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Abstract: Agriculture will benefit greatly from efficient weather data
sustainable management. Data can be utilized to schedule the prediction
yield, crop growth, and irrigation. This paper collects real-time
meteorological station data via APIs, primarily focusing on the weather data
sustainable management system and data related to Maharashtra Wardha,
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Crop yield prediction is a crucial agricultural research
field that aims to estimate crop harvest potential based on

Introduction

By automating laborious processes traditionally
performed by hand, advances in technology and industry
have improved the quality of life and longevity.
However, these advancements come with challenges,
particularly the overexploitation and lack of rational use
of natural resources on Earth. The effects of climate
change, such as global warming and extreme weather
events, have been exacerbated by these practices,
disrupting the natural balance. As the world's population
proliferates, we must reconsider our approach to
environmental stewardship, especially in sectors like
agriculture, which play a crucial role in feeding the
planet (Liu ef al., 2020). Water resources exemplify one
such challenge, with agriculture being the largest
consumer, utilizing approximately 70% of global water
resources (Jones ef al., 2017). Despite advancements like
drip irrigation, inefficiencies persist without proper
sustainable management. Achieving an efficient
irrigation system necessitates precise monitoring of soil
moisture, crop conditions, and weather patterns (Patel et
al., 2020).
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various factors, including crop genotype, environmental
conditions, and sustainable management practices.
Prediction models that are precise and trustworthy
provide helpful information to farmers, policymakers,
and stakeholders, supporting them in making educated
decisions  regarding  resource  allocation, crop
management methods, and sustainable farming practices.
In recent years, significant progress has been achieved in
creating and enhancing agricultural production prediction
systems (Sartore et al., 2022). This progression is
affected by incorporating new computing tools, such as
machine learning algorithms and data analysis, which
allow for more accurate forecasting and a better
understanding of intricate interconnections between
various components.

Machine Learning (ML) is a promising tool for
addressing these agricultural challenges. ML models
offer interdisciplinary potential, facilitating knowledge
discovery and predictive tasks with performance rivaling
traditional methods. ML's ability to analyze vast and
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diverse datasets enables the creation of comprehensive
models by integrating data from various sources,
including historical weather patterns and climatic data
(Pande et al., 2021). Integrating weather data into ML
frameworks aims to develop intelligent agricultural
systems that enhance crop productivity and optimize
management practices.

Moreover, ML models can adapt and improve by
continuously learning from new data, ensuring their
relevance in dynamic agricultural environments (Sheth ez
al., 2022). By leveraging historical data, ML-based
weather analysis can enhance forecast accuracy and
support sustainable farming practices, ultimately
contributing to food security amidst evolving climatic
conditions.  Efficient =~ weather data  sustainable
management is crucial for advancing sustainability and
precision in agriculture (Kadu & Reddy, 2023). It is vital
for various agricultural tasks such as crop growth,
development, yield prediction, and irrigation scheduling.
In line with technological progress, this study introduces
an intelligent weather data sustainable management
system designed to seamlessly collect real-time data
from meteorological stations wusing Application
Programming Interfaces (APIs) (Kadu & Reddy, 2023).
Focused on Maharashtra Wardha, India, the system
encompasses data spanning a live series period.

APIs are pivotal in enabling the system to access and
retrieve real-time weather data from meteorological
stations. They serve as the interface through which the
system communicates with these stations, facilitating the
efficient and automated collection of crucial weather
information. By leveraging APIs, the system ensures
timely data acquisition, enabling farmers and
stakeholders to make informed decisions based on up-to-
date weather conditions (Kadu & Reddy, 2023).
Integrating machine learning techniques into the system
enhances its capability to derive actionable insights from
the collected real-time data (Kadu & Reddy, 2024a). This
integration allows for analyzing weather patterns and
generating accurate forecasts, contributing to improved
agricultural decision-making processes (Kadu & Reddy,
2024b). The system's architectural framework comprises
four layers: Data acquisition, data storage, data
processing, and application layers, ensuring seamless
handling and processing of the collected weather data
(Roukh et al., 2020). Evaluation metrics such as the
coefficient of determination (R2-Score), Root Mean
Squared Error (R.M.S.E.), and Mean Squared Error
(M.S.E.) are employed to assess the accuracy of
temperature, Rainfall, and humidity estimates generated
by the system (Rehman ef al, 2022). These metrics
measure the system's performance, validating its
predictive capabilities and enhancing its reliability. In
summary, integrating APIs into the intelligent weather
data sustainable management system represents a
significant advancement in agricultural technology
(Bechar & Vigneault, 2016). By leveraging real-time

weather data and machine learning techniques, the
system aims to optimize agricultural practices and
contribute to the sustainable management of farm
resources in Maharashtra, Wardha, India (Popescu et al.,
2020).

Literature Review

Natural and human factors threaten agricultural
productivity, including adverse weather conditions.
These challenges can lead to low crop yields, thereby
jeopardizing food security (Sharma et al., 2021). With
the increasing deployment of Machine Learning (ML) in
intelligent farming, addressing issues related to low
productivity becomes increasingly complex (Kadu &
Reddy, 2023). In conclusion, given the challenges posed
by declining agricultural productivity exacerbated by
adverse weather conditions, ML-based solutions for
managing agricultural resources must be developed to
mitigate the looming global food security crisis.

Selecting appropriate ML models for predicting
weather parameters presents a complex challenge due to
the diversity of weather features (Benos et al., 2021).
This complexity is further compounded by the subjective
nature of expert inputs and the need to align ML
algorithms with unique data characteristics (Cao et al.,
2020). This study aims to review the state of ML
research in weather analysis, focusing on identifying
essential weather parameters for accurate predictions and
recommendations (Zhang et al., 2020). Furthermore, the
paper summarizes the performance of ML models in
weather prediction, providing valuable insights for
farmers and stakeholders (Ramcharan et al., 2017). This
review will be instrumental for future research and
organizations involved in weather analysis, aiding in
selecting fundamental parameters for weather assessment
frameworks and analysis tools (Chen et al., 2020). ML
has garnered significant attention in weather analysis due
to its potential to revolutionize traditional practices
(Kadu & Reddy, 2024b). Adopting ML models in
weather analysis offers an innovative approach to
streamlining processes and enhancing accuracy (Li et al.,
2022). ML models can process extensive datasets
encompassing weather patterns, climate conditions, and
historical data, providing precise predictions and
recommendations for agricultural practices (Ramcharan
etal.,2017).

The practical advantages of ML extend beyond rapid
data processing, with ML models capable of learning and
adapting over time (Ayoub Shaikh et al., 2022). This
adaptability is crucial in the dynamic agricultural
landscape, where seasonal changes and evolving weather
conditions demand flexible solutions. By continuously
learning from new data, ML models can enhance
predictive accuracy and recommendations, ultimately
leading to more sustainable and productive farming
practices (Shethet al., 2022; Makridakis et al, 2018;
Voyant et al., 2017). In the subsequent sections of this
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study, we will explore specific case studies and
applications of ML in weather analysis, providing real-
world examples of how these technologies are
transforming agriculture and ensuring food security in an
ever-changing world (Cedric et al., 2022).

State of Art

Several scholars have explored the complex field of
utilizing the big data explosion in agriculture, realizing
that it may promote precision farming and sustainability
(Paymode & Malode, 2022). Although there have been
encouraging developments in other fields, big data
analytics is still relatively new in the agricultural
industry. This fact is emphasized by (Wang ef al., 2021),
which provides information on various tools, data sets,
algorithms and suggested solutions. The report highlights
how big data analytics can revolutionize the agricultural
industry and imagines a time when more readily
available technologies and a more comprehensive range
of data sources would enable wiser farming practices
(Fuentes et al., 2017; Sun et al., 2017).

One notable Project described by (Sun et al., 2017)
was creating a complex system that included hardware
for gathering agricultural data, an online application for
data administration, and a mobile application for
controlling irrigation. By evaluating crop compatibility
in light of climatic variables, including temperature,
humidity, and soil moisture, this all-encompassing
method attempted to maximize agricultural techniques.
In the meantime, (Cai ef al., 2019) developed a real-time
weather station sustainable management system in
response to the urgent demand for weather resilience in
Indian agriculture. This program gives farmers accurate
weather information to help them make decisions and
reduce crop losses. It is motivated by the widespread
availability of high-speed internet in rural regions.

Similarly, (Fei et al., 2023) present an intelligent
weather station sustainable management system that
simplifies meteorological data collection using Internet
of Things technologies. The technology provides farmers
with actionable insights for improved agricultural
Sustainable management by facilitating real-time data
transfer and analysis through linked sensors and GSM
modules (Jiang et al., 2022).

To tackle the difficulties in managing data that arise
from sensor-generated data, (Gomez Selvaraj et al.,
2020) suggest WALLeSMART, a platform for cloud-
based data architecture. This ground-breaking solution
provides a standardized architecture for collecting,
analyzing, storing, and displaying large volumes of data
(Xu et al., 2022). It was tested on farms in Belgium and
paved the way for customized, innovative agricultural
services (Tanabe et al, 2023). Our contributions go
beyond traditional designs of data platforms and include
a whole solution intended to support well-informed
agricultural decision-making. Our suggested system

integrates parameter estimates, multisource data fusion,
and weather forecasting to provide farmers with
actionable information from cutting-edge techniques.

— N MAHARASHTRA
L IND1s ‘ R
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Fig. 2: Location map of Wardha dist

Study Area

In Figure (1), the Location Map of Wardha Dist. The
region flourishes in a tropical monsoon climate, a vibrant
tapestry woven from distinct seasons, as illustrated in
Figure (1) Winters, like a gentle pause, bring comfortable
temperatures from December to February, offering a
break from the summer's scorching grip. Then, March
ushers in the hot season, reaching its peak in May with
blistering highs of 43°C (109°F). The harsh sunlight at
this time makes shade essential. A dramatic shift arrives
with the eagerly awaited southwest monsoon, gracing the
region from late June to early October. During this
period, they witnessed a downpour, contributing 88% of
the annual rainfall. July takes the crown as the wettest
month, bringing life-giving showers that rejuvenate the
thirsty land and nurture plant life. However, Rainfall can
be unpredictable, with historical records showing
significant variations. Some years receive an abundance,
reaching up to 154% of the average, while others
experience a mere 50%. As the monsoon departs, the
post-monsoon period covers October and November.
This phase witnesses a gradual decline in rainfall and
humidity. The once-heavy monsoon clouds disperse,
revealing clear skies that dominate the rest of the year.
Humidity, which peaks at around 70% during the
monsoon, takes a significant plunge during the summer
months, dropping to a pleasant 20% throughout the day.
Winds play a subtle but essential role in shaping the
climate. The area generally experiences gentle to
moderate breezes. Warmer seasons see winds blowing
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primarily from the northeast, refreshingly contrasting the
heat. During the colder months, wind direction becomes
more variable, but their strength remains low to
moderate, ensuring a consistently comfortable
environment.

e Climate Type: Tropical monsoon climate with
distinct seasons

e Winter (December -
comfortable temperatures

e Summer (March-May): Peak temperatures reach
43°C (109°F) in May. Harsh sunlight makes shade
essential

e Monsoon Season (June — October): 88% of annual
rainfall occurs during this period. July is the wettest
month. Rainfall variability: Some years receive
154% of the average, while others get as low as
50%

¢ Post-Monsoon (October — November): Gradual
decline in rainfall and humidity. Clear skies
dominate as monsoon clouds disperse

¢ Humidity: Peaks at 70% during the monsoon. Drops
to 20% in summer.

e Wind Patterns: Summer: Winds mainly from the
northeast, providing some relief from the heat

e Winter: Winds become more variable but remain
gentle to moderate

Materials and Methods

February): Cool and

The proposed system, the Smart Weather Data
Management System (SWDM), is crucial for intelligent
farming as it optimizes agricultural practices by
monitoring and analyzing weather patterns, such as
irrigation scheduling and crop selection (Huang et al.,
2020). The platform is designed with a service-oriented
architecture Figure (2) To provide services addressing
the four categories of big data analytics: 1. Descriptive ii.
Predictive iii. Prescriptive Data Analysis. Descriptive
Data Analysis- The system examines past weather data,
such as observing a decline and altered frequency of
rainfall over the past decade. By analyzing historical
data, the system can identify trends and patterns that
provide insights into long-term weather changes and
temperature shifts. This analysis aims to understand what
caused these changes, such as long-term weather patterns
and temperature shifts (Bechar & Vigneault, 2016).
Predictive Data Analysis- The next stage is predictive
data analysis, where the system uses statistical methods
and machine learning algorithms to predict future
weather conditions based on historical data. This
includes services like weather forecasting, which assist
in guiding choices to avert catastrophic incidents in the
future. Accurate weather predictions can help farmers
plan their planting and harvesting schedules more
effectively, thereby maximizing crop yields and reducing
the risk of crop failure. Prescriptive Data Analysis-
Finally, prescriptive data analysis provides actionable
recommendations based on the predictions. By analyzing

the forecasted weather conditions, the system can
suggest specific actions for farmers to take. For example,
it can recommend the best times for irrigation, the
optimal types of crops to plant, and the necessary
precautions to protect crops from adverse weather
events. These recommendations aim to enhance decision-
making and improve the overall efficiency of agricultural
practices.

The SWDM platform is built on a robust service-
oriented architecture that includes four primary layers,
each playing a crucial role in the overall functionality
and effectiveness of the system in managing weather
data for SWDM: i. Acquisition: This layer is responsible
for collecting data from various sources, such as weather
stations, satellites, and sensors. It ensures that the data is
accurate, reliable, and up-to-date. ii. Storage: Collected
data is stored efficiently in a centralized database,
allowing for easy access and analysis. The storage layer
uses advanced data sustainable management techniques
to handle large volumes of data and ensure data integrity.
iii. Processing: Once the data is stored, it undergoes
processing to check for errors and missing values.
Machine learning algorithms and data validation
techniques are applied to clean and preprocess the data.
The system uses Land-Wardha reanalysis to ensure that
the data is accurate and ready for analysis. Iv.
Application: The final layer involves applying the
processed  data to  generate  insights  and
recommendations. This layer includes various analytical
tools and visualization techniques to help wusers
understand the data and make informed decisions. The
application layer also provides a user-friendly interface
for farmers to access the data and receive real-time
updates on weather conditions and recommendations.

Data sources Application layer
Service
Provider | @ Time series forecasting

Weather data analysis
and visualization

E Climatic parameters
calculation & estimation

| A ey wormings

Models & Insights

ata Processir
’ \ |:||
~ chine Data
Third party s [A‘“ hine Analytics
ek earning
data

Data aquisition layer

MongoDB Cluster

Data storage layer| Data processing layer

Fig. 2: Architecture of the platform (Huang et al., 2020)
Data Acquisition Layer

This layer unifies heterogeneous data from several
sources, including raw files (like CSV and Excel) and
IoT weather sensors, reanalysis data, and third-party
meteorological services that can provide real-time
meteorological data via APIs. The amount, pace, and
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diversity of data gathered from these disparate sources
introduce the big data concepts.

Weather Station Data

The weather station data for the Wardha district is
obtained through an open-source API, ensuring
comprehensive ~ and  up-to-date  meteorological
information. The critical parameters measured include
temperature (°C, one missing value), which indicates the
current warmth or coldness of the atmosphere; humidity
(%), reflecting the amount of water vapor present in the
air; wind speed (m/s, one missing value), which
measures the rate of air movement; wind direction (°),
which shows the direction from which the wind is
blowing; atmospheric pressure (hPa), monitoring
atmospheric pressure, an essential factor in weather
forecasting; and cloud cover (%), indicating the extent of
the sky covered by clouds. These parameters are crucial
for analyzing local weather conditions and trends,
contributing to various applications such as agriculture,
disaster, and daily weather forecasting. A full description

of these data, including statistics for missing values, is
shown in Table (1).

Table 1: Meteorological station data description

Variable Description Unit Missing Values
Temperature Air temperature °C 1
Humidity Relative air humidity % 0
Wind Speed Wind speed m/s 1
Wind Direction  Wind direction ° 0
Pressure Atmospheric pressure  hPa 0
Cloud Cover Cloud cover % 0

Data Storage Layer

For the Wardha district weather station data to be
handled properly, the data storage layer is critical. It is
tasked with efficiently storing, organizing, and ensuring
easy access to the large volumes of meteorological data
gathered through the open-source API.

Data Ingestion

The data storage layer starts by ingesting weather
data and capturing raw data from the API in real-time or
at scheduled intervals. Various parameters are collected
automatically, including temperature, humidity, wind
speed, wind direction, and pressure.

Data Storage Solutions

e Relational databases: Relational databases like
PostgreSQL or MySQL are used for structured data.
A database like this supports SQL queries and
ensures that data integrity and consistency are
maintained.

e NoSQL Databases: The flexibility and scalability of
NoSQL databases like MongoDB or Cassandra
allow large datasets to be stored efficiently

e Data Lakes: The use of data lakes, like those built
around Hadoop or Amazon S3, can be very
beneficial for historical data analysis and machine
learning.

Data Organization

The data is organized into tables or collections based
on parameters and time intervals (e.g., hourly, daily).
Each record includes fields for Cloud Cover, Humidity,
Pressure, Temperature, Wind Direction, and Wind
Speed., along with timestamps and geographical
metadata.

Data Quality Sustainable Management

e Validation: Incoming data is validated for accuracy
and completeness, with any anomalies or errors
flagged for further inspection.

e Handling missing values:  Strategies are
implemented to manage missing values, including
imputation techniques and recording missing data
statistics, as shown in Table 1.

Data Indexing

Indexes are created on crucial fields such as
timestamps and geographical locations to facilitate fast
data retrieval and querying.

Data Security and Access Control

Robust security measures, such as encryption,
authentication, and authorization, are implemented to
protect data from unauthorized access and breaches.
Access control mechanisms define user permissions
based on roles and responsibilities.

Integration with Analytics and Visualization Tools

The stored data is accessible to analytics and
visualization tools like Tableau, Power B.I., or custom
dashboards, allowing users to generate insights and make
informed decisions based on weather data.

Compliance and Governance

Compliance with data governance policies and
regulatory requirements is essential. This includes
maintaining data lineage, audit trails, and adhering to
standards like GDPR. or CCPA where applicable.

Data Processing Layer

The data processing layer receives input from the
data storage layer. It applies statistical, machine learning,
and deep learning models to extract data insights and
transform them into services Figure (2).

Statistical Models

Statistical models are employed on this platform for
forecasting. Initially, the Facebook Prophet model (Xu et
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al., 2022) was used for long-term weather time series
forecasting, as it had been tested on the same dataset in
earlier work.

Machine Learning Models

A machine learning model is a mathematical
representation derived from data used to make
predictions or decisions without being explicitly
programmed to perform the task. It is created through a
training process where the model learns patterns and
relationships in the data (Gasmi et al., 2022). This study
employs three machine learning algorithms, Linear
Regression, Decision Trees, and Random Forest, to
demonstrate their effectiveness across various predictive
tasks (Arshaghi et al., 2023).

Application Layer

The application layer includes various services
associated with real-time weather series data.

Real-Time Weather Series Forecasting

The provided graph, Fig. 3(a-b) illustrates the real-
time weather data series forecast for Wardha,
Mabharashtra, India, including temperature (°C), Rainfall
(mm), and humidity (%) over different periods in July
2024. In Figure 3(a), covering the period from 2024-07-
25 12:00:00-2024-07-26 09:00:00. Analyzing the graph,
the temperature (red line) appears relatively stable
around the 25°C mark, with slight fluctuations but
overall consistency. The Rainfall (blue line) shows
spikes at certain intervals, indicating periods of Rainfall,
but the data points appear sporadic, suggesting either
intermittent Rainfall or potential missing data points. The
humidity (green line) is consistently high, mostly ranging
between 80 and 100%, with slight variations throughout
the time series.

In Figure 3(b), covering the period from 2024-07-26
09:00:00-2024-07-31 06:00:00, the temperature (red
line) remains relatively stable around the 20°C to 25°C
mark, with minor fluctuations indicating overall
consistency. The Rainfall (blue line) shows significant
spikes, particularly around July 26, 2024, reaching up to
approximately 40 mm, suggesting intermittent periods of
Rainfall. The humidity (green line) is consistently high,
ranging from around 80-100%, with slight variations
throughout the period.

(a) (b)

Fig. 3: The Real-time weather series forecasting

In real-world meteorological datasets, missing values
are expected to be encountered due to network errors or
technical problems with measurement sensors. These
gaps can adversely impact the performance of various
models, including machine learning, numerical and
physical models. Thus, it is essential to efficiently
identify and manage these gaps during the Exploratory
Data Analysis (EDA) and preprocessing phases to
maintain the models' accuracy and reliability. The steps
to implement the method workflow are shown in Figure

(4).

Data Splitting

/

Machine Learning

Trained Machine
Learning Model

Fig. 4: The flowchart of the ML approach

Preprocessing

Resampling

Meteorological

Missing Value
Station Data

Scaling |

Meteorological
Station Data

Exploratory Data Analysis (EDA)

It started with Exploratory Data Analysis (EDA)
before implementing the intended machine learning
technique. This first stage was essential because it
enabled us to make sense of the information we had
gathered and create hypotheses for further research and
analysis. At this point, we just used observable data and
handled the data objectively, making no assumptions
about the underlying connections between the variables.
We created a correlation matrix Figure (5) as part of our
EDA, which helped us find possible predictors for each
target variable.

Correlation Heatmap of Meteorological Parameters
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Fig. 5: The correlation heatmap of meteorological parameter

Data Splitting Process

When developing ML models, it is crucial to divide
the dataset into training, validation, and test sets, each
serving distinct purposes. The training set is utilized to
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train the model, allowing it to learn patterns and
minimize error. The validation set, which is derived from
a portion of the training data, is used to tune
hyperparameters and evaluate the model's performance
on unseen data during training, thereby preventing
overfitting. The test set provides an unbiased evaluation
of the final model's performance on new data, ensuring
its ability to generalize. In our approach, we allocate
80% of the dataset for training and 20% for testing.

Evaluation Metrics

When assessing the performance of regression
models in machine learning, three commonly used
metrics are the R2-Score, Root Mean Squared Error
(RMSE), and Mean Squared Error (MSE).

2-Score (Coefficient of Determination)

The R2-Score indicates how well the independent
variables explain the wvariability of the dependent
variable. It ranges from 0-1, with 1 signifying a perfect
fit and O indicating that the model fails to explain the
variability in the data:

2 1 _ Xilyigi 1
B= 1= Sy M

Mean Squared Error (MSE)

The Mean Squared Error calculates the average of the
squares of the differences between actual and predicted
values. It provides a sense of the overall magnitude of
prediction errors, with lower values indicating better
model performance.

MSE = 1370 (yi — gi)? @
Root Mean Squared Error (RMSE)

The Root Mean Squared Error is the square root of
the Mean Squared Error. It represents the average
magnitude of prediction errors in the same units as the
target variable, making it more interpretable:

RMSE =/ 37 (yi — i)’ @
?ﬁiﬁﬁ.ﬂfﬁ':”fﬂ
O 5T

i [[wimaspeed | S Nsing |1 e[ WL L] :
: fand P T - - -
!| Wind Direction | : | handling HE D:-:D HER Trained | . ressio
: I i i i Model [, | ™Metr

e . : i
H i 1| Feature H : K
i [ CloudCover | i || Selection WITT I @

Input Feature Data Pre- Cross — Validation Parameters

and Target processing of 5 Folds Optimization
Variable (Training)

Model Evaluation

Fig. 6: The flowchart proposed method
Climatic Parameters Calculation and Estimation Service

Irrigation is a critical agricultural technique that
farmers use daily. To be efficient, it is essential to
accurately predict the water consumption of crops at

each stage of their growth throughout the agricultural
season. Figure (6) shows the flowchart of the proposed
method. One method for achieving this is estimating
Evapotranspiration (ET), which indicates the amount of
water lost through crop transpiration and soil surface
evaporation.

This service aims to give an alternative to the FAO
Penman-Monteith calculation process by studying its
behavior with constrained climatic variables see Figure
(7). Tt is helpful for stations that lack the requisite
hardware and sensors to produce the whole set of
meteorological data required for FAO Penman-Monteith
or technical issues with sensors, among other reasons.

Pressssssee . N
'

Remote data source ,

Air temperature
pe ET component

The FAO PM
method

Global solar
radiation

Relative humidity]

Precipitation

Machine learning

Wind speed

Wind direction

Dl

Fig. 7: The clarity of the Evapotranspiration estimation factor
(Foucquier et al., 2013)

Weather Data Analysis and Visualization Service

While raw data is meaningless, the information,
knowledge, and insights derived from it are precious.
Knowledge Discovery in Databases (KDD) is a branch
of modern data science focused on transforming data
from one state to another. This can be achieved through
methodologies like CRISP-DM (Foucquier et al., 2013)
or the proposed standard method (Toyama, 2011). Figure
(8) provides an example of data visualization and
analysis pertinent to our use case. The hybrid process
includes gathering, storing, cleaning, visualizing,
analyzing, and mining data.

Assist decision making

We need to reduce greenhouse gas
emissions to fight global warming

nformation

Collecting

Fig. 8: Example of data visualization and analysis (Baltrusaitis
etal.,2019)
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The initial three stages are identical to other services
available in the marketplace. This service provides
different visualization options, including comparison
plots (weather time series line charts), relationship plots
(scatter plots of weather data) and automatically
generated correlation heat maps. These steps are vital in
data analysis to comprehend the impact of one variable
on another.

Custom Early Warning Alerts Service

This service focuses on outlier or anomaly detection.
It identifies unusual data in time series using rule-based
approaches, which trigger SMS and email alerts to
administrators when specific criteria, like temperature or
rainfall thresholds, are met. Another alert method detects
sequences that significantly deviate from historical time

Table 2: Performance of machine learning models

seriecs data. These anomalies can result from
measurement errors or noise, informing managers about
sensor statuses at the meteorological station and
highlighting events that may require immediate action.
Unlike supervised methods, we utilize unsupervised
machine learning techniques such as the Local Outlier
Factor (LOF) (Kadu & Reddy, 2024c), which operates
without needing labeled anomaly data.

Results and Discussions

Time Series Data Imputation

Figure (7) illustrates the curves of loss functions
MSE, RMSE, and R2 across training and validation sets
for each epoch during the application of machine
learning for handling missing data.

Model Temperature Rainfall Humidity

R2 MSE  RMSE I R2 ~ MSE  RMSE | R2  MSE  RMSE
Linear regression 0.79 0.17 042 0.46 235 1.53 0.77 1.86 1.36
Decision trees 0.73 0.22 046 041 2.61 1.61 0.13 7.19 2.68
Random forest 0.73 0.22 047 0.83 0.76 0.87 047 4.35 2.09

Table (2) illustrates that Once trained, the machine
learning model can be deployed in production to analyze
data from meteorological stations. Figure (9) illustrates
the performance metrics of three machine learning
models—Linear Regression, Decision Trees, and
Random Forest—across the prediction tasks of
temperature, rainfall, and humidity.

(a) Temperature performance metrics of ML- models

near regression Decsonees  Randomrorest
deis

Fig. 9: Monitoring of R2, RMSE, and MSE during training and
validation phases: Temperature, Rainfall, and Humidity
with LR, DT, and RF

For temperature prediction in Figure 9(a), Linear
Regression performs the best among the models,
achieving the highest R? score of 0.79 along with the
lowest Mean Squared Error (MSE) of 0.17 and Root
Mean Squared Error (RMSE) of 0.42. This indicates that
Linear Regression provides the most accurate predictions
with the slightest error. The Decision Trees model shows

a slightly lower R? score of 0.73 and higher error metrics,
with an MSE of 0.22 and an RMSE of 0.46. Similarly,
the Random Forest model has an R? score of 0.73, an
MSE of 0.22, and an RMSE of 0.47. Overall, these
results suggest that Linear Regression is the most
effective model for temperature prediction, delivering
both high accuracy and moderate error values.

In Figure 9(b), for rainfall prediction, the Random
Forest model delivers the best performance among the
models, achieving a notably higher R? score of 0.83 and
significantly lower Mean Squared Error (MSE) of 0.76
and Root Mean Squared Error (RMSE) of 0.87. This
superior performance highlights Random Forest's
effectiveness in predicting rainfall. In comparison,
Linear Regression has an R? score of 0.46 with an MSE
of 2.35 and an RMSE of 1.53, while Decision Trees
show slightly lower performance with an R? score of
0.41, an MSE of 2.61 and an RMSE of 1.61. Overall,
these results demonstrate that Random Forest is the most
accurate model for rainfall prediction, outperforming
both Linear Regression and Decision Trees.

For humidity prediction depicted in Figure 9(c), the
Linear Regression model outperforms the others with an
R? score of 0.77, coupled with the lowest Mean Squared
Error (MSE) of 1.86 and Root Mean Squared Error
(RMSE) of 1.36. This indicates that Linear Regression
provides the most accurate predictions and the slightest
error for humidity. In comparison, the Random Forest
model has an R? score of 0.47, an MSE of 4.35, and an
RMSE of 2.09, which reflects better performance than
Decision Trees but falls short of Linear Regression's
accuracy. Decision Trees exhibit the lowest performance
with an R? score of 0.13, an MSE of 7.19, and an RMSE
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of 2.68. Overall, linear Regression demonstrates the best
performance for humidity prediction, while random
forests perform better than decision trees but do not
reach the accuracy of linear Regression.

Linear Regression provides the best performance for
temperature and humidity predictions, with the highest
accuracy and lowest error metrics. Random Forest excels
in rainfall prediction, showing the highest R* score and
lowest error rates. Decision Trees exhibit variable
performance, with particular challenges in humidity
prediction, suggesting potential overfitting issues.
Overall, Random Forest and Linear Regression are the
most reliable models for their respective tasks.

Climatic Parameters Calculation and Estimation

We divided our dataset into five randomly shuffled
parts (five folds). One-fold was used for model
evaluation, while the remaining four were used for
training. We then assessed the model's performance by
calculating regression metrics across the five folds,
specifically the Root Mean Squared Error (RMSE), the
coefficient of determination (R?), and the Mean Squared
Error (MSE). According to the results in Table (3), the
main objective was to evaluate the models' performance
using different parameters (Temperature, Rainfall, and
Humidity) rather than achieving perfect results.

Table 3: Cross-validation results for the scenarios

Model Metric Fold 1 Fold 2 Fold 3 Fold 4 Fold 5

Linear Temp R? 074 0.79 0.1 -1.67 0.17

Regression  Rainfall R? -83.99 -0.14 -1.7 -1.14 -188.23
Humidity R? 094 0.84 -0.39 0.03 0.29
Temp MSE 027 0.8 0.11 044 -0.36

Rainfall MSE 338 15.78 6.64 2.78 -2.57
Humidity MSE  0.76 881 243 421 -3.71
Temp RMSE 052 0.89 033 0.66 0.6
Rainfall RMSE  1.84 397 2.58 1.67 1.6
Humidity RMSE 0.87 297 1.56 2.05 1.93

Decision Temp R? 0.33  0.69 -0.89 -2.14 0.11
Trees Rainfall R? -127.26-0.02 -1.32 -3.39 -70.33
Humidity R? 048 071 -1.71 -0.78 -1.1
Temp MSE 0.71 1.19 0.23 0.51 -038
Rainfall MSE  6.01 14.19 572 572 -0.95
Humidity MSE ~ 6.62  -16.5 -4.75 -7.75 -11
Temp RMSE 0.84 1.09 048 0.72 0.62
Rainfall RMSE 245 377 239 239 0.97
Humidity RMSE 2.57 4.06 2.18 278 3.32
Random Temp R? 0.53 0.68 -0.77 -2.27 0.09
Forest Rainfall R? -68.57 -0.04 0.65 -2.65 -49.97
Humidity R? 026 072 -1.49 -0.09 -0.39
Temp MSE -0.63 -1.22 -022 -0.59 -0.37

Rainfall MSE 273 1372 1.54 478 -0.76
Humidity MSE ~ 7.45 1534 46 537 -7.98
Temp RMSE 0.8 1.1 047 077 0.6

Rainfall RMSE  1.65 3.7 124 219 0.87
Humidity RMSE 2.73 392 2.14 232 282

Based on Table (3), the metrics for temperature,
Rainfall, and humidity predictions using Linear

Regression, Decision Trees, and Random Forests, here is
a detailed and consolidated analysis using statistical
methods:

Temperature Prediction

Linear Regression: This is the best model with high
R? and low MSE and RMSE values in most folds, though
it performs poorly in fold 4.

Decision Trees and Random Forest: Show varying
performance, with negative R? in some folds indicating
poor fit.

Temperature Prediction: Linear Regression is the best
model.

Rainfall Prediction

None of the models perform well in rainfall
prediction. All models have negative R? values in
multiple folds, indicating poor predictive performance.

Random Forest: Shows a positive R? in fold three but
performs poorly otherwise.

Rainfall Prediction: None of the models stand out as
the best for rainfall prediction based on the provided
data. All models show inadequate performance,
suggesting a need for different approaches or feature
engineering.

Humidity Prediction

Linear Regression: Best model with high R? in folds
1, 2, and 3, though it performs less consistently in folds 4
and 5.

Decision Trees and Random Forest: Show varying
performance with negative R? in some folds, indicating
poor fit.

Humidity Prediction: Linear Regression is a robust

model, although some inconsistency is noted in specific
folds.

These results show that while the models may
perform well under certain conditions, their effectiveness
can vary significantly depending on the predicted
parameter and the fold used for evaluation.

Prototype of the System

The platform, tailored for agriculture in India, offers
real-time visualization of day-wise weather data for the
Previous /Next five days, including predictions for
temperature, wind speed, humidity, and cloud cover. As
shown in Figure (10), this data is presented through line
charts. Users can customize the displayed period
according to their needs. Additionally, the platform can
provide predictions for the past day.

Figure 10 (a-b) shows the temperature trends for the
previous five days (27-07-2024 to 31-07-2024) and the
next five days (31-07-2024 to 04-08-2024), with the y-

axis representing degrees Celsius. The dots indicate the
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original temperature measurements, while the line
represents their linear interpolation, creating a smooth
trend. Figure 10 (c) displays the humidity trend over the
same period, with the y-axis showing the humidity
percentage. The dots represent the original humidity
measurements and the line illustrates their linear
interpolation, providing a continuous trend. Figure 10 (e)
presents the wind speed trend for the Previous /Next five
days, with the y-axis indicating wind speed in meters per
second. The dots represent the original wind speed
measurements, with the line showing their linear
interpolation (Bechar & Vigneault, 2016). Figure 10 (g)
depicts the cloud cover trend over the Previous /Next
five days, with the y-axis representing the cloud cover
percentage. The dots indicate the original cloud cover
measurements and the line represents their linear
interpolation, providing a smooth trend.

(a) Temperaturo Trond for 27:07-2024 to 31.07-2024. ) Ter

(c) Humidity Trond for 27-07-2024 to 31-07-2024

() Wind Speed Trend for 31.07:2024 to 04-08-2024

(9) Cloud Cover Trend for 27-07-2024 to 31-07-202¢ (1) Cloud Cover Trend for 31-07-202 to 04-08.2024

Fig. 10: A screenshot of the real-time weather time series
visualization service: (a) Temperature trend for Previous
five days (b) Temperature trend for next five days (c)
Humidity trend for Previous five days (d) Humidity
trend for next five days (¢) Wind Speed trend for
Previous five days (f) Wind Speed trend for next five
days (g) Cloud Cover trend for Previous five days (h)
Cloud Cover trend for next five days The dots represent
the original measurements, while the line represents the
linear interpolation of the dots

Performance Metrics

1.R? (coefficient of determination): A statistical
measure of how well the regression line
approximates the fundamental data points. A value
of 1 indicates a perfect fit. Negative values indicate
that the model does worse than a horizontal line.

2. RMSE (root mean squared error): Indicates the
average magnitude of the difference between the
predicted and (Kadu & Reddy, 2024c¢) actual values.
Lower RMSE indicates a better fit and less spread-
out residuals.

3. MSE (mean squared error): The average squared
difference between the estimated and actual values.
Lower MSE indicates a better fit, penalizing more
significant errors more severely than RMSE.

Temperature Prediction

For temperature prediction, Linear Regression has an
R? value of 0.03, indicating a positive but still low fit. It
achieves the lowest RMSE of 0.60 and the lowest MSE
of 0.40, suggesting it captures the variance relatively
well. Decision Trees perform better in terms of R? with a
value of 0.38 but have a higher RMSE of 0.75 and an
MSE of 0.61. Random Forest, despite having a negative
R? of -0.45, demonstrates a competitive RMSE of 0.59
and an MSE of 0.59. This indicates that while Linear
Regression shows the lowest RMSE and MSE, Random
Forest provides a more balanced performance despite the
negative R?, indicating it captures the variance relatively
well.

Rainfall Prediction

In rainfall prediction, all models perform poorly,
reflected by their negative R? values. Linear Regression
has the most negative R? of -55.04, indicating abysmal
performance. It achieves an RMSE of 2.33 and an MSE
of 6.23. Decision Trees have an R? of -44.89, with an
RMSE of 2.63 and an MSE of 6.34. Random Forest has
the least damaging R? of -22.67, indicating relatively
better performance compared to the other models. It
achieves an RMSE of 1.83 and the lowest MSE of 3.21.
This suggests that while none of the models perform
well, Random Forest is the least poor performer in terms
of RMSE and MSE.

Humidity Prediction

For humidity prediction, Linear Regression shows the
best performance with an R? of 0.34, the highest among
the models. It achieves the lowest RMSE of 1.87 and the
lowest MSE of 3.98. Decision Trees have an R? of -0.48,
an RMSE of 2.98, and an MSE of 9.32. Random Forest
has an R2? of -0.18, indicating relatively better
performance compared to Decision Trees. It achieves an
RMSE of 2.75 and an MSE of 8.45. These metrics
indicate that Linear Regression is the best model for
humidity prediction, with the highest R? and the lowest
RMSE and MSE values.

Based on the provided metrics, Random Forest is the
most robust model for predicting temperature, rainfall,
and humidity. Temperature prediction offers a balanced
performance with competitive RMSE and MSE values
compared to linear Regression and decision trees. In
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rainfall prediction, although all models perform poorly,
Random Forest demonstrates the least poor performance
with the lowest RMSE and MSE. For humidity
prediction, Linear Regression excels with the highest R?
and the lowest RMSE and MSE, but Random Forest
remains consistent across all parameters. Overall,
Random Forest provides the most reliable predictions
across temperature, rainfall, and humidity. Figure (11)
shows these findings visually, underscoring the need for
more sophisticated models to improve rainfall
forecasting accuracy.

Fig. 11: Displays the results of simulations for three algorithms
used to predict temperature, rainfall, and humidity:
Linear Regression, Decision Trees, and Random Forests

Conclusion

The work conducted in this study integrates statistical
methods (state-of-the-art) and ML techniques to manage
and interpret real-time weather data, which is crucial for
promoting innovative and sustainable agriculture in
India. The platform uses a large amount of data to
provide valuable insights and help with decision-making.
The proposed platform facilitates weather-data-related
services such as handling missing data, analysis,
visualization, estimation, and forecasting. The proposed
method gives real-time weather time series visualization
service for temperature, humidity, wind speed, and cloud
cover trends to predict the previous or next five days.
Knowing the relationship between the three data sources
gave promising results from the performance matrix (R2
= -13.33, RMSE = 1.81, and MSE= 4.35) for all
parameters. The same is true for estimating the reference
evapotranspiration using the Machine Learning Model
with all the algorithms (Linear Regression = 1.08,
Decision Trees = 1.78, and Random Forest 1.20). Linear
Regression consistently shows the best performance
across all metrics and weather parameters (temperature,
rainfall, and humidity). The platform is built with the aim
of providing services and solutions that can assist both
farmers and representatives. All models highlight the
challenges inherent in predicting these weather variables
using the current dataset and models.

This research uniquely focuses on real-time weather
data sustainable management and analysis for Wardha,

Maharashtra, a region previously unexplored in such
studies. By integrating advanced statistical methods and
machine learning techniques, the platform provides
comprehensive services like visualization, estimation,
and forecasting, addressing local agricultural needs,
empowering farmers with actionable insights, and
enhancing food security. This pioneering approach serves
as a model for extending similar solutions to other
underrepresented areas.

Further improvements may require exploring
additional features, more complex models, or advanced
data preprocessing techniques. The models need to
demonstrate more accuracy in rainfall forecasting,
highlighting the need for better methods or additional
features. Variability in model performance suggests that
more refinement is necessary, potentially through
exploring more sophisticated techniques or enhancing
data preprocessing. Addressing these issues will be
crucial for improving the reliability and precision of
weather predictions. Future research should focus on
addressing current limitations, exploring advanced
models, and optimizing the use of both real-time and
static data to enhance prediction accuracy and model
effectiveness.
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