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Abstract: Indoor asset tracking entails the surveillance and governance of
the position and movement of tangible assets within enclosed spaces,
including warehouses, hospitals, and workplaces. Indoor asset tracking
systems employ technologies such as Radio Frequency Identification
(RFID), Bluetooth Low Energy (BLE), Wi-Fi, and UWB (Ultra-Wideband)
to deliver real-time visibility and precise placement of goods. This research
introduces indoor asset tracking with IoT and machine learning. Indoor
asset tracking has advanced significantly with the incorporation of Internet
of Things (IoT) and machine learning technology. The Internet of Things
facilitates the effortless acquisition of real-time data from diverse sensors
and devices, while machine learning algorithms analyze this data to deliver
precise tracking and predictive analytics. This combination enables the
tracking of asset locations, conditions, and movements in indoor settings,
including storage areas, hospitals and different industries. This study
gathers data from the BLE tracker, which transmits information to the LoRa
gateway.  This research utilizes supervised learning methodologies,
including Support Vector Machines (SVMs), K-Nearest Neighbors (KNNs),
and Neural Networks (NN). The F-score, recall, precision, and accuracy are
employed for evaluation purposes. The experimental results indicate that

the KNN model achieves the best accuracy of 80.5%.
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Introduction

The wubiquity and continuous improvement of
smartphones and other personal electronic devices have
resulted in significant growth and advancement in
several Information and Communications Technology
(ICT) industries. By utilizing the sensors and protocols
built into mobile devices, indoor tracking technology has
advanced to enable a wide range of services. Compared
to approaches based on WiFi, the number of tries to
detect position in interior situations using Bluetooth has
grown because of the introduction of iBeacon (Kohne &
Sieck, 2014) and Eddystone (David et al., 2022). This is
mostly because Bluetooth is designed to function with a
minimum amount of power consumption (Sesyuk et al.,
2022; Song et al., 2019; Ninh et al., 2020; Zafari et al.,
2019).

Indoor tracking possesses numerous applications and
has been the subject of investigation across various
sectors. Location-based marketing is a prominent topic
that has prompted extensive research on these systems.
The objective of location-based marketing is to provide
clients with a customized experience, pertinent
information about products or services, and exclusive
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offers contingent upon the client's location. This sort of
solution, in conjunction with the integration of payment
capabilities through alerts or the monitoring of consumer
behavior, offers information that has the potential to

enhance the overall experience of the end customer
(Shum et al., 2022).

This project involved the development of an Internet
of Things (IoT) system that utilized Machine Learning
(ML) for the assessment of the positions of indoor assets,
items, individuals, or animals. To deliver the optimal
solution for this type of system, it is essential to analyze
several methodologies, designs, and frameworks (Fortino
et al., 2020). This study investigates the fingerprinting
method as a substitute for trilateration in indoor location
estimation. The method employs an intelligent system
that collects data from the RSSI levels of the object's
wireless connection with many access points,
subsequently correlating these data sets with a specific
spatial location (Li et al, 2019). Employing Bluetooth
Low Energy (BLE) technology, Scanning Stations are
placed in the study area at regular intervals to read
periodic beacon messages sent by a tag connected to the
item (Teran et al., 2017). When all of the scanners have
collected enough data, they upload it to a server. From
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there, an ML model that has been trained to use
fingerprinting to predict the object's location is applied.

The principal objective of the IoT indoor positioning
system is to facilitate asset identification and monitoring,
hence generating alerts regarding their existence or
absence. To do this, multiple elements of an IoT
architecture were created. The components comprised:
(1) Processing and storage layers; (ii) A Bluetooth
communication layer linking the scanning stations and
mobile TAGs; (iii)) A local MQTT broker for data
centralization; and (iv) Fully tailored electronic devices
for hardware and firmware (Pu and You, 2018). A
training phase of the research entailed the acquisition and
labeling of a location dataset to serve as input for
training the neural network. A subsequent deployment
and operational phase ensued.
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Fig. 1: A high-level overview of the IoT localization
classification

Indoor positioning has undergone significant
advancement; nonetheless, a definitive standard for the
many methodologies has yet to materialize. To enhance
data mining and machine learning applications,
particularly at the edge, for efficient decision-making in
dynamic and constrained IoT environments, considerable
efforts have been devoted to proposing a general
simulation-driven methodology for IoT systems
(Savaglio & Fortino, 2021). Figure (1) presents a
comprehensive overview of the classification of IoT
localization.

Fundamental of Indoor Asset Tracking

Indoor asset monitoring employs  diverse
technologies and approaches to identify, monitor, and

manage assets within enclosed locations such as
warehouses, hospitals, offices, and retail areas. The
primary objective is to improve operational efficiency,
security, and asset utilization by offering real-time
visibility into the location and status of assets.

Principal technologies in indoor asset tracking
comprise Radio Frequency Identification (RFID), WiFi,
Bluetooth Low Energy (BLE), Ultra-Wideband (UWB),
and infrared systems. RFID tags and readers provide the
automatic identification and tracking of things affixed
with RFID tags. WiFi and BLE utilize existing network
infrastructure to deliver location data derived from signal
strength and triangulation. UWB provides high-accuracy
position tracking by quantifying the duration of signal
transmission between devices.

Infrared systems use light waves to detect asset
locations. These technologies can be integrated with
software platforms that provide user interfaces, data
analytics, and integration with other enterprise systems.
Such platforms often include geofencing, which sets
virtual boundaries to trigger alerts when an asset enters
or leaves a designated area, and environmental
monitoring, which tracks temperature and humidity.

The deployment of indoor asset tracking systems can
significantly improve inventory management, reduce
losses from theft or misplacement, enhance maintenance
processes, and optimize space utilization. These systems
support  better decision-making and operational
efficiencies across various industries by providing
detailed insights into asset movements and usage
patterns.

Comparison of Indoor and Outdoor Tracking

Indoor Positioning Systems (IPS) are engineered to
monitor individuals or things within
enclosed areas where conventional outdoor positioning
technologies such as GPS or GNSS struggle due to
obstacles like walls (Jia et al., 2017). Table (1) shows the
comparison between different tracking technologies.
Here are some key points to consider.

Precision and Accuracy

Indoor: IPS technologies aim for high precision and
accuracy within confined spaces, such as warehouses,
hospitals, or shopping malls (Kunhoth ez al., 2019).

Outdoor: GPS provides global coverage but may
have lower accuracy due to factors like signal
interference or multipath effects.

Coverage and Resolution

Indoor: IPS focuses on smaller areas, providing
detailed location information.

Outdoor: GPS covers vast regions but may lack fine-
grained resolution.
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Table 1: Key differences between a number of tracking technologies

Tracking Indoor/Outdoor Pros Cons
Methods
GPS Outdoor Extremely accurate Participants are

(Thiagarajan  Tracking
et al.,2010)

placement Low-

priced deployment

Wi-Fi (Wu et Indoor Tracking high accuracy of

required Rarely
perform work
inside
Participants are

al., 2015) placement required Require
Inexpensive to specialized
implement software
Camera Indoor and Non-obtrusive High LOS Difficult
(Thakoor et Outdoor accuracy of Implementation
al., 2015) Tracking placement No

devices that
individuals are

carrying
RFID (Kim et Indoor Tracking NLOS Adaptable  Obtrusive
al., 2013) Implementation Personal
High accuracy of  technology that
placement individuals carry
ZigBee (Choi Indoor Tracking NLOS Adaptable  Obtrusive
and Zhou, Implementation Personal
2012) High accuracy of  technology that
placement individuals carry
Bluetooth Indoor Tracking NLOS Adaptable ~ Obtrusive
(Cheng & Implementation Personal
Zhuang, High accuracy of  technology that
2010) placement individuals carry
Cellular signal Outdoor Non-Line of Sight Invasive
(Gember ez Tracking (NLOS) Wide Inaccurate
al., 2012, Coverage Area positioning Rigid
Dalip & Frequently implementation
Kumar, 2014) implemented Common devices
infrastructures. that individuals
own
Update Frequency

Indoor: IPS can offer real-time updates for dynamic
tracking (Wang ef al., 2017).

Outdoor: GPS updates less frequently due to satellite
orbits.

Infrastructure Cost

Indoor: Setting up IPS infrastructure (such as beacons
or reference nodes) can be costly.

Outdoor:
globally.

GPS infrastructure is already in place

Suitability for the Environment

Indoor: IPS works well in enclosed spaces with
limited visibility to satellites.

Outdoor: GPS is optimal for unobstructed

environments with a direct view of the sky (Asaad &
Maghdid, 2022).

1oT Technologies for Indoor Asset Tracking

Indoor asset tracking employs diverse IoT
technologies to identify and oversee assets within

enclosed environments, such as warehouses, hospitals, or
office buildings (Bencak ef al., 2022). This is a summary
of the key IoT technologies employed for indoor asset
tracking (Canton Paterna et al., 2017):

Radio Frequency Identification (RFID)

An Examination of the Significance of Asset
Tracking Employing RFID technology for the automatic
tracking of assets is a strategy that can enhance asset
management efficiently and swiftly. An RFID asset-
tracking system utilizes electromagnetic fields to
transmit data from an RFID tag to a reader (Brindha et
al., 2020). The patient ID is a unique identity assigned to
each physician. This ID enables entry into the application
and the operational IoT Asset Tracking System through
the use of an RFID tag and reader. The block architecture
for this system is seen below in Figure (2).
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Fig. 2: Basic concept of RFID system (Evizal et al., 2013)
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Fig. 3: BLE usage

Bluetooth Low Energy (BLE)

Bluetooth Low Energy, also referred to as BLE, is an
innovative wireless communication technology that
facilitates short-range communication while enhancing
cost efficiency and reducing battery consumption. The
radio architecture of BLE has experienced a substantial
and essential alteration to facilitate short-range
communication (Jia Liu et al., 2012; Liu et al., 2013).
BLE provides a similar communication range while
exhibiting markedly reduced power usage. Most BLE
devices operate on coin-cell batteries, which can sustain
functionality for months, if not years, with regular use.
The capacity to transmit substantial data volumes is a
fundamental characteristic of sensor technologies
facilitated by BLE technology (Cho et al., 2014). Upon
re-entering proximity, BLE technology reinstates
connections, facilitating a more advanced and resilient
link. Wireless sensor networks gain advantages from
BLE's enhanced short-range communication features,
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which are attributed to its advanced data transfer
capabilities (Cho et al., 2014). Figure (3) illustrates the
utilization of BLE.

WiFi

WiFi is a radio signal employed to connect many
devices. Devices in proximity to a connected router
receive signals. The WiFi standard utilizes the 2.4 GHz
and 5 GHz frequency bands for signal transmission. One
can modify the frequency of their WiFi network utilizing
dual-band equipment. Wireless local area networks, often
known as WiFi, are delineated by the 802.11 standards
established by the Institute of Electrical and Electronics
Engineers (IEEE) (Sakib et al., 2012; Rasool Jader, &
Sadegh Aminifar, 2023). This resulted in the creation of
multiple variants of the WiFi protocol, including
802.11a, 802.11b, 802.11g, 802.11n, 802.1lac and
802.11ax. Numerous channels exist for data transmission
and reception inside each WiFi frequency band
(Maduraga & Abeysekara, 2021). The numerous benefits
of Wi-Fi-based indoor tracking solutions include their
low cost, the provision of real-time location updates, and
the widespread accessibility of equipment. Accurate
indoor localization remains feasible despite the lack of a
direct line of sight, as WiFi signals can penetrate walls
and other barriers.

Long-Range Radio (LoRa)

This is a method to wirelessly modulate signals.
LoRa devices are characterized by their long-range
capabilities, cost-effectiveness, and ease of integration
into networks, owing to their minimal infrastructure
prerequisites. It facilitates chirp spread spectrum
communication over extensive distances. It employs
specialized radios, rarely used in consumer electronics,
to mitigate interference from other devices. You can
achieve a 20% cost reduction relative to alternative
network technologies. LoRa employs an unlicensed RF
spectrum. LoRa employs Forward Error Correction
(FEC) to significantly diminish signal noise (Ingabire et
al., 2021).

LoRa is a superior choice for indoor localization
owing to its affordability, extensive range, and low
power requirements. Indoor localization systems
utilizing LoRa technology are straightforward to
implement and function effectively in various situations.
The imprecision of LoRa complicates the identification
of an exact location, which constitutes its primary
disadvantage relative to other technologies. Moreover,
LoRa may experience signal attenuation and interference
from other wireless devices, thereby restricting its

application in regions with little signal strength (Kim et
al.,2021).

Wireless Indoor Tracking Techniques

In this part, they study wireless indoor tracking
techniques such as triangulation and trilateration.

Triangulation

This method is employed to ascertain the target's
location by applying the geometric principles of
triangles. The target location can be estimated or
calculated using the positions of three or more access
points. The distances between the target and the access
points will be estimated using TOA, AOA, and RSS of
the signals when the target devices receive signals from
one or more access points (Bangash et al., 2014). This
will transpire anytime the target devices detect the
signals. The angle delineates the projected position of the
target, as depicted in Figure (4) below.
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Fig. 4: A sample of triangulation positioning (Aminifar and
Marzuki, 2013a-b)

An equation for the value of the figure's unidentified
nodes could be articulated as follows:
Vlzo1 — 2a)? + (yp1 — va)? =11 (1)

V(@or —@e)? + (o1 — we)? =7y

a = ZAOLC = 2r — 2/ADC {
(wa = @) + (ya — ye)?

=2r) —2rjcosa

Fig. 5: 2D localization using trilateration (Aminifar, 2020)
Trilateration

This method uses distance measurements from
several reference locations to pinpoint the target's
position. A technique based on radio frequency signals is
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developed to pinpoint the item in the field. RSS, which
stands for radio frequency signal strength, is monitored
by field readers regarding the tagged item. Subsequently,
the trilateration system will convert the signal intensity
into a distance utilizing the distance formula specified in
Equation (2). Using this method, we can extract the
tagged object's coordinates from two-dimensional (2D)
alteration data as well as two-dimensional (2D) alteration
data (Figure 5).

The following are 2D trilateration equations (Abd
and Aminifar, 2022a-b):

(z0 — 2)> + (3o — )2 = dg )
(z1—2)+ (g1 —y)2 =d;

(@ — w)2 + (yn —¥)2 = di

The variation in UWB signal intensity adds to the
positioning mistakes, making it difficult to detect the
actual tag location given distances (dy, dy, ---, d,) in

an inaccurate positioning situation.

They solved (2) using the famous least squares (LS)
algorithm for practical location. Following these steps,
the LS technique approximates the point where three
circles cross by using the form of a linear equation of
a = b

T1— %o Y1 — Yo 3)
T2 —To Y2—Yo [:c]
a = . . 5 =
: Y
In — %o Yn — Yo
o +yi — df — (af +yy — df) (4)

|23+ y3 —di — (af + y§ — df)
b=3 :
, +yn — dy — (28 + y3 — df)
Now, the tag location is estimated as follows:
¢ = (a"a) 'a”b ®)
Background Study

The Internet of Things (IoT) enables the intelligent
interconnection of millions of devices to provide smart
services. This presents a significant challenge for smart
cities, the Internet of Things, and wireless sensor
networks, especially in indoor localization contexts.
WiFi is one of the numerous technologies employed for
indoor localization, utilizing received signal strengths
(RSSs). Several factors can affect the signal strength of a
WiFi RSS, including reflection, refraction, interference,
and channel noise. No unknown node's position can be
accurately defined using the abnormal and erratic RSS
data employed in a WiFi indoor localization context. As
a result, by combining supervised and unsupervised
machine learning techniques with ensemble learning, this
research has created an outlier identification strategy
called iF-Ensemble for WiFi localization for enclosed

areas. The system analyzes RSSs. This study employs the
unsupervised learning technique of isolation forest
(iForest). Support vector machines (SVMs), K-nearest
neighbors (KNNs), and random forests (RFs) employing
stacking, an ensemble learning method, are classified as
supervised learning techniques. The ROC-AUC curve, F-
score, recall, precision, and accuracy are employed for
evaluation purposes. Upon the exclusion of outliers, the
precision of the localization procedure in an indoor
environment is enhanced by more than 2%, as per the
assessment of the employed machine learning technique,
which attains a notable accuracy of 97.8% utilizing the
specified outlier detection methods (Khorsheed &
Aminifar, 2023).

Materials and Methods

In this part, the author makes available a study
approach that is founded on the concept of indoor asset
localization.

Data Collection

The Process begins with data collection by a BLE
and LoRa tracker, which is designed to scan for BLE
beacons within a designated area, such as a room. The
tracker continuously monitors its surroundings for any
nearby BLE beacons, capturing essential information
such as the unique identities (typically the MAC
addresses or other identifiers) and the signal strengths of
each beacon it detects. This data is crucial for various
applications, including asset tracking, environmental
monitoring, and presence detection.

Once the BLE + LoRa tracker gathers the beacon
information, it packages this data into a structured
message. This message includes the identities of all
detected beacons and their respective signal strengths,
providing a snapshot of the BLE environment within the
room. The structured data ensures that the information is
organized and ready for transmission to a central system
for further analysis or action. To facilitate
communication between the tracker and the central
system, the LoRaWAN (Long Range Wide Area
Network) protocol is employed. The BLE + LoRa tracker
converts the collected beacon data into LoRaWAN-
compatible messages. These messages adhere to the
LoRaWAN protocol standards, ensuring that they can be
efficiently and reliably transmitted over long distances.
The protocol is designed for low-power, wide-area
networks, making it ideal for scenarios where devices
need to send data over long ranges with minimal power
consumption.

Data Transmission

The transmission process involves sending the
LoRaWAN messages using the LoRa modulation
technique. LoRa modulation enables the messages to
travel significant distances, even in environments with
obstacles or interference. The BLE + LoRa tracker
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transmits these messages to a nearby LoRa + GSM
(Global System for Mobile Communications) gateway.
This gateway serves as a bridge, receiving the
LoRaWAN messages from the tracker. Upon receiving
the messages, the LoRa + GSM gateway processes them
and forwards the data to a central server or cloud-based
system using GSM or Ethernet connectivity. This step is
essential as it guarantees the data gathered by the BLE +
LoRa tracker is accessible for real-time monitoring,
analysis, and decision-making. The entire process, from
data collection by the BLE + LoRa tracker to data
transmission via the LoRaWAN protocol and the LoRa +
GSM gateway, enables efficient and effective tracking
and monitoring solutions in various environments.

Data Pre-Processing

The network server forwards the processed data to
the appropriate application server or cloud service. This
communication  typically  occurs over  secure
communication protocols such as MQTT, HTTPS, or
other APIs. The LoRa + GSM gateway communicates
with the cloud server using a suitable protocol like
MQTT, HTTP/HTTPS, or custom APIs. During data
forwarding, the gateway transmits the LoRaWAN
messages, which include the BLE beacon data, to the
cloud server using the chosen communication protocol.
Once received by the cloud server, the messages are
processed and the data is stored for further analysis or
use.

| Machine Learning Types |

| | } |

Supervised Unsupervised Semi- Reinforcement
Learning Learning supervised Learning
= Principle || Generative
|| Decision Component Models
Tree Analysis
KNN ’ Triiellnig
| K-Means
Transudative Support
Support Vector Vector Machine
_— Machine

Fig. 6: Various types of ML techniques (Sarker, 2021; Dutta et
al.,2018; Bre et al., 2018)

ML Algorithms for Indoor Localization

Machine learning methods comprise a series of
statistical techniques that classify attitudes according to
specific attributes and allocate them to distinct
categories. The procedures are trained on multiple
examples and serve as a framework for determining the
categorization of those examples. The optimal match is
utilized in this method to select the ideal combination
that can yield new data. This machine learning method
was initially used with certain classifications and
subsequently modified to accommodate incoming data

according to the training data's categorization (Taha &
Aminifar, 2022; Jader & Aminifar, 2022a-b). Figure (6)
represents the machine learning techniques.

Supervised Learning (SL)

Over the past two decades, extensive research has
explored the application of fuzzy logic and machine
learning to enhance system performance in control and
diagnostic domains. Early work by Aminifar et al. (2002,
2006) paved the way with innovative CMOS fuzzy logic
controller chips and novel membership function
generators that utilize novel fuzzifiers and min-max
circuit designs. Building on these fundamental studies,
subsequent research has extended fuzzy inference
techniques to  biomedical  applications,  with
investigations into Sugeno- and Mamdani-type systems
for heart rate detection and other signal-processing tasks
(Aminifar et al., 2013a-b). In parallel, ensemble
approaches combining clustering and classification
algorithms, as well as fast and accurate neural network
models, have been proposed for medical diagnostics,
particularly in the diagnosis of gestational diabetes and
diabetes diagnosis (Marzuki et al, 2022). Additional
contributions address uncertainty management in big
data and demodulator selection for communication
signals, further demonstrating the versatility of these
techniques (Sharee et al, 2021). Collectively, these
studies highlight the significant potential of integrating
fuzzy logic with machine learning—not only to drive
innovations in in-house asset tracking and IoT
applications but also to enhance predictive analytics in a
variety of contexts.

A function that converts an input into an output is
frequently learned using machine learning from sample
pairs of inputs and outputs (Nguyen et al., 2021). It
deduces a function using annotated training data and a
collection of training instances. SL is executed in a task-
oriented context, wherein specific outputs are desired
from a defined set of inputs (Esmaeili Kelishomi et al.,
2019). Common supervised tasks encompass
"classification," which entails categorizing data, and
"regression," which requires the transformation of data.
One use of supervised learning is text classification,
which entails identifying the probable category or
sentiment of a text, such as a tweet or a product review.
Figure (7) illustrates the diagram of supervised learning.

Supervised Based Weight Cumulative Error
Update

Neural Network

(OO =

Qutput ;z.“gelt
Signal 1gua

Input
Signal

Fig. 7: Supervised Learning (Yusof et al., 2017)
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Support Vector Machine (SVM)

The SVM is a prominent and advanced machine
learning methodology. Its primary function is to organize
data. The SVM algorithm is fundamentally based on the
concept of margin calculation. It establishes artificial
barriers between various segments of economic
distribution. To minimize potential classification
mistakes during the Process, classes are separated from
the margin to the maximum extent possible (Mahesh,
2020). Figure (8) illustrates the SVM visualization.

/ Margin

Hyperplane
) yperp

Support
Vectors

Fig. 8: SVM visualization (Manjrekar & Dudukovic, 2019)
KNN

KNN is a nonparametric technique employed for
predictive tasks, including regression and classification.
The input comprises the k nearest training instances,
whereas the output is contingent upon whether the
algorithm is employed for classification or regression.
KNN is a fundamental technique in machine learning
that classifies datasets by calculating the distance
between two locations (Bahl & Padmanabhan, 2000).
KNN is frequently employed because of its
interpretability and little computational time. The values
of k factors are essential in this procedure. To enhance
prediction accuracy, the k values must be determined to
minimize the validation error (Sandamini et al., 2023).
The location Loc is calculated by averaging the location
values of k coordinates as follows:

_1vk
Loc = Y a1 Loc,

Artificial Neural Networks (ANN)

Artificial Neural Networks (ANNs), a subtype of
machine learning and the cornerstone of deep learning
methodologies are predicated on neural networks. A
neural network is a collection of algorithms designed to
identify concealed relationships within a data set by
emulating the functioning of the human brain. The
network has numerous intricately linked processing units
known as neurons that operate concurrently to resolve a
particular problem. Neural networks possess the ability
to learn from exemplars (You ef al., 2022). They cannot

be compelled to execute a designated task. To avoid
inefficiency or, more critically, suboptimal network
performance, the instances must be meticulously
selected. An artificial neural network (ANN) has one or
more hidden layers, an output layer, and an input layer,
as illustrated in Figure 9 (Valizadeh et al., 2017). The
weight and threshold of each node, or artificial neuron,
are interconnected with other nodes. For machine
learning systems, like artificial neural networks, to be
effective in practical applications, they must be trained
on and assimilate a substantial volume of data. Neural
networks and traditional computers employ different
methodologies for problem-solving.

Input Layer
Hidden Layer 1
Hidden Layer 2

Qutput Layer

Fig. 9: Neural Network Structure (Bre et al., 2018)

Decision Making

Decision-making is an essential process that entails
assessing multiple inputs and identifying a suitable
answer. An action decision is the outcome of this
process, where a specific action is identified as necessary
based on the analyzed data. When the system detects a
significant event or condition, it triggers an alert,
prompting the need for immediate attention and potential
action. Conversely, if the evaluation indicates that the
situation is normal or does not require intervention, the
system concludes that no alert is needed. In this case, no
action is taken. The alert system serves as the
infrastructure  that supports this entire Process,
continuously monitoring conditions, evaluating data, and
facilitating the decision-making process to ensure timely
and appropriate responses to any identified issues.

Performance Metrics

There is more than one manner in which localization
systems might be built using various technologies. The
structural comparison of various technologies becomes
more challenging due to these variations. As a result,
several metrics, such as recall, precision, F1-score, and
accuracy, are established for assessing the efficacy of
localization systems (Nguyen et al., 2021). Utilizing
these parameters, researchers can evaluate the
effectiveness of several localization systems that are
architecturally distinct (Esmaeili Kelishomi et al., 2019).

Confusion Matrix

When testing a classifier's efficacy on a known-good
data set, a confusion matrix is a useful tool in machine
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learning. Python has been used to build the outlier
identification method. Python has a module named
metrics, which includes two classes: Confusion_matrix()
and classification report(). These Python classes accept
the actual labels of the problem and the predicted
outcomes of the classifier as input, producing a matrix as
output. Accuracy, recall, precision, F-score, and
specificity are supplementary performance metrics
derived from the confusion matrix.

Implementation

The suggested method for identifying outliers has
been executed in Python utilizing JetBrains PyCharm
and Jupyter Notebook tools. Python is the preeminent
programming language utilized in data science due to its
extensive libraries, built-in classes, and functions for data
processing and visualization. The subsequent stages were
executed via a Python program to identify outliers in the
RSS data from the indoor localization environment:

e BLE+ LoRa trackers collect data and send it to a
LoRa gateway

e The data can be transmitted using three different
protocols: MQTT, HTTP/HTTPS, or APIs

e The LoRa gateway receives the data from the
trackers. The data is then processed using machine
learning algorithms like SVM, KNN;, or NN

e A decision is made on the activation of an alert
based on the outcomes of the machine learning
analysis

e If an alert is triggered, it is sent to the alert system.
If no alert is triggered, then no further action is
taken

Overall, this system appears to be designed to collect
data from trackers, process the data using machine
learning, and then make decisions about whether or not
to trigger an alert (Figure 10). The specific actions taken
by the alert system would depend on the specific
application.

Data Processing
IoT Protocol

Data Collection
Process with MQTT,
HTTP/HTTPS, or APIs
BLE LoRa
Tosher T @)
racker Machine
Learning
Collected via Collected via Analyzing using
BLE and send LoRa and send SVM, KNN, NN
to LoRa to Gateway T
Data Transmission
Decision

LoRat
Gateway

Trigger Alert Needed

[_ Alert System. No Action

Fig. 10: Flowchart of Proposed work

Results and Discussion

This part presents the calculation of outcomes and the
assessment of the suggested approach utilizing the test
dataset gathered in an indoor environment. A Python
script was executed for this objective.

Original Dataset

Figure 11 displays the column from the original
dataset. The Process begins with data collection by a
BLE and LoRa tracker, which is designed to scan for
BLE beacons within a designated area, such as a room. It
has 13 locations, including b3001, b3002, b3003 and so
on.

Index(["location’, ‘date’, 'b3ee1’, 'b3ee2’, "b3ee3', 'b3ee4’, 'b3ees’,
*b3e@6°, 'b3667', 'h3ees’, 'b3@@9’, 'b3e1e’, 'b3e11’, 'h3e12’, 'b3e13’],

dtype="object")
Fig. 11: Display column from the original dataset

Pre-Processing Dataset

Figure 12 shows the calculation of each location date
based on mean, max, min, and std. After that, it split the
data into training and testing (Figure 13).

b3001 b3062 b3063 b3012 b3e13
count 1420.000000 1420.000000 1420.000000 { 1420.000000 1420000000

mean -197.825352 -156.623944 -175533099 | 197233803 -196.065493

std

16.259105
-200.000000
-200.000000
-200.000000
-200.000000

-67.000000

60.217747
-200.000000
-200.000000
-200.000000

-78.000000

-59.000000

49 452958
-200.000000
-200.000000
-200.000000
-200.000000

-56.000000

18.541088
-200.000000
-200.000000
-200.000000
-200.000000

-60.000000

22053924
-200.000000
-200.000000
-200.000000
-200.000000

-59.000000

Fig. 12: Calculate basic statics

Training set size: (1136, 13)

Test set size: (284, 13)

Fig. 13: Split dataset
Data Visualization

Figure 14 shows the visualization of each location
data.

Plotting correlation coefficients vs i-beacons

Figure 15 illustrates the relationship between the
quantity of beacons and their cumulative frequency. In
simpler terms, the y-axis shows how many beacons have
a certain number of beacons or less. For instance,
according to the graph, nearly all the beacons (around
95%) have 3008 beacons or less. There seems to be a
very small number of beacons (around 5%) that have
more than 3008 beacons.
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The correlation between the number of beacons and
the cumulative frequency of beacons appears to be
positive. As the quantity of beacons escalates, the
cumulative frequency correspondingly rises.

b3001 b3002

200 l
600 {- 200
.l

o
—200 -175 -150 -125 -100 -75

b3003 b3004

1000 1

B00

600 4

o
-200 -135 -150 -125 -100 -75 -50
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=200 =175 =150 =125 =100 =75 =200 =175 =150 =125 =100 =75
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600 1 ! GO0
400 ‘ 400 14—
200 T ‘ T 200
o ‘ o4
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Fig. 14: Data Visualization

Correlation between beacons

1.0 1 — b3001
— b3002
0.8 — b3003
—— b3004
—— b3005
H 08— b3006
2 — b3007
2 0471 .— b3008
= —— b3009
2 024 — b3010 ‘ h
° —— b3011 \ )
S oo{ —— bsor2 “‘r 4";&“&4‘;‘\
— b3013 LAV
< = ,
oz SN ’
0.4

b3001 b3003 b3005 b3o07 b3009 b3011 b3013
Beacon

Fig. 15: Correlation between beacons

ML Classifier and Models

In this section, they find the accuracy of the proposed
models, such as SVM, KNN, and NN.

SVM Classifier Matrix, Accuracy, and
Classification Report

The outcome presents the classification report as well
as the matrix of confusion for the SVM model; as shown

in Figure 16, the SVM model has an accuracy of
79.08%.

Confusion Matrix:
ee ...

accuracy
macro avg
weighted avg

Accuracy Score:
0.79084507042253522

Fig. 16: (a) Confusion matrix (b) Classification report

KNN Model's Matrix, Accuracy and Classification
Report

The result shows the confusion matrix and
classification report of the KNN model (Figure 17). The
accuracy of the KNN model is 80.05%.

.- 90 0]
... & 0
.0e0

-- 109 ¢
-- 91
-89

accuracy
macro avg 0.77 9.78 0.79
weighted avg 8.78 0.79 0.80

(b)

Fig. 17: (a) confusion matrix (b) Classification report
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NN Model's Matrix

The result shows the confusion matrix and
classification report of the NN model (Figure 18). The
accuracy of the NN model is 79.6%.

Confusion Matrix:
[(1 e
[@ 3
[0 e

foe
[0 e
[

(b)

Fig. 18: (a) Confusion matrix (b) Classification report

Decision-Making Using LoRa Gateway Action
Visualization

Decision-making using LoRa Gateway Action
Visualization involves leveraging real-time data from
connected devices to inform and optimize choices,
enhancing efficiency and responsiveness in various
applications, such as smart cities, agriculture, and
industrial monitoring. Figure 19 shows the gateway
packet statistics and packet distribution among two
nodes.

Packet Distribution among Nodes

Node2

Nodel

Fig. 19: Packet Distribution among nodes

Figure 20 shows the graph of number of packets
counted per gateway. In the graph, the x-axis is labeled
“Gateways” and the y-axis is labeled “Packets”. The
graph shows that Gateway 1 has the highest number of
packets with a count of around 1.5, while Gateway 2 has
the lowest number of packets at around 0.5.

Packet Count per Gateway
2.0

Packets
=
o

0.0

Gatewayl Gateway2

Gateways

Fig. 20: Packet count per gateway

The graph shown in Figure (21), illustrates the
distribution of nodes by the number of packets. For
instance, according to the graph, there are close to 2
nodes that have 2 packets each. There seems to be a
Node 1 that has 17 packets and Node 2 has 7 packets.

Node Packet Distribution

17.5
15.0

Packets
[
N
wn

-
o
o

Nodel Node2

Nodes

Fig. 21: Node packet distribution

Figure (22) shows a bar graph of the number of
packets received by ten different gateways. Here, Node 1
has 40 packets, Node 2 has 30 packets, Node 3 has 20
packets, and so on. We can see that Node 10 received the
most packets (50) while Node 5 received the least (0).
Overall, the number of packets received varies across the
gateways.

Gateway Statistics

50 | i —

w
=1

Packets Received

n
s}

e = = =

i

Nodel Node2 Mode3 Node4 NodeS Node6 Node7 Node8 Node9 NodelO
Gateway

Fig. 22: Gateway statistics
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Figure (23) shows the number of packets in various

stages of processing for ten different nodes (Nodel,
Node2, Node3, etc.).

There are five bars for each node representing the
following stages:

e Sent: The quantity of packets transmitted by the
node

e In Process: The quantity of packets presently
undergoing processing by the node

¢ Discard: The number of packets that were discarded
by the node

e Received: The number of received packets by the
node

e Packet Counts: This appears to represent the
aggregate amount of packets for the node (Sent +
Received + In Process + Discarded)

Here's a breakdown of the packet counts for Nodel as
an example:

e Sent: 20 packets

¢ In Process: 10 packets

e Discard: 10 packets

¢ Received: 40 packets

e Packet Counts: 80 packets (which is the sum of the
other four values)

It appears that Node 10 has the most packets overall
(around 80), while Node 5 has the least (around 20).
There exists considerable variance in the quantity of
packets received by different nodes. For example, Node
1 received 40 packets, while Node 5 only received 10.

Packet Details
20 I I I
0 . .

Nodel Node2 Node3 Noded NodeS NodeG Node7 Node8 MNode9 NodelO

mm Sent

In Process
mm Discard
mmm Received

3
5

a
3

Packet Counts

=
3

Fig. 23: Packet details
Conclusion

Indoor asset tracking plays a critical role in modern
facility management by enabling the efficient monitoring
and management of assets in confined spaces. A
combination of IoT technologies and machine learning
(ML) algorithms offers a powerful approach to
improving the accuracy and reliability of these tracking
systems. IoT devices, including sensors and lights,
continuously collect real-time data about asset locations
and conditions. This data is then analyzed using ML

techniques to predict asset movements, increase
utilization, and discover patterns that contribute to
greater operational efficiency. By integrating IoT and
ML, organizations can significantly improve asset
tracking performance, including recall, F1 score,
precision, and accuracy. This study explores the
methodologies,  technologies, and  benefits of

implementing indoor asset-tracking solutions based on
[oT and ML.
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