prasetyo: Provided mathematical
insight into unimodular matrix generation and supported
the theoretical analysis of the Henon Map chaos
function. He contributed to ensuring the mathematical
accuracy and theoretical soundness presented in the
paper.

Ethics
This manuscript presents original research findings

that have not been published or disseminated elsewhere.
The work contributes new knowledge to the field and has
been conducted with strict adherence to ethical
standards. The corresponding author affirms that there
are no conflicts of interest, financial or otherwise, that
could have influenced the outcomes or interpretation of
the study. Furthermore, the research complies fully with
all relevant ethical guidelines, ensuring that no ethical
concerns arise from the study’s design, implementation,
or reporting. This transparency underscores the integrity
and credibility of the research presented.

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1451

References
Abd-Elmonim, W. G., Ghali, N. I., Hassanien, A. E., &

Abraham, A. (2011). Known-plaintext attack of
DES-16 using particle swarm optimization. IEEE,
12-16.
https://doi.org/10.1109/NaBIC.2011.6089410

Abdillah, A. A., Azwardi, A., Permana, S., Susanto, I.,
Zainuri, F., & Arifin, S. (2021). Performance
evaluation of linear discriminant analysis and
support vector machines to classify cesarean
section. Eastern-European Journal of Enterprise
Technologies, 5(2 (113)), 37-43.
https://doi.org/10.15587/1729-4061.2021.242798

Ahmed, M., Abdul-kader, H. S., Kishk, A., & Abdo, A.
A. (2020). An Efficient Multi Secret Image Sharing
Scheme Using Hill Cipher. In Proceedings of the
International Conference on Artificial Intelligence
and Computer Vision (AICV2020) (Vol. 1153, pp.
604-613). Springer International Publishing.
https://doi.org/10.1007/978-3-030-44289-7_57

Ansari, I. A., & Bajaj, V. (Eds.). (2024). Image
Processing with Python: A practical approach.
https://doi.org/10.1088/978-0-7503-5924-5

Arifin, S., Bayu Muktyas, I., & Iswara Sukmawati, K.
(2021). Product of two groups integers modulo m,n
and their factor groups using python. Journal of
Physics: Conference Series, 1778(1), 012026.
https://doi.org/10.1088/1742-6596/1778/1/012026

Arifin, S., Kurniadi, F. I., Yudistira, I. G. A., Nariswari,
R., Murnaka, N. P., & Muktyas, I. B. (2022). Image
Encryption Algorithm Through Hill Cipher, Shift
128 Cipher, and Logistic Map Using Python. 2022
3rd International Conference on Artificial
Intelligence and Data Sciences (AiDAS), 221-226.
https://doi.org/10.1109/aidas56890.2022.9918696

Arifin, S., & Muktyas, I. B. (2018). Membangkitkan
Suatu Matriks Unimodular Dengan Python. Jurnal
Derivat: Jurnal Matematika Dan Pendidikan
Matematika, 5(2), 1-9.
https://doi.org/10.31316/j.derivat.v5i2.361

Arifin, S., & Muktyas, I. B. (2021). Generate a system of
linear equation through. AIP Conference
Proceedings, 020005.
https://doi.org/10.1063/5.0041651

Arifin, S., Muktyas, I. B., Al Maki, W. F., & Mohd Aziz,
M. K. B. (2022). Graph Coloring Program of Exam
Scheduling Modeling Based on Bitwise Coloring
Algorithm Using Python. Journal of Computer
Science, 18(1), 26-32.
https://doi.org/10.3844/jcssp.2022.26.32

Arifin, S., Muktyas, I. B., Prasetyo, P. W., & Abdillah, A.
A. (2021). Unimodular matrix and bernoulli map
on text encryption algorithm using python. Al-
Jabar: Jurnal Pendidikan Matematika, 12(2), 447-
455.
https://doi.org/10.24042/ajpm.v12i2.10469

Arifin, S., Nicholas, A., Baskoroputro, H., Prabowo, A.
S., Ibrahim, M. A., & Rahayu, A. (2023).
Algorithm for Digital Image Encryption Using
Multiple Hill Ciphers, a Unimodular Matrix and a
Logistic Map. International Journal of Intelligent
Systems and Applications in Engineering, 11(6s),
311-324 2858.

Arifin, S., Tan, K., Ariani, A. T., Rosdiana, S., &
Abdullah, M. N. (2023). The Audio Encryption
Approach uses a Unimodular Matrix and a Logistic
Function. International Journal of Emerging
Technology and Advanced Engineering, 13(4), 71-
81. https://doi.org/10.46338/ijetae0423_08

Arifin, S., Wijonarko, D., Suwarno, & Sijabat, E. K.
(2024). Application of Unimodular Hill Cipher and
RSA Methods to Text Encryption Algorithms Using
Python. Journal of Computer Science, 20(5), 548-
563. https://doi.org/10.3844/jcssp.2024.548.563

Awati, R., Bernstein, C., & Cobb, M. (2024). Advanced
Encryption Standard (AES). TechTarget.
https://www.techtarget.com/searchsecurity/definitio
n/Advanced-Encryption-Standard

Azanuddin, A., Kartadie, R., Erwis, F., Boy, A. F., &
Nasyuha, A. H. (2024). A Combination of Hill
Cipher and RC4 Methods for Text Security.
Telkomnika (Telecommunication Computing
Electronics and Control), 22(2), 351-361.
https://doi.org/10.12928/telkomnika.v22i2.25628

Chauhdary, S. H., Alkatheiri, M. S., Alqarni, M. A., &
Saleem, S. (2022). (Retracted) Improved encrypted
AI robot for package recognition in IoT logistics
environment. Journal of Electronic Imaging,
31(06), 061813.
https://doi.org/10.1117/1.jei.31.6.061813

D, M., R, B. G., R, V. S., & K, C. (2023). Performance
And Security Enhanced Improved Hill Cipher.
2023 Fifth International Conference on Electrical,
Computer and Communication Technologies
(ICECCT), 1-5.
https://doi.org/10.1109/icecct56650.2023.10179696

DeBonis, M. J. (2022). Introduction to Linear Algebra:
Computation, Application, and Theory.
https://doi.org/10.1201/9781003217794

Delfs, H., & Knebl, H. (2015). Introduction to
Cryptography: Principles and Applications. 53.
https://doi.org/10.1007/978-3-662-47974-2

Fadlan, M., Suprianto, Muhammad, & Amaliah, Y.
(2020). Double Layered Text Encryption using
Beaufort and Hill Cipher Techniques. 2020 Fifth
International Conference on Informatics and
Computing (ICIC). 2020 Fifth International
Conference on Informatics and Computing (ICIC),
Gorontalo, Indonesia.
https://doi.org/10.1109/icic50835.2020.9288538

Hamissa, G., Sarhan, A., Abdelkader, H., & Fahmy, M.
(2011). Securing JPEG architecture based on
enhanced chaotic hill cipher algorithm. The 2011
International Conference on Computer
Engineering & Systems, 260-266.
https://doi.org/10.1109/icces.2011.6141053

https://doi.org/10.1109/NaBIC.2011.6089410
https://doi.org/10.15587/1729-4061.2021.242798
https://doi.org/10.1007/978-3-030-44289-7_57
https://doi.org/10.1088/978-0-7503-5924-5
https://doi.org/10.1088/1742-6596/1778/1/012026
https://doi.org/10.1109/aidas56890.2022.9918696
https://doi.org/10.31316/j.derivat.v5i2.361
https://doi.org/10.1063/5.0041651
https://doi.org/10.3844/jcssp.2022.26.32
https://doi.org/10.24042/ajpm.v12i2.10469
https://doi.org/10.46338/ijetae0423_08
https://doi.org/10.3844/jcssp.2024.548.563
https://www.techtarget.com/searchsecurity/definition/Advanced-Encryption-Standard
https://www.techtarget.com/searchsecurity/definition/Advanced-Encryption-Standard
https://doi.org/10.12928/telkomnika.v22i2.25628
https://doi.org/10.1117/1.jei.31.6.061813
https://doi.org/10.1109/icecct56650.2023.10179696
https://doi.org/10.1201/9781003217794
https://doi.org/10.1007/978-3-662-47974-2
https://doi.org/10.1109/icic50835.2020.9288538
https://doi.org/10.1109/icces.2011.6141053

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1452

Hamissa, G., Sarhan, A., Elkader, H. A., & Fahmy, M.
(2010). Development of secure encoder-decoder for
JPEG images. The 2010 International Conference
on Computer Engineering & Systems, 189-194.
https://doi.org/10.1109/icces.2010.5674851

Ibrahim, M. A., Arifin , S., Yudistira , I. G. A. A.,
Nariswari , R., Abdillah , A. A., Murnaka , N. P., &
Prasetyo, P. W. (2022). An Explainable AI Model
for Hate Speech Detection on Indonesian Twitter.
CommIT (Communication and Information
Technology) Journal,16(2), 175-182.
https://doi.org/10.21512/commit.v16i2.8343

Indriani, U., Gunawan, H., Yugo Nugroho Harahap, A.,
& Zaharani, H. (2020). Chat Message Security
Enhancement on WLAN Network Using Hill
Cipher Method. 2020 8th International Conference
on Cyber and IT Service Management (CITSM), 1-5.
https://doi.org/10.1109/citsm50537.2020.9268838

Ismail, I. A., Amin, M., & Diab, H. (2006). How to
repair the Hill cipher. Journal of Zhejiang
University-SCIENCE A, 7(12), 2022-2030.
https://doi.org/10.1631/jzus.2006.a2022

Jin, J., Wu, M., Ouyang, A., Li, K., & Chen, C. (2025). A
novel dynamic hill cipher and its applications on
medical IoT. IEEE Internet of Things Journal,
12(10), 14297-14308.
https://doi.org/10.1109/JIOT.2025.3525623

Kamalakannan, V., & Tamilselvan, S. (2015). Security
Enhancement of Text Message Based on Matrix
Approach Using Elliptical Curve Cryptosystem.
Procedia Materials Science, 10, 489-496.
https://doi.org/10.1016/j.mspro.2015.06.086

Keserwani, P. K., & Govil, M. C. (2020). A Hybrid
Symmetric Key Cryptography Method to Provide
Secure Data Transmission. Machine Learning,
Image Processing, Network Security and Data
Sciences, 461-474.
https://doi.org/10.1007/978-981-15-6318-8_38

Khalaf, A. A. M., El-Karim, M. S. A., & Hamed, H. F. A.
(2016). A triple hill cipher algorithm proposed to
increase the security of encrypted binary dataand
its implementation using FPGA. International
Conference on Advanced Communication
Technology, ICACT, 752-759.
https://doi.org/10.1109/ICACT.2016.7423615

Landau, R. H., Páez, M. J., & Bordeianu, Cristian C.
(2024). Computational physics: Problem solving
with Python.

Liew, K. J., & Nguyen, V. T. (2020). Hill Cipher Key
Generation Using Skew-symmetric Matrix. The 7th
International Cryptology and Information Security
Conference 2020, 85-93.

Lutz, M. (2013). Learning python: Powerful object-
oriented programming.

Mahmoud, A. Y., & Chefranov, A. G. (2010). Secure Hill
cipher modifications and key exchange protocol. In
IEEE (pp. 1-6).
https://doi.org/10.1109/aqtr.2010.5520828

Marquez, G., Carder, S. L., Lucas, B. L., Morris, H. A.,
& Hearon, B. F. (2024). Outcomes of anatomic
total shoulder arthroplasty revised to reverse
shoulder arthroplasty in patients with contained
central glenoid bone defects. Seminars in
Arthroplasty: JSES, 34(2), 442-450.
https://doi.org/10.1053/j.sart.2024.01.010

Martelli, A., Ravenscroft, A. M., Holden, S., & McGuire,
P. (2023). Python in a Nutshell (4th ed.). O'Reilly
Media.

Muktyas, I. B., Sulistiawati, & Arifin, S. (2021). Digital
Image Encryption Algorithm Through Unimodular
Matrix and Logistic Map using Python. AIP
Conference Proceedings, 020006.
https://doi.org/10.1063/5.0041653

Muttoo, S. K., Aggarwal, D., & Ahuja, B. (2011). A
Secure Image Encryption Algorithm Based on Hill
Cipher System. Bulletin of Electrical Engineering
and Informatics, 1(1), 51-60.
https://doi.org/10.11591/eei.v1i1.226

Paragas, J. R. (2020). An Enhanced Cryptographic
Algorithm in Securing Healthcare Medical
Records. 2020 Third International Conference on
Vocational Education and Electrical Engineering
(ICVEE), 1-6.
https://doi.org/10.1109/icvee50212.2020.9243228

Paragas, J. R., Sison, A. M., & Medina, R. P. (2019a). A
new variant of hill cipher algorithm using modified
S-Box. International Journal of Scientific &
Technology Research, 8(10), 615-619,.

Paragas, J. R., Sison, A. M., & Medina, R. P. (2019b).
Hill Cipher Modification: A Simplified Approach.
2019 IEEE 11th International Conference on
Communication Software and Networks (ICCSN),
821-825.
https://doi.org/10.1109/iccsn.2019.8905360

Petrenko, S. I., & Dehtiarova, N. V. (2024). Updating the
content and methods of teaching students Python
programming. 197-222.
https://doi.org/10.30525/978-9934-26-504-4-10

Pine, D. J. (2024). Introduction to Python for science and
engineering.
https://doi.org/10.1201/9781032673950

Porter, L., & Zingaro, D. (2024). Learn AI-Assisted
Python Programming, Second Edition: With
GitHub Copilot and ChatGPT.

Praveenkumar, P., Amirtharajan, R., Thenmozhi, K., &
Rayappan, J. B. B. (2017). Fusion of confusion and
diffusion: a novel image encryption approach.
Telecommunication Systems, 65(1), 65-78.
https://doi.org/10.1007/s11235-016-0212-0

Pribadi, B., Rosdiana, S., & Arifin, S. (2023). Digital
forensics on facebook messenger application in an
android smartphone based on NIST SP 800-101 R1
to reveal digital crime cases. Procedia Computer
Science, 216, 161-167.
https://doi.org/10.1016/j.procs.2022.12.123

https://doi.org/10.1109/icces.2010.5674851
https://doi.org/10.21512/commit.v16i2.8343
https://doi.org/10.1109/citsm50537.2020.9268838
https://doi.org/10.1631/jzus.2006.a2022
https://doi.org/10.1109/JIOT.2025.3525623
https://doi.org/10.1016/j.mspro.2015.06.086
https://doi.org/10.1007/978-981-15-6318-8_38
https://doi.org/10.1109/ICACT.2016.7423615
https://doi.org/10.1109/aqtr.2010.5520828
https://doi.org/10.1053/j.sart.2024.01.010
https://doi.org/10.1063/5.0041653
https://doi.org/10.11591/eei.v1i1.226
https://doi.org/10.1109/icvee50212.2020.9243228
https://doi.org/10.1109/iccsn.2019.8905360
https://doi.org/10.30525/978-9934-26-504-4-10
https://doi.org/10.1201/9781032673950
https://doi.org/10.1007/s11235-016-0212-0
https://doi.org/10.1016/j.procs.2022.12.123

Samsul Arifin et al. / Journal of Computer Science 2025, 21 (6): 1440.1453
DOI: 10.3844/jcssp.2025.1440.1453

1453

Rajput, S. K., & Nishchal, N. K. (2013). Known-
plaintext attack on encryption domain independent
optical asymmetric cryptosystem. Optics
Communications, 309, 231-235.
https://doi.org/10.1016/j.optcom.2013.06.036

Reddy, K. A., Vishnuvardhan, B., Madhuviswanatham,
& Krishna, A. V. N. (2012). A Modified Hill Cipher
Based on Circulant Matrices. Procedia Technology,
4, 114-118.
https://doi.org/10.1016/j.protcy.2012.05.016

Rrghout, H., Kattass, M., Qobbi, Y., Benazzi, N., JarJar,
A., & Benazzi, A. (2024). New image encryption
approach using a dynamic-chaotic variant of Hill
cipher in Z/4096Z. In International Journal of
Electrical and Computer Engineering (IJECE)
(Vol. 14, Issue 5, pp. 5330-5343).
https://doi.org/10.11591/ijece.v14i5.pp5330-5343

Rubinstein-Salzedo, S. (2018). Cryptography.
https://doi.org/10.1007/978-3-319-94818-8

Safitri, R., Prasetyo, P. W., Wijayanti, D. E., Arifin, S.,
Setyawan, F., & Repka, J. (2023). Text security by
using a combination of the vigenere cipher and the
rubik's cube method of size 4×4×4. Al-Jabar:
Jurnal Pendidikan Matematika, 14(2), 281-297.
https://doi.org/10.24042/ajpm.v14i2.14276

Sulaiman, S., & Hanapi, Z. M. (2021). Extensive
Analysis on Images Encryption using Hybrid
Elliptic Curve Cryptosystem and Hill Cipher.
Journal of Computer Science, 17(3), 221-230.
https://doi.org/10.3844/jcssp.2021.221.230

Tarigan, S., Murnaka, N. P., & Arifin, S. (2021).
Development of teaching material in mathematics
"Sapta Maino Education" on topics of plane
geometry. AIP Conference Proceedings, 2331.
https://doi.org/10.1063/5.0041650

Toorani, M., & Falahati, A. (2011). A secure
cryptosystem based on affine transformation.
Security and Communication Networks, 4(2), 207-
215.
https://doi.org/10.1002/sec.137

Udayan, D., Aubrey, L., Chris, M., & Narges, N. (2024).
Introduction to Python Programming.

Wen, H. (2014). A review of the Henon map and its
physical interpretations.

Wen, H., Lin, Y., Yang, L., & Chen, Ruiting. (2024).
Cryptanalysis of an image encryption scheme using
variant Hill cipher and chaos. Expert Systems with
Applications, 250, 123748.
https://doi.org/10.1016/j.eswa.2024.123748

https://doi.org/10.1016/j.optcom.2013.06.036
https://doi.org/10.1016/j.protcy.2012.05.016
https://doi.org/10.11591/ijece.v14i5.pp5330-5343
https://doi.org/10.1007/978-3-319-94818-8
https://doi.org/10.24042/ajpm.v14i2.14276
https://doi.org/10.3844/jcssp.2021.221.230
https://doi.org/10.1063/5.0041650
https://doi.org/10.1002/sec.137
https://doi.org/10.1016/j.eswa.2024.123748

