Journal of Computer Science

Review Article

Review: Fusion Fault Tolerance Replication model and
Fragmentation in Grid-cloud Distributed Environments

1.23Mohammed Adam Kunna Azrag “*', 'Noraziah Ahmad "*', 'Nurzety A. Azuan "', “Zarina Mohamad

and > Julius Beneoluchi Odili

1 Faculty of Computing, Universiti Malaysia Pahang Al-Sultan Abdullah, Pekan, Pahang, Malaysia

Center for Artificial Intelligence & Data Science (CAIDAS), Universiti Malaysia Pahang Al-Sultan Abdullah, Kuantan,
Pahang, Malaysia

3 Institute of Big Data Analytics and Artificial Intelligence (IBDAII), Universiti Teknologi Mara, Shah Alam, Selangor, Malaysia
4Faculty of Informatics and Computing, Universiti Sultan Zainal Abidin, Terengganu, Malaysia

Snstitute of Digital Humanities, Anchor University Lagos, Nigeria

Article history
Received: 06-06-2023
Revised: 19-08-2024
Accepted: 05-11-2024

Abstract: The study investigates key aspects of data management in
distributed systems, focusing on fragmentation, replication and fault
tolerance. With the increasing complexity of modern applications, efficient
data handling across multiple nodes has become critical. The study begins
by reviewing existing literature and moves on to analyze fragmentation
techniques, evaluating their role in optimizing performance and resource
utilization. Replication methods are discussed next, highlighting how data
duplication improves availability and resilience against failures. The results
indicate that efficient data management techniques in distributed systems
significantly improve performance, availability and reliability. These
findings contribute to a deeper understanding of the challenges and
opportunities in distributed system environments, offering valuable insights
for researchers and practitioners.

Corresponding Author:

Noraziah Ahmad

Faculty of Computing, Universiti
Malaysia Pahang Al-Sultan
Abdullah, Pekan, Pahang, Malaysia
Email: noraziah@umpsa.edu.my

Keywords: Grid Computing, Cloud Computing, Data Replication, Fault-
Tolerant, Computational Intelligence, Availability

management in a dispersed approach, disregarding the
passage of time. Figure (1) shows how the cluster of

Introduction

Because of their shared philosophical foundations,
grid computing and cloud computing are frequently
confused. There is a lot of overlap between the two ideas
and they both aim to provide services to users by pooling
resources. Because of their network architecture and
multitasking capabilities, users in different places can
access one or more program instances to perform
separate but related tasks. The difference between grid
computing and cloud computing is that the former
involves virtualizing computing resources to store
massive amounts of data, while the latter involves
applications accessing resources indirectly through an
internet service. In contrast to cloud computing, which
centralizes resource management, grid computing
disperses resources across grids (Srivastava & Khan,
2018). Grid computing is a computational architecture
that relies on a network of interconnected computers to
aggregate and process massive volumes of data. Grid
computing is an enormous network of interconnected
computers that address a common problem by dividing it
into smaller, more manageable pieces called grids. Due
to its decentralized design, it handles job scheduling and

/Z SCIENCE
%

Publications

computers works as a virtual supercomputer, which
facilitates large-scale tasks like data processing by giving
users easy and scalable access to resources located all
over the world (Shakarami et al., 2020).

Instead of utilizing resources independently,
applications in the cloud contribute to a shared pool. This
way, the resources are not directly accessible to the
applications. Designed for the remote provision of
scalable and quantifiable IT resources, it represents a
new paradigm in computing and is based on network
technology. Making available a shared pool of
configurable computing resources and high-level
services on demand removes the need to invest much in
local Infrastructure. The distributed computer resources
are supervised by central management. In order to use
applications and Software from any location, users are
not required to know the exact whereabouts of their data.
"Pay only for what you require," the old adage says. As
can be observed in Figure (2).

Allocating resources over multiple servers in clusters,
grid computing, and cloud computing make optimal use

© 2025 Mohammed Adam Kunna Azrag, Noraziah Ahmad, Nurzety A. Azuan, Zarina Mohamad and Julius Beneoluchi Odili. This open-

access article is distributed under a Creative Commons Attribution (CC-BY) 4.0 license.

https://orcid.org/0000-0003-3473-3192
https://orcid.org/0000-0003-3473-3192
https://orcid.org/0000-0002-0419-7213
https://orcid.org/0000-0002-0419-7213
https://orcid.org/0009-0006-9157-1635
https://orcid.org/0009-0006-9157-1635
https://orcid.org/0000-0003-4390-0773
https://orcid.org/0000-0003-4390-0773
https://orcid.org/0000-0002-1195-397X
https://orcid.org/0000-0002-1195-397X

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

of computing resources and make it easier to build
applications without breaking the bank on hardware and
Software. Computing in a grid is a method whereby
computers from many fields work together to accomplish
a common goal.

: : e.m

p = i \ A 9 |

7 Weather i 1 ' . i

J Muliibop Nerworkof
Sensors i s .

/ i i | 9 o Weather Stations i

A . | £ & i

i 7 \ .

Computational / Data
1 Resources

\ Sensors

Fig. 1: Grid computing (Shakarami ef al., 2020)

El=

=
Serers

—
) -
Y —
o £ B
Laptops Desktops

Application
f—

Monitoring J Collaboration —
Content ‘Communication

Platform

% lentty E :

e Queue
Object Storage Runtime Database
Infrastructure

= "

Con;)ute [|
Block Storage

Phones

Cloud computing

Fig. 2: Cloud computing (Kumar et al., 2019a)

Grid computing, which involves storing massive
amounts of data via virtualizing computing resources, is
reviewed in this study. Cloud computing, on the other
hand, is characterized by an application’s indirect, rather
than direct, access to resources and data through an
internet service. By using either a centralized or
decentralized replication technique, data is partitioned
into numerous smaller, autonomous bits and then allotted
to a preset, geographically dispersed environment.

By keeping numerous copies at each location
depending on user access or work behaviour, replication
ensures data transparency in a distributed database
system. A system loses credibility or crashes in a Grid or

Cloud computing setting if it doesn’t work as planned.
Additionally, the article discusses fault tolerance in
fusion systems operating in Grid-Cloud distributed
systems.

This study outline is as follows: A literature review is
provided in the first section to set the stage for the
subsequent debates. In Section 1, we take a look at the
fragmentation, replication and fault tolerance. In the
latter section, the study’s findings are provided.

Literature Review

Data Grid and Cloud environment handle data
sharing and data-intensive tasks (Srivastava & Khan,
2018). The high latency and massive amount of data
needed by data-intensive activities make data availability
and fast data access challenging (Shakarami et al., 2020).
Grid computing can be categorized into three main
forms, each with its own set of uses and applications.
Not only are there no clear-cut differences between the
various grid types, but many grids actually use a
combination of more than one (JosephNg et al., 2020).
The different kinds of grids are as follows.

Computational grid: Allowing resources for
processing power is the main emphasis of the
computational grid. As an example, the majority of the
apparatus consists of high-performance servers
(JosephNg et al., 2020).

Scavenging grids: As an example, they are commonly
used with large numbers of desktop workstations, each of
which is normally given control over when its resources

are available for grid participation (Argungu et al.,
2020).

A data grid is a system of interconnected computer
resources spread out over multiple locations, either
within the same country or in other countries (Khan et
al., 2021). Consider the following hypothetical technical
scenario: Two colleges are conducting a life science
study, and each of them has its own dataset. A grid
connecting all of these sites improves control over data
access rights and communication management (Aral &
Ovatman, 2018; Li et al., 2020).

Both the efficacy of replication schemes and the
ability to provide a high-level overview of mind grid
topologies are significantly affected by the underlying
architecture of the grid (Li et al., 2020; Awad et al.,
2021). When data needs to be shared across several
global partnerships, hierarchical and tree models are
employed (Awad ef al., 2021; Hamrouni et al., 2016).

Tree topology isn't perfect, either. The grid's
hierarchical design allows for the specialized conveyance
of data via predetermined routes. Not only that, but it's
also impossible for nodes on the same tier or siblings to
transfer data to each other (Awad et al., 2021; Hamrouni
etal., 2016).

1491

http://192.168.1.15/data/13051/fig1.jpeg
http://192.168.1.15/data/13051/fig1.jpeg
http://192.168.1.15/data/13051/fig2.png
http://192.168.1.15/data/13051/fig2.png

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

Similarly, P2P systems allow for more versatile
component communication and get beyond these
restrictions. Programmes running on P2P systems are
able to carry out decentralized tasks because they make
use of distributed resources. The sharing of resources is
where a P2P system and a grid system intersect. What
sets a P2P system apart from others that share resources
is the symmetric communication architecture between
peers, who can act as both serves and clients (Awad et
al., 2021; Hamrouni ef al., 2016; Khan ef al., 2021).

An architecture that incorporates elements from all of
the aforementioned topologies can be described as a
hybrid topology. When academics are working on a
project and wish to make their findings widely accessible
for cooperation, they usually use it (Awad et al., 2021;
Hamrouni et al., 2016).

One of the most crucial methods of managing data in
grid systems is the replication approach. Improving data
availability, fault tolerance, scalability, and bandwidth
usage are goals of grid optimization, and one way to
achieve these goals is by data replication. One way to
optimize replicas and cut down on file access times is by
directing access requests to the most relevant copies and
automatically copying frequently used files based on
access data.

The on-demand capacity management paradigm’s
practical and economic benefits have contributed to
cloud computing’s meteoric rise in popularity (Khan et
al., 2021). There has been a recent shift in computing
towards outsourcing data processing to huge, central data
centres run by third parties (Subramanian & Jeyaraj,
2018). Cloud computing’s elasticity and adaptability,
together with its ability to cut down on infrastructure
investments and resource management costs, make it a
compelling option for consumers (Gai et al., 2020).
Cloud computing has been around for a long, according
to everyone. However, academics are still debating its
precise definition, architecture and models. Web
services, Service Oriented Architecture (SOA),
virtualization in cloud grid computing and other similar
concepts are not novel; rather, they stand as the
culmination of relevant and established distributed
computing ideas and technology (Subramanian &
Jeyaraj, 2018).

In order to evaluate and develop data replica
placement methods, Zheng et al. (2024) offer a real-
world scenario-based approach for data replica
placement in hybrid edge-cloud architecture. This model
emphasizes features related to latency, dependability and
load.

Many cloud providers now provide a wide variety of
services, including Infrastructure as a Service (laaS),
Platform as a Service (PaaS) and Software as a Service
(SaaS). These services are accessible to users through
web browsers and the Internet. Although cloud
computing has made many once difficult tasks much

easier for clients, there is still a need for cost-effective,
specialized cloud services that can adapt to changing
Quality of Service (QoS) requirements and prevent
Service Level Agreement (SLA) violations. A few of the
most common quality of service metrics are reliability,
security and response time.

For cloud computing, availability is of the utmost
importance. If you believe (Kumar et al., 2018), one of
the top 10 challenges with cloud computing is
availability. Aside from the obvious negative impact on
user experience, service outages also lead to substantial
drops in revenue (Abdel-Basset et al, 2018). Many
cloud service providers use replication strategies to
ensure SLA adherence and tackle this problem. These
approaches are believed to be good at preserving
computing's availability, fault tolerance, Flexibility and
scalability. Cloud replication supports a variety of
service levels, each with its own fine-grained replication
options. Infrastructure as a Service (IaaS) providers often
replicate virtual machines, but Software as a Service
(SaaS) providers are more likely to replicate services,
applications, or data at the application or data level
(Mesbahi et al., 2018).

In order to mitigate the drawbacks of cloud
computing, such as slow data access and unavailability,
data replication is a crucial tool (Li et al., 2020). There
are several benefits to it. Data access time and bandwidth
consumption are two areas that it can help with. Also, it
might make things more available, scalable and load-
balanced (Ramesh Naidu er al., 2021). File replication
and storage methods that are close to the data requester
are referred to as replication (Gill et al., 2019). Many
different types of databases and systems rely on data
replication, including DBMS, distributed databases,
mobile systems, cloud, P2P and fog (Mansouri & Javidi,
2020).

In some fields of scientific application, including
water and rain measurements, massive amounts of data
are rapidly becoming a shared resource. Usually,
numerous data centres are used to house such massive
databases. For distributed management of large datasets,
the data replication approach is the method of choice.

Fragmentation

The challenging job of managing fragmented
database replication falls on administrators due to the
fact that the distributed database is partitioned into
multiple replicas. When a database is divided into
multiple smaller, autonomous portions, the process is
called fragmentation of data. When data is accessed in
fragments, a table view context and partial data access
are introduced. This is the initial stage in replacing
coarse-grained techniques with fine-grained ones when
picking data items. After data fragmentation, a preset,
geographically dispersed environment is assigned to each
fragment using one of four techniques: Centralization,

1492

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

Fragmentation, Complete Replication, or Partial
Replication. By keeping numerous copies at each
location depending on user access or work behaviour,
replication in a distributed database system maintains
data transparency. Availability of data, fault tolerance
and reliability at the site level are all guaranteed by these
authors reported in Castillo-Garcia ef al. (2023).

All data distribution methods have one thing in
common: they all aim to improve dispersed performance
by doing the following:

1. Making data readily available to the workforce at all
times and breaking the workload down into smaller,
more manageable chunks

2. A modular design ensures that subqueries will run
quickly

3. Making it easy to expand the network

4. Assembling the available storage space

5. Easier maintenance of data sites

Due to its many flaws, the prior centralized system
was replaced with a decentralized one. Here are a few
examples:

1. Load balance performance: In a centralized system,
the database is accessed by multiple users
simultaneously, which puts a strain on the system.
This is because multiple users' queries are handled
simultaneously. Database performance suffers,
making it harder to respond quickly to queries from
multiple users requesting the same data items

2. Intricacy and growth: As a result of the massive
workforce, the data-centralized system is growing at
an alarming rate. This makes the logical structure
harder to understand and necessitates greater room
for data storage. Additional database growth in this
environment increases the likelihood of inadvertent
data deletion

3. Ensuring data availability and maintenance: Data
availability and service interruptions caused by
maintaining massive amounts of data in a single
database might last for quite a while. With a
distributed database, this limitation can be easily
addressed through data availability and
maintenance. In a decentralized system, data is
accessible to all nodes on the network

4. Fault tolerance: The central system’s lack of fault
tolerance has a negative impact on data availability.
However, a distributed approach simplifies this task
by incorporating fault tolerance through replication.
By ensuring that performance is unaffected by node
failure, data is always available

In a distributed setting, a heuristic approach to query
fragmentation is proposed to lower the Transmission
Costs (TC) of queries. A cost-effective relational model
is the foundation of fragmentation, which subsequently
progresses to DDBS design. Afterwards, several
scenarios based on replication were introduced, such as a
Mixed Replication-Based Allocation Scenario (MAS), a

Full Replication-Based Allocation Scenario (FAS) and a
Non-Replication-Based Allocation Scenario (NAS)
(Bittencourt et al., 2018).

They propose a modified Bound Energy Algorithm
(BEA), a hierarchical approach to vertically dividing the
network into components and placing those components
in particular locations within the network, to address
these issues. Optimal allocation site selection, cluster
cost calculation and attribute affinity clustering are all
made ecasier with this method (Kaur et al, 2019).
Everything that can be obtained with a single query has
been bundled together. By comparing and analyzing
them from a design standpoint, the study sought to
identify the pros and cons of current algorithms. All it
does is show how a distributed context might benefit
from a dynamic architecture for data fragment
distribution (Kaur et al., 2019).

An approach to dynamic fragment allocation that
does not duplicate data is proposed in order to improve
speed. The shifting pattern of access at various locations
forms the basis of this. Pieces are redistributed based on
the threshold value and the amount of data available on
each fragment. This unique method alters the
reallocation strategy by changing the read/write data
volume factors, adding a threshold time volume and
using the Distance Constraints Algorithm. As a result, the
write data volume is considered during the reallocation
procedure, and fragmentation is approaching at multiple
sites. The distributed system's overall performance is
enhanced as a result of this study (Nashat & Ameer,
2019).

Additionally, in order to ensure efficient and fault-
tolerant data access in the systems, the replication
method endeavours to keep numerous replicas. Despite
prior research on data management (Qin et al., 2018),
few algorithms take a holistic look at the pros and cons
of different replication strategies. To make data more
accessible and efficient, several of them employ
replication. As the system’s copy count increases, these
metrics get better. Data replication uses energy and costs
money for the provider, which is the most crucial aspect
they failed to mention. Consequently, a data replication
method that considers balancing many trade-offs is
necessary (Qin et al., 2018).

It has been previously investigated how to fragment
tables so that local data can be accessed. Some of the
studies on distributed file systems are also relevant to
this. The usual level of detail of the data being
considered (files vs. table) and the necessity of
fragmentation features that can be used for partitioning
in distributed database systems are two key differences
between distributed file systems and distributed database
systems.

Allocation of fragments and fragmentation are
closely related processes. Fragment allocation is the sole
function of some methods, while fragmentation is the

1493

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

sole function of others (Pandian & Smys, 2020; Castro-
Medina et al., 2020a). More than one method combines
the two responsibilities (Castro-Medina et al., 2020D).
Some methods combine fragmentation, allocation and
replication into a single process, whereas others conduct
replication independently of the other two steps
(Argungu ef al., 2020; Awad et al., 2021; Mesbahi et al.,
2018; Bittencourt et al., 2018; Kaur et al., 2019; Ahmad
et al., 2021a). Also, we still think re-fragmentation and
reallocation deserve more attention as replication
alternatives, even though dynamic replication methods
can optimize for different metrics based on (Argungu et
al., 2020; Mesbahi et al., 2018; Bittencourt et al., 2018;
Kaur et al., 2019; Ahmad et al., 2021b).

The following are undoubtedly the difficulties and
concerns addressed as follows:

1. Managing a database with fragmented replications:
Database administrators encounter challenges when
partitioning a database into separate portions or
duplicates. The database can be "fragmented" into
smaller, more manageable pieces to facilitate partial
data access and context-specific table views. Data
item selection begins with this fine-grained
approach, which is distinct from coarse-grained
techniques

2. Methods for distributing data fragments: Once data
has been fragmented, it must be given to contexts
that are geographically spread. Centralized, full-
replication, partial replication and fragmentation-
based systems are among the mechanisms
employed. Assuring data availability, fault
tolerance, reliability and openness at individual sites
is made possible through replication

3. Goals of data distribution methods: In order to
improve distributed performance as a whole, data
distribution methods divide workloads, use modular
architecture to execute subqueries quickly, build
networks that can accommodate new users, manage
storage space effectively and make data site
maintenance easier

4. Problems with the centralized system: Moving away
from centralized to decentralized systems is
happening for a number of reasons. Problems with
data availability and maintenance in central
databases, complexity and growth challenges as
data volumes increase, problems with load
balancing and performance due to several users’
requests once and a lack of fault tolerance are all
examples of such concerns

5. A heuristic approach to query fragmentation: A
heuristic approach to query fragmentation is offered
with the goal of lowering query transmission costs
in faraway environments. Here, we propose to use a
relational model to efficiently partition the data and
then explore different replication-based allocation
scenarios, including mixed replication, full
replication and non-replication

6. Bond Energy Algorithm (BEA) Data
Fragmentation: As a hierarchical approach to
network fragmentation and geographical region
assignment, the enhanced Bond Energy Algorithm
(BEA) is proposed. Optimal allocation decisions,
cluster allocation costs, attribute affinity, and
clustering are all part of this approach

7. Method of dynamic fragment allocation: To
improve efficiency, we provide a dynamic fragment
allocation method that is not duplicated. When
access patterns at different locations change, pieces
are reassigned accordingly. Improved performance
in distributed systems is the consequence of factors
like read/write data volume, threshold time volume
and distance constraints being considered

Database replication, allocation strategies, and
moving from a centralized to a distributed system are all
complicated by these issues. With the goal of improving
distributed data management's performance and
reliability, numerous strategies and approaches have been
proposed to address these issues.

Replications

Reducing access latency, increasing grid performance
and decreasing job response time are the three main
goals of nearly all replication systems. Similarly,
practically every replication strategy may be used to
lessen the load on the network, which in turn boosts data
availability and efficiency. The objective is to ensure that
it is kept close to the user for easy access. Aiming to
distribute the workload evenly among all data servers is
one goal of many replication systems. The system's
performance is enhanced, and response time is reduced.
By making several copies of each job, replication
provides fault tolerance (Isukapalli & Srirama, 2024). A
master copy will be maintained to track the number of
copies of each task and their locations. However, as the
number of replicas grows, the expense of maintaining
them becomes an overhead for the system. Minimizing
the amount of data grid copies is an objective of some
techniques. This keeps the replica's maintenance
expenses low and guarantees optimal storage utilization.
Placing replicas strategically and determining the ideal
number of replicas are aspects of some techniques. There
are a number of interconnected key aspects, one of which
is the strategic placing of copies. By strategically placing
the replicas, for instance, it becomes easier to distribute
the workload among the available servers. The expense
of upkeep is also associated with it. A strategy's load on
the system will increase as replica maintenance costs
become unsustainable if it continues to blindly replicate
popular files (Ahmad ef al., 2021a).

The time it takes for a job to run is another important
metric. Optimal replica placement is the goal of some
replication algorithms, which attempt to decrease job
execution time. Replicas should be located closer to
users in order to decrease reaction time and, by

1494

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

extension, the time it takes for jobs to be executed. As a
result, the system’s throughput will be enhanced. The
possibility of using replication to offer fault tolerance
and quality assurance has only been considered by a
small number of replication systems. All methods of
replication require a subset of these parameters.

Other replication algorithms are based on earlier
proposals for replication replacement techniques. A few
key examples of both old and current replication
algorithms are detailed below.

A solution that has been put into practice is the
simple optimizer algorithm (Javadpour et al., 2023).
Rather than replicating, it reads the necessary duplicate
remotely. When compared to competing algorithms, a
simple optimizer not only uses less storage space but
also completes jobs faster and uses fewer network
resources overall. The top client in terms of file size.
Every node in the network checks the request count for
each of its files at regular intervals; if it finds that the
count has surpassed a specific point, it finds the best
client to handle that file (Lv and Xiu, 2020). Replication
provides support for the Cascading Tree design. The data
files are initially created at the top level, and a copy is
made at the following level when the number of file
visits surpasses a certain threshold. But it starts out on
the best client route and continues along it until it
reaches the best client (Geng et al., 2019).

Plain Cashing: This is an additional algorithm for
replicating data. With this method, whenever a client
requests a file, a local copy is made. The client's storage
capacity can only hold a single file at a time. Therefore,
huge files will be replaced promptly (Geng et al., 2019).
Cashing out plus Cascading is a strategy that combines
cascading and plain cashing. While the server routinely
detects which files are popular and propagates them
down the hierarchy, the client stores the file locally in its
cache. Remember that clients are always at the very top
of the tree, but that every node in the hierarchy has the
potential to function as a server. Sibling nodes are those
that share a parent (Geng ef al., 2019).

Quick distribution: A duplicate of the file is created
and then served at each node route to the client using this
method. At each level, a copy is created whenever a
client requests a file. When a node gets a file but doesn’t
have enough space, it will delete the one with the lowest
popularity rating (Geng et al., 2019).

The Least Frequently Used (LFU) approach does the
same thing, constantly duplicating files to local storage
systems. To make room for a new copy, if the local
storage space is full, the one with the fewest accesses is
eliminated. The duplicate with the lowest demand
(popularity) gets deleted from local storage by LFU,
regardless of how recently it was stored (Kaushik ef al.,
2021). At the same time, the LRU strategy constantly
backs up files to the local storage system. In the LRU
technique, the requested site stores the necessary replicas

in the cache. When the local storage becomes full, the
oldest replica is removed to make room for new ones. If
the new replica is larger than the oldest replica, the oldest
file is erased, followed by the second oldest file and so
on (Kaushik & Santosh, 2020).

In addition, the Proportional Share Replica (PSR)
policy developed from the Cascading approach. This
heuristic method assigns replicas to the most optimal
places, given that the total number of sites and replicas to
be distributed is known in advance. If a site’s capacity to
handle replica requests is slightly greater than or equal to
the ideal load distribution, then replicas are distributed to
that site (Ciccozzi et al., 2023). An innovative dynamic
replication technique, Bandwidth Hierarchy Replication
(BHR), reduces the time it takes to retrieve data in a data
grid network and avoids network congestion. The BHR
approach makes use of "network-level locality," which
guarantees that the critical file is kept at a location with
high bandwidth in comparison to the location where the
job is executed. The OptorSim Simulator was used to test
the BHR method. The results show that the BHR method
outperforms other optimization techniques in terms of
data access time when an internet bandwidth hierarchy is
present. By utilizing a network-level strategy, BHR
sidesteps site-level optimization replicas (O’brien et al.,
2018).

Another two dynamic replication algorithms
suggested for the multi-tier data grid design are Simple
Bottom-Up (SBU) and Aggregate Bottom-Up (ABU).
Any client data file that goes above a certain threshold is
replicated by the SBU algorithm. The biggest problem
with SBU is that it doesn't care about the connection to
records of past access. In order to get to the bottom of the
problem, ABU will compile all relevant historical
documents and send them to the top tier. The Quick
Distribution method proved to be the most effective.
Data access distribution, interval checking, and replica
sever capacity were calculated from the data access
arrival rate and replica server capacity (Ullah et al.,
2018).

An operation research-based strategy for replica
placement that is worth mentioning is the multi-objective
approach. Here, the data request pattern and the present
state of the network are considered when a replica is
placed. The p-center problem seeks to find a solution that
will allow the replica server and user site to respond
faster. However, the p-center model's goal is to reduce
the overall response time between request and replication
sites, according to Ullah er al. (2018) and Xiao and
Zhang (2019). In the Weight-based dynamic replica
replacement approach, replica weight is also calculated
using the future access window from the previous access
history. The access cost is then calculated based on both
the number of copies and the network's current
bandwidth. There should be no deletion of low-weight
replicas since they do not contribute to improving data
access efficiency, but replicas with a high weight should

1495

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

be retained. The distribution method for access history is
similar to that of a zip file (He, 2020).

Another approach that replicates data dynamically is
the Latest Access Largest Weight (LALW). Using a
popular file as an example, LALW determines how many
copies and grid sites are needed for replication. Each
record of past data access is given a unique weight.
Given the present state of data availability, this suggests
that the record is more pertinent (Zhou et al., 2017).

The agent-based replica placement method is another
option for replica algorithms. This algorithm is suggested
to choose a potential spot to put the duplicate. An agent
will be set up for every location to store the master data
files for the shared environment. Finding a potential
location to set up a replica that minimizes application
response times, network traffic, and access charges is an
agent's principal objective. In addition, agents build
replicas at appropriate locations by prioritizing grid
resources according to resource configuration, network
bandwidth and agent's insistence on the replica at their
sites (Cheng et al., 2018).

Also, APBRP, or Adaptive Popularity Based Replica
Placement, is also important. The technique is a replica
placement mechanism that uses hierarchical data grids
and is directed by "file popularity,” by strategically
placing replicas near customers; this method aims to
decrease data access time while optimizing the utilization
of storage and network resources. How well APBRP
works depends on the threshold value that is selected in
proportion to the popularity of the files. Data request
arrival rates are used by APBRP to dynamically establish
this threshold (Khaldi et al., 2020).

The Efficient Replication approach is another
powerful replica technique; it takes site dynamics into
account when replicating dynamic data grids. File
availability, response time and bandwidth consumption
can all be improved using this method. In order to
achieve grid-wide load balancing, it employs replica
placement and file requests. Because most grids employ
a "load" strategy instead of an "update" one, this
approach will prioritize read-only access and will result
in minimal dynamic updates. The three stages provided
by this algorithm are as follows:

1. Ran a list of all files and chose the ones with the
highest number of requests and copies to replicate

2. Choosing the most suitable locations for the files,
considering the number of requests and the relative
usefulness of each location on the grid, follows
from the previous step

3. Picking the optimal copy while keeping in mind the
bandwidth and functionality of each site (Tripathi et
al., 2020)

On top of that, replication methods would be
incomplete without the Value-Based Replication Strategy
(VBRS). In an effort to boost system performance and

decrease network latency, the VBRS was suggested. To
avoid duplicating files, VBRS allows users to choose a
threshold before deciding whether to replicate the
requested file. There are two portions of VBRS. Finding
out if the requested file needs to be copied to the local
storage site begins with calculating the threshold. In the
second stage, the replacement mechanism is engaged if
there isn't enough capacity at the local storage site to
copy the requested file. When formulating the policy for
replacing replicas, it is necessary to consider the value of
each replica, which is established by the file's access
time and frequency. Network latency can be reduced by
the VBRS algorithm, according to the findings of the
trials (Mohammad Hasani Zade et al., 2021).

The Enhanced Fast Spread (EPS) method is also
highly regarded. When it comes to data grid replication
strategies, the EPS is an upgraded version of Fast
Spread. The goal of recommending this approach was to
decrease bandwidth usage and increase overall response
time. It takes a lot of things into account, such as the size
of the replica, the frequency and number of requests and
the most recent request for the replica. With the EFS
method, you may replace less important duplicates with
more important ones while keeping only the most
important ones. A dynamic threshold is used to do this by
deciding whether the replica should be stored at each
node along the route to the requester (Dahling et al.,
2021).

Another enhanced variant of the popular fast spread
used in multi-tier data grid settings is Predictive
Hierarchical Fast Spread (PHFS). In an effort to improve
performance that takes spatial proximity into account,
the PHFS pre-replicates the minimum hierarchical
fashion and seeks to foresee future needs. This technique
makes the most efficient use of available storage space
by obtaining additional access locales by hierarchical
replication of data objects in various layers of a multi-tier
data grid. Data grids that are read-intensive are the
intended target of this technique. A priority mechanism
and component for changing replication configurations
are used by the PHFS technique to adapt the replication
configuration to the current state of affairs. It also
presumes that, with a high degree of certainty, the users
operating in the same environment will request certain
files (Rabie et al., 2021).

In a similar vein, DHR is a Hierarchical replication
algorithm that finds the best places to put copies.
Consequently, most people may get that copy through the
top site. This algorithm chooses the optimal replica when
many sites hold them, minimizing access latency. Users
executing jobs are directed to the optimal replica location
via the DHR algorithm's replica selection method, which
takes data transfer time and the queued number of replica
requests into account. It doesn't duplicate files but rather
stores them in the most popular and optimal location
rather than storing them in several locations (Alzakholi
et al., 2020).

1496

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

When it comes to dynamic data replication strategies,
one of the greatest is EMRALW or Enhanced the Most
Recent Access Largest Weight. Compared to the Original
Latest Access Largest Weight method, this one is far
better. EMRALW considers three crucial variables while
erasing files:

1. The replicas with the lowest usage rates
2. Replicas that haven't been in use for a long time
3. How big is the replica?

Each duplicate is stored by EMRALW at a suitable
location in the region that will have the most future
access to it. The EMRALW method achieves better
performance than the other algorithms and efficiently
uses storage by preventing the formation of unneeded

duplicates, according to the testing results (Meng et al.,
2019).

Fault Tolerance

The term "cloud computing" describes the practice of
providing shared computing resources, including storage,
operating systems, and virtualization, over the Internet as
a service. Customers still have a lot of concerns about
reliability in a cloud computing setting, despite the fact
that the benefits of cloud computing include cheap rates,
pay-per-use on-demand service, and guaranteed quality
of service. The ability of a task to consistently finish
within a given time limit is what the term "reliability"
means. Systems lose confidence or crash in Grid or
Cloud Computing environments when they don't work as
planned. When Software or hardware fails to perform as
expected, we say that the system has failed. To continue
working properly in the face of such setbacks, we need
fault-tolerance abilities (Kumar et al., 2019b). A wide
variety of errors are possible (Sharif ef al., 2020).

Network faults: These can be caused by packet loss,
network partitioning, or link failure.

Faults in the Processor: These processor faults
happen as a result of the operating system’s actions.

Process faults: These occur when there are problems
with the program or insufficient resources.

Service expiration faults: When the service timeout
duration of the resource expires while the app is
executing, this sort of failure occurs.

When it comes to fault tolerance in the cloud, three
different methods exist (Alarifi et al., 2019; Fard et al.,
2020):

The Proactive Fault Approach: This method replaces
distributed components before they fail and finds
problems before they happen. It involves avoiding
recovery from errors and instead preparing for defects.
Following are some of the tactics used in the Proactive
Fault Tolerance method:

1. Software rejuvenation: A system that has been
restarted at regular intervals will be started in a

different state each time

2. Auto-Repair: When a program is operating on many
virtual machines, and this technology detects a
problem, it takes over the application

3. Preemptive migration: This approach continually
assesses an application and moves resources to a
different virtual machine if one gets too busy

Reactive fault tolerance: This technique is used to
reduce or eliminate the impact of a system failure as
soon as it occurs. Here are the techniques that are part of
this method:

1. Checkpointing: It is possible to continue a failed
task from the most recent checkpoint rather than
having to start it from the beginning. The resource
cache is where checkpoints are kept. This approach
is used for applications on a large scale

2. Task resubmission: This method sends out failed
tasks again to the same or a different computer so
they can be executed again

3.S-Guard: This technique, which is wused in
HADOOP and Amazon EC2, guarantees that the job
is rolled back if it fails

4. Job migration: When one machine stops working,
another one takes over the duty. Errors may be
resolved, and batch programs can be migrated over
a cloud to several data centres using specific
algorithms. Haproxy is used to complete this task

5. Exceptions that are defined by the user: Using this
method, the user can dictate what to do in the case
of a workflow task failing at any point

Adaptive fault tolerance method: This method works
by automatically executing all procedures depending on
the system’s current state. To ensure that essential
modules are reliable, it monitors the dependability of
virtual machines per process.

By combining proactive and reactive fault tolerance
tactics, the adaptive fault tolerance method can
effectively reduce faults. Replication, checkpointing and
fragmentation are some of the tactics. By dividing a large
file into smaller ones, fragmentation makes it possible to
merge them into a single larger file while preserving all
of the original data. This approach lessens the quantity of
irrelevant data applications retrieved (Fard et al., 2020;
Ubaidillah er al, 2021; Castro-Medina et al., 2019;
Santos et al., 2019; Qiu et al., 2021; Arunarani et al.,
2019; Awad et al., 2019; Ahmad et al., 2021b; Rady et
al., 2019; Kaushik et al., 2021).

Automatic Software Self-Healing Through Rescue
Points, or Assure, is an additional method of tolerance.
Works well for rescue points that handle faults that
programmers expect. In the event of a program failure,
ASSURE will step in and restore execution to the closest
rescue point utilizing virtualization, allowing the
application to recover.

Not only that, but HAProxy works wonders. "High
Availability Proxy" is the abbreviation of this term. By

1497

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

distributing the workload over numerous computers, this
tool enhances the reliability and efficiency of a server
cluster. It is a free and open-source program that helps
websites with load balancing. Its efficiency with CPU
and memory is commendable. Its steadiness and
durability have also brought it fame. Many popular
websites, including Twitter (X), Stack Overflow, and
GitHub, use this method to reduce their heavy traffic.

The SHelp is an important player in this space. Using
error virtualization and rescue points, SHelp is a runtime
setup that can handle virtual machines. It reduces
duplication of effort and bounces back fast from
mistakes caused by the same or similar flaws. SHelp
makes it possible for server programs to quickly recover
from these issues.

When it comes to cloud storage, Amazon Elastic
Compute Cloud (EC2) is a powerful online service
platform that caters to customers' individual
requirements. This is the most effective method of time
management because it gives programmers the resources
they need to create programs that never crash.

Hadoop has also recently exploded in popularity.
Many cloud computing services rely on Hadoop. It
allows a cluster of computers to handle enormous
datasets in a distributed fashion; it is an open-source
project from the Apache Software Foundation.
Infrastructure as a service, platform as a service and
Software as a service are all part of its public-private
cloud packages.

Many versions are used based on the previously
mentioned technology: The idea of replication-based low
Latency Fault Tolerance (LLFT) was introduced by
(Almutairy et al., 2019) to provide fault tolerance in
distributed applications hosted in the cloud. This
paradigm uses many replication techniques to protect
programs from different types of faults. The primary
aspects of cloud computing that are addressed by Kumar
et al. (2017) are its reliability, availability, and security.
Also, the researcher explores several intrusion detection
approaches with a focus on how to enhance RAS via the
use of virtualization technologies. Use the model
suggested by Jhawar and Piuri (2017) to make grid
computing more reliable. The core principle is that
reliable service providers are the only ones that can
provide the data storage, networking and computing
power that a cloud infrastructure needs to function
properly. Additionally, in order to enhance the integration
of different limitations, it has prioritized several
dependability criteria. Since the introduction of a
virtualized technology-based Fault Tolerance
Management (FTM) approach (Bharany et al., 2022) to
study fault tolerance, cloud computing systems have
become much more dependable and accessible.

An important addition came from (Bala and Chana,
2015), who put out a model of DAFT that is compatible
with cloud fault tolerance semantically and ethically. To

make this design more reliable, they use checkpointing
and replication to make it fault-tolerant. A model for
intelligent task failure detection based on proactive fault
tolerance was used to forecast the failure task in
scientific process applications (Amin ef al., 2015).

An agent-based Fault Tolerance and Recovery
System (FRAS) was also proposed (Charity & Hua,
2016). When things go wrong, the recovery agent uses
the rollback feature. This approach proposes a recovery
mechanism for agents to maintain a consistent state in a
system.

Furthermore, the concept of migration-based Virtual
Data Centers (VDCs) was first proposed by Agarwal and
Sharma (2015). To resolve server failures caused by
virtual machines becoming overcrowded, resources are
transferred to other virtual machines. The idea of Cloud
Fault Tolerance (CFT) was put forth by Jamil et al.
(2021). In this paradigm, the dependability of computer
nodes is tracked, and nodes are chosen according to their
reliability. They remove the node that keeps giving us
false results. Jamshidi et al. (2018) introduced a fault
tolerance paradigm that relies on decisions. Accuracy
and response time are the two metrics that define a
node's reliability in this paradigm. When a node stops
working, they try to fix it from the past, and they add or
remove nodes depending on how reliable they are.

If they want a more reliable cloud computing
ecosystem, we should look into the methods suggested
by (Agarwal and Sharma, 2015) for fault tolerance and
monitoring. This article covers cloud fault tolerance
research priorities for the future and gives details on the
numerous strategies and approaches used for fault
tolerance. For software rejuvenation in the cloud, (Jamil
et al., 2021) proposed a reliability model based on
dynamic fault trees. System performance may be
continuously degraded owing to resource depletion,
fragmentation and fault accretion; this model emphasizes
the software ageing problem. A method for cloud
computing fault tolerance was proposed by Jamshidi et
al. (2018). The model's developer elaborates on the
process by which faults give rise to major problems. In
order to anticipate these mistakes and act appropriately
before or after a failure happens, this model makes use of
a number of fault tolerance mechanisms. The idea of FT-
Cloud was first presented by Hasan and Goraya (2018).
This part is decided by how well developers of cloud
applications are rated. Direct fault tolerance is built into
this algorithm. An AFTRC strategy was proposed in the
context of real-time cloud computing by Noraziah et al.
(2021); Ubaidillah et al. (2020); Ubaidillah ez al. (2021);
Almjlae et al. (2019); Awang et al. (2019)). Computing
in real-time on the cloud is the foundation of this
concept. Forwarding recovery is an advantage it offers.
There is a lot of fault tolerance in this model.
Additionally, this model highlights reversal recovery
through checkpointing.

1498

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

To sum up, the following are some of the most
important issues that were found throughout the
literature review on cloud/grid computing fault tolerance:

1. Processing happens via remote machines, which
increases the likelihood of errors

2. Effective methods for fault detection must be
developed

3. Customers only get limited data since the system is
so dense

4. We need to create more technology that can predict
faults in real-time

5. Understanding the ever-changing system state is
challenging because of the dynamic nature of the
cloud environment

6. Fault tolerance methods should be put in place even
though the customer’s organization isn’t worried
about data centre faults.

7. We can use new metaheuristic algorithms for
detecting fault tolerance, such as in Azrag et al.
(2018); Kunna ef al. (2018); Adam Kunna Azrag et
al. (2020)

Conclusion

In this study, we explore fragmentation, replication
and fault tolerance as critical components of data
management in distributed systems. The research
emphasizes that fragmentation enhances performance
and resource allocation by distributing data among
remote nodes, which is essential for meeting diverse
computational ~ demands. Replication strategies,
particularly those balancing consistency and latency,
prove indispensable for maintaining data availability and
integrity, especially in expanding, complex systems.
Finally, fault tolerance is a key factor in ensuring system
resilience, as our analysis highlights various adaptive
strategies that address failures at both the hardware and
software levels. Overall, this research contributes
significantly to understanding how these components
interact to improve performance, reliability and system
scalability. The insights gathered here offer a robust
foundation for future work in optimizing distributed data
management, benefiting researchers, system designers
and developers.

Acknowledgement

The authors would like to thank the University of
Malaysia Pahang Al-Sultan Abdullah (UMPSA) for
providing laboratory facilities, library services, and
financial support for this research. Special thanks to
Faculty of Computing, UMPSA and Universiti Sultan
Zainal Abidin (UniSZA), Terengganu, Malaysia for the
Article Processing Charge (APC) of this study.

Funding Information

This study is formerly supported by the Short-Term
Grant (RDU1903122) sponsored by the UMPSA.

Author’s Contributions
Mohammed Adam Kunna Azrag: Wrote the

original draft of the manuscript.

Noraziah Ahmad: Supervised the research, secured
funding, contributed to writing, and served as the
corresponding author.

Nurzety Ahmad Azuan: Contributed to writing and
proofreading the manuscript.

Zarina Mohamad: Contributed
writing and provided research funding.

Julius Beneoluchi Odili: Edited and structured the
manuscript.

Ethics

to manuscript

The authors don't have any ethical issues that may
arise after the publication of this manuscript.

References

Abdel-Basset, M., Mohamed, M., & Chang, V. (2018).
NMCDA: A Framework for Evaluating Cloud
Computing Services. Future Generation Computer
Systems, 86, 12-29.
https://doi.org/10.1016/j.future.2018.03.014

Adam Kunna Azrag, M., Asmawaty Abdul Kadir, T., &
Mohd Ali, N. (2020). A Comparison of Particle
Swarm optimization and Global African Buffalo
Optimization. /OP Conference Series: Materials
Science and Engineering, 769(1), 012034.
https://doi.org/10.1088/1757-899x/769/1/012034

Agarwal, H., & Sharma, A. (2015). A Comprehensive
Survey of Fault Tolerance Techniques in Cloud
Computing. 2015 International Conference on
Computing and Network Communications
(CoCoNet), 408-413.
https://doi.org/10.1109/coconet.2015.7411218

Ahmad, W., Rasool, A., Javed, A. R., Baker, T., & Jalil,
Z. (2021). Cyber Security in IoT-Based Cloud
Computing: A Comprehensive Survey. Electronics,
11(1), 16-169.
https://doi.org/10.3390/electronics11010016

Ahmad, Z., Nazir, B., & Umer, A. (2021). A Fault-
Tolerant Workflow Management System with
Quality-of-Service-Aware Scheduling for Scientific
Workflows in Cloud Computing. International
Journal of Communication Systems, 34(1), 4649.
https://doi.org/10.1002/dac.4649

Alarifi, A., Abdelsamie, F., & Amoon, M. (2019). A
Fault-Tolerant Aware Scheduling Method for Fog-
Cloud Environments. PLOS ONE, 14(10),
0223902.
https://doi.org/10.1371/journal.pone.0223902

Almjlae, S., Mohamad, Z., & Suryani, W. (2019). Impact
Aspectes of it Flexibility Specific to Cloud
Computing Adoption on it Effectiveness. Journal
of Theoretical and Applied Information
Technology, 97(3), 1041-1059.

1499

https://doi.org/10.1016/j.future.2018.03.014
https://doi.org/10.1088/1757-899x/769/1/012034
https://doi.org/10.1109/coconet.2015.7411218
https://doi.org/10.3390/electronics11010016
https://doi.org/10.1002/dac.4649
https://doi.org/10.1371/journal.pone.0223902

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

Almutairy, N. M., Al-Shqgeerat, K. H. A., & Al Hamad,
H. A. (2019). A Taxonomy of Virtualization
Security Issues in Cloud Computing Environments.
Indian Journal of Science and Technology, 12(3),
1-19.
https://doi.org/10.17485/ijst/2019/v12i3/139557

Alzakholi, O., Haji, L. M., Shukur, H. M., Zebari, R. R.,
Abas, S. M., & Sadeeq, M. A. M. (2020).
Comparison Among Cloud Technologies and Cloud
Performance. Journal of Applied Science and
Technology Trends, 1(1), 40-47.
https://doi.org/10.38094/jastt1219

Amin, Z., Singh, H., & Sethi, N. (2015). Review on
Fault Tolerance Techniques in Cloud Computing.
International Journal of Computer Applications,
116(18), 11-17.
https://doi.org/10.5120/20435-2768

Aral, A., & Ovatman, T. (2018). A Decentralized Replica
Placement Algorithm for Edge Computing. /IEEE
Transactions on Network and Service Management,
15(2), 516-529.
https://doi.org/10.1109/tnsm.2017.2788945

Argungu, S. M., Arif, S., & Hasbullah Omar, Mohd.
(2020). Compute and Data Grids Simulation Tools:
A Comparative Analysis. Emerging Trends in
Intelligent Computing and Informatics, 1073, 533-
544. https://doi.org/10.1007/978-3-030-33582-3 50

Arunarani, AR., Manjula, D., & Sugumaran, V. (2019).
Task Scheduling Techniques in Cloud Computing:
A Literature Survey. Future Generation Computer
Systems, 91, 407-415.
https://doi.org/10.1016/j.future.2018.09.014

Awad, A., Salem, R., Abdelkader, H., & Salam, M. A.
(2021). A Novel Intelligent Approach for Dynamic
Data Replication in Cloud Environment. /EEE
Access, 9, 40240-40254.
https://doi.org/10.1109/access.2021.3064917

Awang, W. S. W., Deris, M. M., Rana, O. F., Zarina, M.,
& Rose, A. N. M. (2019). Affinity Replica
Selection in Distributed Systems. Parallel
Computing Technologies, 11657, 385-399.
https://doi.org/10.1007/978-3-030-25636-4 30

Azrag, M. A. K., Kadir, T. A. A., & Jaber, A. S. (2018).
Segment Particle Swarm Optimization Adoption
for Large-Scale Kinetic Parameter Identification of
Escherichia Coli Metabolic Network Model. /[EEE
Access, 6, 78622-78639.
https://doi.org/10.1109/access.2018.2885118

Bala, A., & Chana, I. (2015). Intelligent Failure
Prediction Models for Scientific Workflows. Expert
Systems with Applications, 42(3), 980-989.
https://doi.org/10.1016/j.eswa.2014.09.014

Bharany, S., Badotra, S., Sharma, S., Rani, S., Alazab,
M., Jhaveri, R. H., & Reddy Gadekallu, T. (2022).
Energy Efficient Fault Tolerance Techniques in
Green Cloud Computing: A Systematic Survey and
Taxonomy. Sustainable Energy Technologies and
Assessments, 53, 102613.
https://doi.org/10.1016/j.seta.2022.102613

Bittencourt, L. F., Goldman, A., Madeira, E. R. M., da
Fonseca, N. L. S., & Sakellariou, R. (2018).
Scheduling in Distributed Systems: A Cloud
Computing Perspective. Computer Science Review,
30, 31-54.
https://doi.org/10.1016/j.cosrev.2018.08.002

Castillo-Garcia, A., Rodriguez-Mazahua, L., Castro-
Medina, F., Arrioja-Rodriguez, M. L., Sanchez-
Cervantes, J. L., & Rodriguez-Mazahua, N. (2023).
Design of a Dynamic Horizontal Fragmentation
Method for Multimedia Databases. Handbook on
Decision Making, 226, 71-91.
https://doi.org/10.1007/978-3-031-08246-7 4

Castro-Medina, F., Rodriguez-Mazahua, L., Abud-
Figueroa, M. A., Romero-Torres, C., Reyes-
Hernandez, L. A., & Alor-Hernandez, G. (2019).
Application of Data Fragmentation and Replication
Methods in the Cloud: A Review. 2079
International ~ Conference on Electronics,
Communications and Computers
(CONIELECOMP), 47-54.
https://doi.org/10.1109/conielecomp.2019.8673249

Castro-Medina, F., Rodriguez-Mazahua, L., Lopez-Chau,
A., Abud-Figueroa, M. A., & Alor-Hernandez, G.
(2020). FRAGMENT: A Web Application for
Database Fragmentation, Allocation and
Replication over a Cloud Environment. /EEE Latin
America Transactions, 18(06), 1126-1134.
https://doi.org/10.1109/t1a.2020.9099751

Castro-Medina, F., Rodriguez-Mazahua, L., Lopez-Chau,
A., Cervantes, J., Alor-Hernandez, G., &
Machorro-Cano, 1. (2020). Application of Dynamic
Fragmentation Methods in Multimedia Databases:
A Review. Entropy, 22(12), 1352-1442.
https://doi.org/10.3390/e22121352

Charity, T. J., & Hua, G. C. (2016). Resource Reliability
Using Fault Tolerance in Cloud Computing. 2016
2nd International Conference on Next Generation
Computing Technologies (NGCT), 65-71.
https://doi.org/10.1109/ngct.2016.7877391

Cheng, Y., Hao, Z., Cai, R., Wen, W., Wang, L., & Zhou,
Z. (2018). Resource-Aware Stream Processing in
High Performance Cloud Environment. 2018 IEEE
SmartWorld, Ubiquitous Intelligence & Computing,
Advanced & Trusted Computing, Scalable
Computing & Communications, Cloud & Big Data
Computing, Internet of People and Smart City
Innovation
(SmartWorld/SCALCOM/UIC/ATC/CBDCom/IOP/
SCI), 381-388.
https://doi.org/10.1109/smartworld.2018.00095

Ciccozzi, F., Addazi, L., Asadollah, S. A., Lisper, B.,
Masud, A. N., & Mubeen, S. (2023). A
Comprehensive Exploration of Languages for
Parallel Computing. ACM Computing Surveys,
55(2), 1-39.
https://doi.org/10.1145/3485008

1500

https://doi.org/10.17485/ijst/2019/v12i3/139557
https://doi.org/10.38094/jastt1219
https://doi.org/10.5120/20435-2768
https://doi.org/10.1109/tnsm.2017.2788945
https://doi.org/10.1007/978-3-030-33582-3_50
https://doi.org/10.1016/j.future.2018.09.014
https://doi.org/10.1109/access.2021.3064917
https://doi.org/10.1007/978-3-030-25636-4_30
https://doi.org/10.1109/access.2018.2885118
https://doi.org/10.1016/j.eswa.2014.09.014
https://doi.org/10.1016/j.seta.2022.102613
https://doi.org/10.1016/j.cosrev.2018.08.002
https://doi.org/10.1007/978-3-031-08246-7_4
https://doi.org/10.1109/conielecomp.2019.8673249
https://doi.org/10.1109/tla.2020.9099751
https://doi.org/10.3390/e22121352
https://doi.org/10.1109/ngct.2016.7877391
https://doi.org/10.1109/smartworld.2018.00095
https://doi.org/10.1145/3485008

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

Dahling, S., Razik, L., & Monti, A. (2021). Enabling
Scalable and Fault-Tolerant Multi-Agent systems
by Utilizing Cloud-Native Computing. Autonomous
Agents and Multi-Agent Systems, 35(1), 10.
https://doi.org/10.1007/s10458-020-09489-0

Fard, M. V., Sahafi, A., Rahmani, A. M., & Mashhadi, P.
S. (2020). Resource Allocation Mechanisms in
Cloud Computing: A Systematic Literature Review.
IET Software, 14(6), 638-653.
https://doi.org/10.1049/iet-sen.2019.0338

Gai, K., Guo, J., Zhu, L., & Yu, S. (2020). Blockchain
Meets Cloud Computing: A Survey. [EEE
Communications Surveys & Tutorials, 22(3), 2009-
2030. https://doi.org/10.1109/comst.2020.2989392

Geng, X., Mao, Y., Xiong, M., & Liu, Y. (2019). An
Improved Task Scheduling Algorithm for Scientific
Workflow in Cloud Computing Environment.
Cluster Computing, 22(S3), 7539-7548.
https://doi.org/10.1007/s10586-018-1856-1

Gill, S. S., Garraghan, P., Stankovski, V., Casale, G.,
Thulasiram, R. K., Ghosh, S. K., Ramamohanarao,
K., & Buyya, R. (2019). Holistic Resource
Management for Sustainable and Reliable Cloud
Computing: An innovative Solution to Global
Challenge. Journal of Systems and Software, 155,
104-129. https://doi.org/10.1016/].jss.2019.05.025

Hamrouni, T., Hamdeni, C., & Charrada, F. B. (2016).
Objective Assessment of the Performance of Data
Grid Replication Strategies Based on Distribution
Quality. International Journal of Web Engineering
and Technology, 11(1), 3-28.
https://doi.org/10.1504/ijwet.2016.075948

Hasan, M., & Goraya, M. S. (2018). Fault Tolerance in
Cloud Computing Environment: A Systematic
Survey. Computers in Industry, 99, 156-172.
https://doi.org/10.1016/j.compind.2018.03.027

He, H. (2020). A reliable peer-to-peer storage framework
based on virtual peers model. International Journal
of Networking and Virtual Organisations, 22(2),
129. https://doi.org/10.1504/ijnv0.2020.105513

Isukapalli, S., & Srirama, S. N. (2024). A Systematic
Survey on Fault-Tolerant Solutions for Distributed
Data Analytics: Taxonomy, Comparison, and
Future Directions. Computer Science Review, 53,
100660.
https://doi.org/10.1016/j.cosrev.2024.100660

Jamil, H., Umer, T., Ceken, C., & Al-Turjman, F. (2021).
Decision Based Model for Real-Time IoT Analysis
Using Big Data and Machine Learning. Wireless
Personal Communications, 121(4), 2947-2959.
https://doi.org/10.1007/s11277-021-08857-7

Jamshidi, P., Pahl, C., Mendonca, N. C., Lewis, J., &
Tilkov, S. (2018). Microservices: The Journey So
Far and Challenges Ahead. IEEE Software, 35(3),
24-35. https://doi.org/10.1109/ms.2018.2141039

Javadpour, A., Sangaiah, A. K., Pinto, P., Ja'fari, F,,
Zhang, W., Majed Hossein Abadi, A., & Ahmadi,
H. (2023). An Energy-Optimized Embedded Load
Balancing using DVFS Computing in Cloud Data
Centers. Computer Communications, 197, 255-266.
https://doi.org/10.1016/j.comcom.2022.10.019

Jhawar, R., & Piuri, V. (2017). Fault Tolerance and
Resilience in Cloud Computing Environments. 165-
181.
https://doi.org/10.1016/b978-0-12-803843-7.00009-0

JosephNg, P. S., Loh, Y. F., & Eaw, H. C. (2020). Grid
Computing for MSE during Volatile Economy.
2020 20th International Conference on Control,
Automation and Systems (ICCAS), 709-714.
https://doi.org/10.23919/iccas50221.2020.9268216

Kaur, A., Gupta, P., Singh, M., & Nayyar, A. (2019).
Data Placement in Era of Cloud Computing: a
Survey, Taxonomy and Open Research Issues.
Scalable Computing: Practice and Experience,
20(2), 377-398.
https://doi.org/10.12694/scpe.v20i2.1530

Kaushik, M., & Santosh, M. (2020). A State-of-Art on
Cloud Load Balancing Algorithms. International
Journal of Computing and Digital Systems, 9(2),
201-220. https://doi.org/10.12785/ijcds/090206

Kaushik, P., Rao, A. M., Singh, D. P., Vashisht, S., &
Gupta, S. (2021). Cloud Computing and
Comparison based on Service and Performance
between Amazon AWS, Microsoft Azure, and
Google Cloud. 2021 International Conference on
Technological Advancements and Innovations
(ICTAD), 268-273.
https://doi.org/10.1109/ictai53825.2021.9673425

Khaldi, M., Rebbah, M., Meftah, B., & Smail, O. (2020).
Fault Tolerance for a Scientific Workflow System
in a Cloud Computing Environment. International
Journal of Computers and Applications, 42(7),
705-714.
https://doi.org/10.1080/1206212x.2019.1647651

Khan, A. W., Khan, M. U., Khan, J. A., Ahmad, A.,
Khan, K., Zamir, M., Kim, W., & ljaz, M. F.
(2021). Analyzing and Evaluating Critical
Challenges and Practices for Software Vendor
Organizations to Secure Big Data on Cloud
Computing: An AHP-Based Systematic Approach.
IEEFE Access, 9, 107309-107332.
https://doi.org/10.1109/access.2021.3100287

Kumar, G. M., Ramachandram, S., & Gyani, J. (2017).
Parameterized Reliable Trust Model in Grid
Computing using Regression. International Journal
of Advanced Research in Computer Science, 8(3),
423-430.

Kumar, M., Sharma, S. C., Goel, A., & Singh, S. P.
(2019). A Comprehensive Survey for Scheduling
Techniques in Cloud Computing. Journal of
Network and Computer Applications, 143, 1-33.
https://doi.org/10.1016/j.jnca.2019.06.006

Kumar, P. R, Raj, P. H., & Jelciana, P. (2018). Exploring
Data Security Issues and Solutions in Cloud
Computing. Procedia Computer Science, 125, 691-
697. https://doi.org/10.1016/j.procs.2017.12.089

Kumar, V., Laghari, A. A., Karim, S., Shakir, M., &
Anwar Brohi, A. (2019). Comparison of Fog
Computing & Cloud Computing. International
Journal of Mathematical Sciences and Computing,
5(1), 31-41.
https://doi.org/10.5815/ijmsc.2019.01.03

1501

https://doi.org/10.1007/s10458-020-09489-0
https://doi.org/10.1049/iet-sen.2019.0338
https://doi.org/10.1109/comst.2020.2989392
https://doi.org/10.1007/s10586-018-1856-1
https://doi.org/10.1016/j.jss.2019.05.025
https://doi.org/10.1504/ijwet.2016.075948
https://doi.org/10.1016/j.compind.2018.03.027
https://doi.org/10.1504/ijnvo.2020.105513
https://doi.org/10.1016/j.cosrev.2024.100660
https://doi.org/10.1007/s11277-021-08857-7
https://doi.org/10.1109/ms.2018.2141039
https://doi.org/10.1016/j.comcom.2022.10.019
https://doi.org/10.1016/b978-0-12-803843-7.00009-0
https://doi.org/10.23919/iccas50221.2020.9268216
https://doi.org/10.12694/scpe.v20i2.1530
https://doi.org/10.12785/ijcds/090206
https://doi.org/10.1109/ictai53825.2021.9673425
https://doi.org/10.1080/1206212x.2019.1647651
https://doi.org/10.1109/access.2021.3100287
https://doi.org/10.1016/j.jnca.2019.06.006
https://doi.org/10.1016/j.procs.2017.12.089
https://doi.org/10.5815/ijmsc.2019.01.03

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

Kunna, M. A., Kadir, T. A. A., Remli, M. A., Ali, N. M.,
Moorthy, K., & Muhammad, N. (2020). An
Enhanced Segment Particle Swarm Optimization
Algorithm for Kinetic Parameters Estimation of the
Main Metabolic Model of Escherichia Coli.
Processes, 8(8), 963-1006.
https://doi.org/10.3390/pr8080963

Li, C., Song, M., Zhang, M., & Luo, Y. (2020). Effective
Replica Management for Improving Reliability and
Availability in Edge-Cloud Computing
Environment. Journal of Parallel and Distributed
Computing, 143, 107-128.
https://doi.org/10.1016/j.jpdc.2020.04.012

Lv, Z., & Xiu, W. (2020). Interaction of Edge-Cloud
Computing Based on SDN and NFV for Next
Generation loT. IEEE Internet of Things Journal,
7(7), 5706-5712.
https://doi.org/10.1109/ji0t.2019.2942719

Mansouri, N., & Javidi, M. M. (2020). A Review of Data
Replication Based on Meta-Heuristics Approach in
Cloud Computing and Data Grid. Soft Computing,
24(19), 14503-14530.
https://doi.org/10.1007/s00500-020-04802-1

Meng, S., Li, Q., Wu, T., Huang, W., Zhang, J., & Li, W.
(2019). A Fault-Tolerant Dynamic Scheduling
Method on Hierarchical Mobile Edge Cloud
Computing. Computational Intelligence, 35(3),
577-598. https://doi.org/10.1111/coin.12219

Mesbahi, M. R., Rahmani, A. M., & Hosseinzadeh, M.
(2018). Reliability and High Availability in Cloud
Computing Environments: A Reference Roadmap.
Human-Centric ~ Computing and Information
Sciences, 8(1), 1-31.
https://doi.org/10.1186/s13673-018-0143-8

Mohamed, S. A., & Yousif, A. (2019). Bridging the Gap
between Service Oriented Architecture and Cloud
Software as a Service. 2019 International
Conference on Computer, Control, Electrical, and
Electronics Engineering (ICCCEEE), 1-6.
https://doi.org/10.1109/iccceee46830.2019.9071375

Mohammad Hasani Zade, B., Mansouri, N., & Javidi, M.
M. (2021). Multi-Objective Scheduling Technique
Based on Hybrid Hitchcock Bird Algorithm and
Fuzzy Signature in Cloud Computing. Engineering
Applications of Artificial Intelligence, 104, 104372.
https://doi.org/10.1016/j.engappai.2021.104372

Nashat, D., & Amer, A. A. (2019). A Comprehensive
Taxonomy of Fragmentation and Allocation
Techniques in Distributed Database Design. ACM
Computing Surveys, 51(1), 1-25.
https://doi.org/10.1145/3150223

Noraziah, A., Fauzi, A. A. C., Ubaidillah, S. H. S. A.,
Alkazemi, B., & Odili, J. B. (2021). BVAGQ-AR
for Fragmented Database Replication Management.
IEEFE Access, 9, 56168-56177.
https://doi.org/10.1109/access.2021.3065944

O'Brien, K., Pietri, 1., Reddy, R., Lastovetsky, A., &
Sakellariou, R. (2018). A Survey of Power and
Energy Predictive Models in HPC Systems and
Applications. ACM Computing Surveys, 50(3), 1-
38. https://doi.org/10.1145/3078811

Pandian, A. P, & Smys, S. (2020). Effective
Fragmentation Minimization by Cloud Enabled
Back Up Storage. Journal of Ubiquitous
Computing and Communication Technologies, 2(1),
1-9. https://doi.org/10.36548/jucct.2020.1.001

Qin, Y., Yang, W,, Ai, X., & Chen, L. (2018). Fault
Tolerant Storage and Data Access Optimization in
Data Center Networks. Journal of Network and
Computer Applications, 113, 109-118.
https://doi.org/10.1016/j.jnca.2018.04.001

Qiu, H., Noura, H., Qiu, M., Ming, Z., & Memmi, G.
(2021). A User-Centric Data Protection Method for
Cloud Storage Based on Invertible DWT. [EEE
Transactions on Cloud Computing, 9(4), 1293-
1304. https://doi.org/10.1109/tcc.2019.2911679

Rabie, A. H., Saleh, A. 1., & Ali, H. A. (2021). Smart
Electrical Grids Based on Cloud, IoT, and Big Data
Technologies: State of the Art. Journal of Ambient
Intelligence and Humanized Computing, 12(10),
9449-9480.
https://doi.org/10.1007/s12652-020-02685-6

Rady, M., Abdelkader, T., & Ismail, R. (2019). Integrity
and Confidentiality in Cloud Outsourced Data. Ain
Shams Engineering Journal, 10(2), 275-285.
https://doi.org/10.1016/j.asej.2019.03.002

Ramesh Naidu, P., Guruprasad, N., & Dankan Gowda, V.
(2021). A High-Availability and Integrity Layer for
Cloud Storage, Cloud Computing Security: From
Single to Multi-Clouds. Journal of Physics:
Conference Series, 1921(1), 012072.
https://doi.org/10.1088/1742-6596/1921/1/012072

Santos, N. L., Ghita, B., & Masala, G. L. (2019).
Enhancing Data Security in Cloud using Random
Pattern Fragmentation and a Distributed NoSQL
Database. 2019 IEEE International Conference on
Systems, Man and Cybernetics (SMC), 3735-3740.
https://doi.org/10.1109/smc.2019.8914454

Shakarami, A., Ghobaei-Arani, M., Masdari, M., &
Hosseinzadeh, M. (2020). A Survey on the
Computation Offloading Approaches in Mobile
Edge/Cloud Computing Environment: A
Stochastic-based Perspective. Journal of Grid
Computing, 18(4), 639-671.
https://doi.org/10.1007/s10723-020-09530-2

Sharif, H., Oo, A. M. T., Haroon, K. M., & Kaosar, M.
(2020). A Review on Various Smart Grid
Technologies used in Power System. International
Research Journal of Engineering and Technology,
7(8), 4091-4097.

Srivastava, P., & Khan, R. (2018). A Review Paper on
Cloud Computing. International Journal of
Advanced Research in Computer Science and
Software Engineering, 8(6), 17-20.

Subramanian, N., & Jeyaraj, A. (2018). Recent Security
Challenges in Cloud Computing. Computers &
Electrical Engineering, 71, 28-42.
https://doi.org/10.1016/j.compeleceng.2018.06.006

1502

https://doi.org/10.3390/pr8080963
https://doi.org/10.1016/j.jpdc.2020.04.012
https://doi.org/10.1109/jiot.2019.2942719
https://doi.org/10.1007/s00500-020-04802-1
https://doi.org/10.1111/coin.12219
https://doi.org/10.1186/s13673-018-0143-8
https://doi.org/10.1109/iccceee46830.2019.9071375
https://doi.org/10.1016/j.engappai.2021.104372
https://doi.org/10.1145/3150223
https://doi.org/10.1109/access.2021.3065944
https://doi.org/10.1145/3078811
https://doi.org/10.36548/jucct.2020.1.001
https://doi.org/10.1016/j.jnca.2018.04.001
https://doi.org/10.1109/tcc.2019.2911679
https://doi.org/10.1007/s12652-020-02685-6
https://doi.org/10.1016/j.asej.2019.03.002
https://doi.org/10.1088/1742-6596/1921/1/012072
https://doi.org/10.1109/smc.2019.8914454
https://doi.org/10.1007/s10723-020-09530-2
https://doi.org/10.1016/j.compeleceng.2018.06.006

Mohammed Adam Kunna Azrag et al. / Journal of Computer Science 2025, 21 (7): 1490.1503

DOI: 10.3844/jcssp.2025.1490.1503

Tripathi, A. K., Agrawal, S., & Gupta, R. D. (2020).
Cloud Enabled SDI Architecture: A Review. Earth
Science Informatics, 13(2), 211-231.
https://doi.org/10.1007/s12145-020-00446-9

Ubaidillah, S. H. S. A., Alkazemi, B., & Noraziah, A.
(2021). An Efficient Data Replication Technique
with Fault Tolerance Approach using BVAG with
Checkpoint and Rollback-Recovery. International
Journal of Advanced Computer Science and
Applications, 12(1), 475-480.
https://doi.org/10.14569/ijacsa.2021.0120155

Ubaidillah, S. H. S. A., Noraziah, A., & Beneoluchi
Odili, J. (2020). Fragmentation Techniques For
Ideal Performance In Distributed Database a€“ A
Survey. International Journal of Software
Engineering and Computer Systems, 6(1), 18-24.
https://doi.org/10.15282/ijsecs.6.1.2020.3.0066

Ullah, S., Awan, M. D., & Sikander Hayat Khiyal, M.
(2018). Big Data in Cloud Computing: A Resource
Management Perspective. Scientific Programming,
2018, 1-17. https://doi.org/10.1155/2018/5418679

Xiao, P., & Zhang, T. (2019). A novel replication scheme
based on prediction technology in virtual P2P
storage platform. International Journal of
Networking and Virtual Organisations, 20(1), 90.
https://doi.org/10.1504/ijnv0.2019.096615

Zheng, M., Du, X., Lu, Z., & Duan, Q. (2024). A
Balanced and Reliable Data Replica Placement
Scheme Based on Reinforcement Learning in
Edge-Cloud Environments. Future Generation
Computer Systems, 155, 132-145.
https://doi.org/10.1016/j.future.2024.02.004

Zhou, A., Wang, S., Hsu, C., Kim, M. H., & Wong, K.
(2017). Network Failure-Aware Redundant Virtual
Machine Placement in a Cloud Data Center.
Concurrency and Computation: Practice and
Experience, 29(24), 4290.
https://doi.org/10.1002/cpe.4290

1503

https://doi.org/10.1007/s12145-020-00446-9
https://doi.org/10.14569/ijacsa.2021.0120155
https://doi.org/10.15282/ijsecs.6.1.2020.3.0066
https://doi.org/10.1155/2018/5418679
https://doi.org/10.1504/ijnvo.2019.096615
https://doi.org/10.1016/j.future.2024.02.004
https://doi.org/10.1002/cpe.4290

