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Abstract: Web applications are widely used in today's digital landscape,
necessitating robust security measures to protect against unauthorized access
by malicious users. Ensuring the security of these applications requires
effectively identifying and addressing vulnerabilities. This paper proposes
an automated methodology for vulnerability detection, utilizing a genetic
algorithm to generate test cases, which offers greater efficiency and
performance compared to resource-intensive and time-consuming manual
approaches. Our research highlights the effectiveness of genetic algorithms
as test data generators, leveraging insights from previous studies. Given the
varying severity of Structured Query Language (SQL) injection attacks,
those capable of executing destructive commands, such as the "drop"
command, pose a more significant threat than those that merely disclose
information. We employ both white-box and black-box testing
methodologies to detect SQL injection vulnerabilities. Black box testing is
utilized when the source code is unavailable, while white box testing is
applied when the source code is accessible. Our findings suggest that white-
box testing, particularly static analysis, is more effective in identifying
vulnerabilities. This study aims to enhance web application security by
utilizing genetic algorithms to generate optimal test cases for vulnerability
detection, providing a comprehensive approach that integrates white-box
and black-box testing.

Keywords: Web Application, Vulnerabilities, Test Cases, Detection, SQLI
Vulnerability, Attacker, White-box Testing, Black-box Testing, Genetic
Algorithm

Introduction
The proliferation of web applications over the past

decade has transformed how businesses and individuals
interact with digital services. These applications often
store and process sensitive user data, including financial
information, authentication credentials, and transaction
records. However, the widespread adoption of web
applications has also exposed them to various security
threats, making robust vulnerability detection
mechanisms an essential aspect of modern software
security.

Among the many vulnerabilities affecting web
applications, SQL Injection (SQLI) remains one of the
most prevalent and damaging. SQLI attacks involve

injecting malicious SQL code into input fields to
manipulate the backend database, potentially leading to
unauthorized access to data, corruption, or system
compromise. Despite the availability of secure coding
practices and mitigation techniques, SQLI vulnerabilities
persist due to insecure programming practices and
inadequate security testing. Therefore, an efficient and
automated mechanism for detecting SQL Injection
(SQLI) vulnerabilities is crucial for reducing security
risks and enhancing the resilience of web applications.

Traditional vulnerability detection approaches, such
as manual code reviews and penetration testing, are often
time-consuming, costly, and limited in scope. To address
these challenges, this paper proposes an automated test
case generation method utilizing Genetic Algorithms
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(GA) to identify SQL Injection (SQLI) vulnerabilities in
web applications. GA is an evolutionary algorithm
inspired by natural selection that is particularly effective
for optimizing test case generation. Unlike traditional
testing techniques, GA can efficiently explore complex
input spaces, thereby minimizing false positives and
enhancing the accuracy of vulnerability detection.

The application of GA for SQLI detection offers
several advantages over traditional approaches:

Efficiency in Test Case Generation: GA automates
the creation of test inputs that maximize
vulnerability coverage while minimizing redundant
test cases.
Optimization of Test Execution: GA prioritizes
high-risk input patterns, improving the detection of
SQLI vulnerabilities with fewer test cases.
Reduction of False Positives: GA can dynamically
refine test cases compared to static analysis tools,
leading to more accurate vulnerability detection
results.
Adaptability to Different Testing Scenarios: GA can
be applied in white-box (source code available) and
black-box (source code unavailable) testing
environments, making it versatile for real-world
applications.

This study makes several significant contributions to
the field of web application security and automated
vulnerability detection. It introduces a Genetic Algorithm
(GA)-based framework for detecting SQL Injection
(SQLI) vulnerabilities in web applications through
automated test case generation. The proposed approach
offers a scalable and efficient alternative to traditional
manual testing methods, improving detection accuracy
and reducing both false positives and false negatives.

The framework further integrates GA with white-box
and black-box testing paradigms, enabling
comprehensive vulnerability detection under varying
conditions of source code availability. This hybrid
integration enhances the robustness, adaptability, and
real-world applicability of the method.

To validate its effectiveness, the proposed system is
empirically evaluated on real-world web applications,
demonstrating optimized test case generation, reduced
execution time, and improved vulnerability coverage. In
addition, a comparative analysis with other detection
techniques, such as static analysis, machine learning,
fuzzing, and Reinforcement Learning (RL), highlights
GA's superior adaptability and efficiency in identifying
SQLI vulnerabilities.

Finally, the study employs ANOVA-based statistical
analysis to assess the significance of detection outcomes
across different SQLI variants and test configurations.
The results confirm the robustness and generalizability
of the proposed framework, positioning it as a promising
tool for enhancing web application security.

Materials and Methods
This study employed a Genetic Algorithm (GA) to

automatically generate test cases aimed at detecting SQL
Injection (SQLI) vulnerabilities in web applications. The
method integrates both white-box and black-box testing
paradigms to accommodate scenarios with and without
access to source code.

Genetic Algorithm Configuration

A steady-state genetic algorithm was implemented,
where chromosomes are selected to survive based on
their fitness across generations. The GA employed
tournament selection, single-point crossover, and
creep/random mutation. The Character Distance (CD)
fitness function was used to evaluate candidate strings by
comparing their ASCII character values with target SQL
injection patterns. Key parameters included:

Population sizes: 30, 50, 70, 90, 110
Mutation probability: empirically tuned
Crossover method: single-point
Fitness function: Character Distance (CD)

Experimental Environment

The system was implemented in C# using Visual
Studio 2015 on a Windows 8.1 (64-bit) operating system
with 4 GB of RAM and an Intel Core i3 processor (2.4
GHz). Table 6 in the manuscript details the hardware
specifications.

Test Subjects

Five web applications were selected, including open-
source platforms such as WebGoat.NET and Bryian Tan's
Login Page, as well as custom applications with SQLI-
prone input fields (login, email, credit card, and search
forms). The web applications ranged in size from 173 to
1473 lines of code.

Testing Methodology

White-box testing was applied to applications with
accessible source code to perform static analysis
Black-box testing targeted applications without
source code, using the GA to probe input fields for
SQLI vulnerabilities

Evaluation Metrics

Performance was assessed based on:

Average number of generations needed to find a
successful injection
Execution time (in seconds)
Detection success rate

Each test scenario was repeated three times per
population size, and ANOVA was applied to compare
mean detection performance across different SQLI input
groups.
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Related Work and Background

SQL Injection Attacks (SQLIA) continue to be one of
the most critical cybersecurity threats, allowing attackers
to manipulate databases by injecting malicious SQL
queries. The growing reliance on web applications and
databases has made developing robust SQL Injection
detection and prevention techniques essential. Various
strategies have been proposed, including static analysis,
Machine Learning (ML), Reinforcement Learning (RL),
and fuzzing techniques. However, Genetic Algorithm
(GA)-based methods have emerged as promising
solutions due to their adaptability and capacity to
optimize detection parameters dynamically.

Genetic Algorithm

GA performs well in handling splitting predictors, for
which the exhaustive enumeration is accepted
(Alshraideh et al., 2011; 2010; Alshraideh, 2008).

Alshraideh et al. (2011) merged two selection
methods in a genetic algorithm: roulette selection and
rank selection. However, MATLAB was implemented to
solve a problem related to the traveling salesman.
Selection, crossover, and mutation are among the most
critical operators in genetic algorithms. Figure 1
illustrates the basic flowchart of the genetic algorithm.

Fig. 1: Genetic algorithm approach

The merging of the previously mentioned methods
aims to generate a perfect new selection that combines
exploration and exploitation, influenced by optimization
techniques (Alshraideh, 2008). The researchers
compared the blended method (RS & RWS) with each
selection method used individually. They found that the

performance of the proposed method depends on the
current number of generations.

The two main steps of GA are selection and
manipulation. However, the probability of parent
selection increases when an individual shows the best
fitness value. There are three selection methods:
tournament selection, roulette wheel selection, and rank-
based selection. The conclusion (Razali & Geraghty,
2011) was that tournament selection is more suitable for
minor problems, while the rank-based roulette wheel is
better suited for larger ones. Furthermore, the first
operation in rank-based selection involves sorting the
individuals in the population according to their fitness
values. This allows the second operation to calculate the
probability of each being selected based on rank rather
than fitness values. The first step could be manipulated
using crossover or mutation (Razali & Geraghty, 2011).

Selecting suitable parameter values (i.e., population
size, mutation probability, and crossover probability)
establishes a framework for developing an effective GA
(Razali & Geraghty, 2011).

Genetic Algorithms (GAs) have emerged as a
practical and robust optimization and search method over
the last three decades (Thakore & Torana, 2012).

The approach mentioned in Thakore and Torana
(2012) combined model inference and evolutionary
fuzzing. However, the fuzzy method focuses on data
rather than state transition, which is considered one of its
problems.

Some attacks against web applications occur due to
the misuse of access specifiers. However, assigning
access specifiers requires humans to thoroughly
understand the software. To enforce security in software,
security must be ensured during the implementation
stage (Thakore & Torana, 2012).

The genetic algorithm generates test cases for the
GUI flow graph (Alsorory and Alshraideh, 2023). The
main advantage derived from the Genetic algorithm, as
noted in Alsorory and Alshraideh (2023), is the
automation of test case generation, which increases the
test coverage of these cases.

In conclusion, the genetic algorithm in Avancini and
Ceccato (2011) generates inputs to detect vulnerabilities.
To help GA avoid local optima, symbolic constraints are
collected at run time and passed to the solver. This search
enables developers to identify and resolve security issues
more effectively. This approach is applied to real-world
PHP Code (Avancini and Ceccato, 2011; 2010). The kind
adopted by Medeiros et al. (2016) is the reflected one,
like Avancini and Ceccato (2010).

Genetic Algorithm Operator

Selection

The first GA operator is a selection used to reproduce
the population. Primarily, this operator selects two

http://192.168.1.15/data/13279/fig1.png
http://192.168.1.15/data/13279/fig1.png
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individuals from a generation as parents for
reproduction, creating a child or offspring for the next
generation. The selection of individuals depends on their
fitness; the fitness function calculates the suitability of
chromosomes to survive in an environment. Before it
appears in the subsequent generation, the chromosome
must undergo other processes, such as crossover and
mutation, which will be briefly explained. Selection is a
critical factor influencing the performance of
evolutionary algorithms (Allawi et al., 2020; Al-Shaikh
et al., 2019).

A chromosome can undergo various types of
selection; however, the most common types are
tournament selection, roulette wheel selection, and
random selection. Tournament selection is the most
common Genetic Algorithm (GA) selection method
because it is simple to implement and efficient (Noraini
and Geraghty, 2011; Bataineh et al., 2022).

Tournament selection involves conducting a
tournament among S competitors, where S represents the
number of competitors in the tournament. The selected
individual is the one with the highest fitness among the
competitors. This individual is then added to the mating
pool. Increasing the tournament size raises the selection
pressure, which typically means that the winner of a
larger tournament will, on average, have greater fitness
than the winner of a smaller tournament (Miller and
Goldberg, 1995).

The roulette wheel method depends on the
probability of selecting individuals, which is related to
their fitness values (Noraini and Geraghty, 2011). The
better individuals are, the more likely they are to be
selected. Each population is defined as a section of an
imaginary roulette wheel.

On the other hand, the random selection method
involves randomly selecting a parent from the
population. Therefore, each member of the population
has an equal chance of being selected for reproduction.

Crossover

The Crossover operator concatenates two
chromosomes to produce a new offspring. This concept
brings new individuals closer to a global optimum,
where the best genes from the parent chromosomes are
combined to yield offspring that are superior to their
parents (Spears and Anand, 1991).

Crossover occurs through evolution, determined by a
specified probability. There are various types of
crossover, including one-point crossover, multi-point
crossover, and uniform crossover.

One crossover point is chosen randomly during the
one-point crossover. A binary string from the start point
of a chromosome to the crossover point is copied from
one parent, while the rest is copied from the second
parent (Figure 2). In a multi-point crossover, multiple

crossover points are selected. A binary string from the
start of a chromosome to the first crossover point is
copied from one parent, the section from the first to the
second crossover point is taken from the second parent,
and the remainder is copied from the first parent (Figure
3).

Uniform crossover is a combined method of 1-point
and N-point crossover, where N is the number of
crossover points (Figure 4).

Fig. 2: Single Crossover at k = 5

Fig. 3: Multi-point Crossover at k = 2 and k = 5

Fig. 4: Uniform Crossover at k = 1, 4, 5, and 7

Mutation

The mutation target is maintaining diversity between
generations of a population's chromosomes. In mutation,
one or more gene values are altered based on a
predefined mutation probability from their initial values,
resulting in new genes that will be added to the gene
pool. Consequently, mutation helps prevent the solution
from converging on local optima in the search space.

SQL Injection Detection Methods

Several methodologies have been explored for SQLI
detection, categorized as follows.

http://192.168.1.15/data/13279/fig2.png
http://192.168.1.15/data/13279/fig2.png
http://192.168.1.15/data/13279/fig3.png
http://192.168.1.15/data/13279/fig3.png
http://192.168.1.15/data/13279/fig4.png
http://192.168.1.15/data/13279/fig4.png
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Static Analysis-Based Approaches

Static analysis techniques inspect source code to
detect potential SQL injection vulnerabilities without
executing it. These methods typically employ lexical
analysis, syntactic analysis, and taint tracking to identify
suspicious query structures.

Strengths: Early detection during development, no
runtime overhead.
Limitations: High false positives, difficulty with
dynamically generated queries.
Example: Pixy, a PHP vulnerability scanner,
effectively detects SQL injection vulnerabilities but
lacks scalability for large applications (Su et al.,
2021).

Machine Learning-Based Approaches

Machine Learning (ML) has been increasingly
adopted for SQL Injection (SQLI) detection due to its
ability to learn attack patterns and dynamically detect
anomalies. Various Machine Learning (ML) models,
such as Decision Trees, Support Vector Machines
(SVMs), and Neural Networks, have been explored.

Strengths: High adaptability and reduced false
positives.
Limitations: Requires large, labeled datasets that are
vulnerable to adversarial attacks.
Example: A hybrid model combining Random
Forest and LSTM achieved 89.7% accuracy in
detecting SQLI attacks while maintaining a low
false positive rate (Hasan et al., 2019).

Reinforcement Learning-Based Approaches

Reinforcement Learning (RL) techniques leverage an
agent-based learning model that dynamically detects
SQL injection vulnerabilities based on rewards and
penalties. These methods excel in adaptive learning and
in identifying evolving attack strategies.

Strengths: Continual learning and efficiency against
novel attacks.
Limitations: High computational cost requires
extensive training.
Example: An RL-based SQLI detector outperformed
traditional classifiers by reducing false negatives by
23% in dynamic web applications (Wang et al.,
2019).

Fuzzing Techniques

Fuzzing generates and inputs random SQL queries
into an application to test for vulnerabilities. Advanced
fuzzing tools incorporate AI-driven testing to enhance
accuracy and reliability.

Strengths: Uncovers vulnerabilities not identified by
static analysis.
Limitations: Time-consuming; may miss
sophisticated SQLI payloads.

Example: An AI-enhanced fuzzing tool discovered
47% more SQLI vulnerabilities than traditional
fuzzing techniques (Bisht et al., 2018).

Genetic Algorithm-Based Approaches for SQLI
Detection

Genetic Algorithm (GA) is an evolutionary
optimization technique inspired by natural selection.
GA-based SQLI detection models generate multiple
candidate solutions (queries) and iteratively refine them
using selection, crossover, and mutation operators.

SQL Injection (SQLI) is recognized as one of the
critical security vulnerabilities that occur when malicious
code is executed within a web application. It is among
the most severe and detrimental security threats (Halfond
and Orso, 2006). As highlighted by Thomé et al. (2014),
SQL injection remains a prevalent vulnerability in web
applications. The primary objective of Thomé et al.
(2014) is to detect this vulnerability using a search-based
technique that identifies inputs capable of exposing such
security flaws. The proposed prototype, “BIOFUZZ,”
demonstrates its capability to uncover vulnerabilities in
real-world web applications within minutes. BIOFUZZ
is a security tester that leverages evolutionary black-box
testing to identify vulnerabilities, particularly SQL
injection (SQLi), without requiring direct access to the
source code.

SQL injection vulnerabilities can be exploited by
inserting user-provided input into a web application’s
text box. This input is concatenated with an SQL
command and executed within the database (Dukes et
al., 2013). Such vulnerabilities enable attackers to read,
modify, or corrupt sensitive and critical data within the
database (Dukes et al., 2013; Halfond and Orso, 2006).
Furthermore, attackers can leverage this flaw to gain
unrestricted access and complete control over the
application’s database (Halfond and Orso, 2006).

Fig. 5: SQLI example

The root cause of SQLI vulnerabilities in web
applications is often the lack of proper validation of user
input fields (Halfond and Orso, 2006). In an SQLI
security breach, an attacker can inject SQL commands or
statements into an input field, which are subsequently
executed by the web application, thereby compromising
the integrity of the database (Figure 5). For instance,
SQLI enables attackers to extract sensitive user data,

http://192.168.1.15/data/13279/fig5.png
http://192.168.1.15/data/13279/fig5.png


Ghosoun Al Hindi et al. / Journal of Computer Science 2025, 21 (9): 2049.2064
DOI: 10.3844/jcssp.2025.2049.2064

2054

thereby facilitating unauthorized access to its primary
objective (Kieyzun et al., 2009; Thomé et al., 2014).
Unlike cross-site scripting (XSS), SQLI does not directly
exploit the system’s resources (Zhang, 2022).

Several types of SQL Injection (SQLI) attacks exist,
each exploiting vulnerabilities within a web application’s
database.

Tautology-Based SQL Injection (SQLI)

This attack typically occurs during the user
authentication phase (Zhang, 2022). Attackers bypass
authentication mechanisms by constantly manipulating
SQL statements to return true conditions.

Illegal or Logically Incorrect Queries

In this attack, the attacker deliberately introduces a
type mismatch error by injecting malformed input to
generate an error message. This error message can
expose vulnerable parameters within the database system
(Zhang, 2022; Baria & Gandhi, 2013; Kieyzun et al.,
2009).

Example: When a user inputs the URL
http://www.example.com/?id=1234, the system may
return an error message revealing table structures and
field names, such as:

SELECT Username FROM users WHERE id =
1234\’;

This information can aid attackers in crafting further
SQLI attacks.

Union-Based SQLI

This attack exploits the SQL UNION operator to
merge the results of two or more SQL statements,
allowing attackers to extract unauthorized data from
different database tables (Baria & Gandhi, 2013; Zhang,
2022).

Piggy-Backed Queries

In this method, attackers exploit the SQL statement
delimiter (;) to append and execute additional malicious
queries (Baria & Gandhi, 2013; Zhang, 2022).

Example: The following query manipulates a login
authentication system by appending a malicious query:

SELECT * FROM users WHERE id = 'user' AND
password = '123'; DELETE FROM users;

The DELETE FROM users command executes
immediately after authentication, potentially erasing all
records in the database.

Table 1: Examples of SQLI statements and inputs by the User

Input Statement
': UPDATE [User] SET Department='it' WHERE
username='service'--

select a username, Age, Department from [User] where Username like '; UPDATE [User]
SET Department='it' WHERE username='sarvi'__'

x'; INSERT INTO members ('email','passed','login_id','full_name')
VALUES ('steve@unixwiz.net','hello','steve','Steve Friedl');--

SELECT email, passwd, login_id, full_name FROM members WHERE email='x';
INSERT INTO members('email','passwd','login_id','full_name') VALUES
('steve@unixwiz.net','hello','steve','Steve Friedl');--

3; insert values into some_other_table Select value1, value2, num_value3 from database where num_value3=3; Insert values
into some_other_table

1' or '1' = '1'))/* SELECT * FROM Users WHERE ((Username='1' or '1' = '1'))/*>') AND
(Password=MD5('$password'))

101 and ascii(substr((select+table_name+from+user_tables where
rownum=1),1,1))>100

http://192.168.2.199/ora.php?id=101 and
ascii(substr((select+table_name+from+user_tables where rownum=1),1,1))>100

105; DROP TABLE Suppliers SELECT * FROM Users WHERE UserId = 105; DROP TABLE Suppliers
' union all select User from dual -- http://192.168.2.10/ora1.php?name='union all select User from dual --
' OR '=' SELECT name from users WHERE name='' OR '=' AND password='' OR '='
John' -- SELECT name from users WHERE name='John' --' AND password=''
x'; DROP TABLE members; -- SELECT email, passwd, login_id, full_name FROM members WHERE email='x';DROP

TABLE members;--;
a';DROP TABLE users; SELECT * FROM userinfo WHERE 't'='t SELECT * FROM userinfo WHERE username = 'a';DROP TABLE users; SELECT *

FROM userinfo WHERE 't'='t';
' -- SELECT * FROM users WHERE username = 'admin' --' AND password =

'some_password';
' union select username, password,'1' from [User]-- SELECT name, description, price FROM products WHERE name = '' union select

username, password,'1' from [User]--';
or 1=1 -- SELECT * FROM Users WHERE username='' or 1=1 -- AND password='';

Stored Procedure Exploitation

Attackers can manipulate stored procedures by
exploiting their input parameters and injecting malicious
SQL statements into predefined database methods (Baria
& Gandhi, 2013; Halfond and Orso, 2006; Zhang, 2022).
As outlined in Table 1, stored procedures enable
programmers to encapsulate multiple SQL statements

within a named block that remains stored in the database.
If inadequately secured, attackers can leverage these
procedures to execute arbitrary commands.

Example: having the following procedure (Halfond
and Orso, 2006), CREATE PROCEDURE Authenticated
@userName varchar2, @password varchar2, @pin int
AS EXEC("SELECT account no FROM users WHERE



Ghosoun Al Hindi et al. / Journal of Computer Science 2025, 21 (9): 2049.2064
DOI: 10.3844/jcssp.2025.2049.2064

2055

username=’" +@userName+ "’ and password=’"
+@password+ ’"and pin=" +@pin;);

Hence, the attacker injection will utilize the stored
procedure through a piggybacked query attack.
Therefore, the query after injection will be “SELECT
account no FROM users WHERE username=’foo’ AND
pass=’ ’; pass; -- AND pin=

Advantages of GA for SQLI Detection

Genetic Algorithms (GA) present significant
advantages for detecting SQL Injection (SQLI) attacks,
primarily due to their dynamic and intelligent nature. A
key strength lies in their adaptive learning capability,
which allows the detection model to continuously evolve
and recognize new or mutated attack variants that might
otherwise go unnoticed. Furthermore, GA's inherent
optimization capabilities are instrumental in refining the
detection process by improving feature selection and
enhancing the classification of SQL queries, thereby
increasing overall accuracy. This learning-based
approach also leads to a significant reduction in false
positives; unlike static rule-based systems that can be
overly rigid, GA learns from past attack patterns to more
effectively distinguish between genuine threats and
benign anomalies in user input.

Comparative Analysis of GA and Other Techniques

To highlight the novelty of GA-based approaches,
Table 2 compares GA with other detection techniques.
The table shows that GA-based detection strikes a

balance between high accuracy, adaptability, and low
false positives, making it a strong contender against
traditional SQLI detection techniques.

Alternative Techniques for SQLI Detection

Besides the commonly used methods, researchers
have explored alternative approaches a few of which are
mentioned below.

Hybrid Approaches

Hybrid models integrate multiple detection
techniques to enhance accuracy and reduce false
positives. Example: Combining Machine Learning (ML)
and Static Analysis increased detection accuracy by 14%
(Alazab et al., 2021).

Blockchain for SQLI Prevention

Blockchain technology has been proposed to secure
database transactions against SQL Injection (SQLI)
attacks by creating immutable logs. For example, a
blockchain-secured database prevented SQL Injection
(SQLI) exploitation in 94% of test cases (Zhang, 2022).

As a summary, Table 3 presents a comparative
overview of traditional and modern SQL injection
detection methods. It highlights each approach’s
detection mode, strengths, and limitations, demonstrating
how modern machine learning, reinforcement learning,
and genetic algorithms offer enhanced adaptability and
accuracy compared to conventional methods.

Table 2: Comparison of selection strategies used in genetic algorithms based on execution time and success rate

Technique Accuracy False Positive Rate Adaptability Computational Cost
Static Analysis Moderate High Low Low
Machine Learning High Moderate Moderate High
Reinforcement Learning High Low High Very High
Fuzzing Low High Moderate Moderate
Genetic Algorithm (GA) High Low High Moderate

Table 3: Summary of traditional and modern SQL injection detection methods, highlighting their strengths and weaknesses

Approach Examples Detection Mode Advantages Limitations
Static Analysis Pixy (Su et al., 2021) White-box Early detection during development;

no runtime overhead
High false positives; limited in handling
dynamic queries

Manual Testing Code Review,
Penetration Testing

White-/Black-box Human expertise identifies nuanced
vulnerabilities

Time-consuming; expensive; not
scalable

Fuzzing AI-enhanced fuzzing
(Bisht et al., 2018)

Black-box Effective in uncovering unexpected
vulnerabilities

May miss sophisticated or logic-based
SQLI payloads

Machine Learning
(ML)

SVM, Random Forest
(Hasan et al., 2019)

Supervised
Learning

Learns attack patterns; reduced false
positives

Requires large, labeled datasets;
sensitive to adversarial examples

Reinforcement
Learning (RL)

Wang et al. (2019) Agent-based Adaptive to evolving attacks;
reward-based learning

Computationally expensive; training
required

Genetic Algorithm
(GA)

Alshraideh et al.
(2011), Current Study

Evolutionary
Algorithm

Optimized test case generation, low
false positives, adaptable to input
types

It may require tuning, as slower
convergence can occur if it is not well-
configured.

Hybrid Approaches ML + Static (Alazab
et al., 2021)

Combined
Techniques

Balanced performance; improved
accuracy

Complexity in integration and tuning

Blockchain-based Zhang (2022) Immutable Ledger
System

Prevents tampering; ensures data
traceability

Overhead integration challenges with
legacy systems
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(1)

(2)

(3)

Vulnerability Detection in Web Applications Using
Genetic Algorithm

This section outlines the detailed steps for applying
GA to automatically generate test data for web
applications, enabling the detection of SQL injection
vulnerabilities. Web applications are used in vital areas
of our lives, making it essential to observe the exact
behavior of user input in text boxes. This process is
crucial because many web applications do not validate
user input. Input validation ensures that the value entered
by a user into a text box does not contain unique
characters that could lead to an SQL injection attack.
Such values must be tested to guarantee that their
behavior will not result in an attack. The user input is
concatenated with the SQL command in the backend
code of the web application. Therefore, the entire SQL
command is typically executed without syntax errors,
which can hinder normal code execution.

Consider, for example, a commercial web application
with a text box for the credit card number, which takes a
value from the user. If the value entered is valid, one of
the SQL injection cases can lead to the revelation or
destruction of sensitive data stored in the web
application's database. The high cost of revealing or
destroying sensitive data affects critical and confidential
information.

Unfortunately, the source code of all web applications
requiring testing is not always available. In conclusion,
black-box testing is essential in addition to white-box
testing.

Consequently, using a tool to generate test cases and
evaluate these web applications becomes essential to
ensure they are not vulnerable to SQL injections. GA is
one of the most successfully applied tools in software
testing and vulnerability detection.

Motivations for Using Genetic Algorithms

Previously, we mentioned that software testing aims
to design test cases that reveal as many faults as possible
to improve the quality of the software and increase the
reliability of the software product. We also noted that
testing a software system requires considerable effort,
consumes time, and incurs costs. One solution to these
challenges is to automate the testing process.

Automatic software testing significantly reduces
costs and time while increasing confidence in the results.
Researchers have proposed various methods for
generating test data cases to utilize software testing
automation, including using GA automatically. The
motivations for using GA are listed below:

GA evolves faster around possible solutions.
GA outperforms the exhaustive search and local
search techniques.
GA can be easily implemented and does not require
complex programming.

GA is a practical, robust optimization technique and
search method.
GA is an influential and innovative search method;
it can efficiently solve large-scale and complex
problems.

Genetic Algorithm Operators, Configurations, and
Specifications

This section provides a detailed explanation of the
specifications for each operator we use. A selection
operator is implemented to determine how individuals
are chosen to become parents for mating based on their
fitness. We mentioned earlier in Section 2 the selection
types for reproduction operators. A steady-state-style
genetic algorithm is employed in this work. This
selection method is favored because of its high
performance and straightforward implementation.

The main idea in steady-state selection is that many
chromosomes will survive to the next generation. This
selection type works in the following way: Every
generation selects chromosomes with higher fitness
values to create new offspring. Next, chromosomes with
lower fitness values are omitted, and the new offspring
are placed in their place. The remainder of the population
survives to a new generation.

In other words, fitness value is used to select better
chromosomes from the population for the next
generation. This value is derived from applying a fitness
function that depends on the specific problem being
studied. Significantly, each individual’s solution has a
calculated fitness value; an individual near an optimum
solution receives a higher fitness level than one farther
away. The fitness value is the only feedback from the
search space for the Genetic Algorithm (GA).

In this paper, calculating the fitness value for an
individual solution depends on the Character Distance
(CD) fitness function.

This approach relies on the pairwise comparison of
character values. The comparison involves summing the
absolute differences among the character values of each
pair. If the pairs differ in length, any missing character
will increase the cost by 128, corresponding to the
character search space size (Alshraideh & Bottaci, 2006).
The following example illustrates the function:

Then:

Where, Character Distance (CD) generally refers to
the total of the absolute ASCII code differences between
corresponding characters in the two strings.

st and sr are two strings, and e represents the absolute
difference in length between the two strings.

Sting st =( ) st
​

st
​

st
​ … , st ​, …0 1 2 l−1

Sting st =( ) ri
​

ri
​

ri
​ … , ri ​, …0 1 2 l−1

CD st, ri =( ) ​ ∣st ​ −∑i=0
i=l−1

i ri
​∣ +i 128 e − 1 …( )
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For example:

CD(“SET”, “CASE”) = |83-67| + |69-65| +|84-83| +|0
-69| =95.

CD(“BBB”, “AAA”) = 3;

CD(“ZZZ”, “AAA”) =75;

Subsequently, the two individuals selected from the
previous step are combined to generate new offspring.
This combination operation involves swapping genes or
sequences of bits between the two selected individuals
(Sharma et al., 2014). This process is repeated to obtain a
subsequent generation with a sufficient number of
individuals.

The combination previously mentioned is known as a
crossover operation. In the previous section, we
illustrated the three types of crossovers: single crossover,
multi-point crossover, and uniform crossover. In this
paper, the single-point crossover is implemented because
adding additional crossover points may lead to low
performance and significant changes in the solution
structure.

After the crossover operation, the mutation is
performed by another GA operator. A mutation operator
means that the elements of individuals are slightly
altered according to a specific probability of producing
variants in the solutions within a population. The
probability of mutation indicates how often the bits of an
individual will be mutated (Avdeenko & Serdyukov,
2023). This probability significantly impacts GA
performance and helps prevent falling into local
extremes (Liu & Fan, 2014; Korejo et al., 2009). If the
likelihood equals 100%, all the individual bits will be
mutated, while 0% probability indicates that none will be
altered.

In this paper, the Creep and random mutation
methods were employed. Randomly, one of the
characters in an individual is selected to be used in the
mutation of one bit in the second individual. Creep
mutation depends on the position of the selected
character in a specific individual. Random mutation is
applied by choosing a random position for both
individuals and mutating the first individual's bit with the
second individual's. One of the two previously
mentioned mutation methods will be selected based on
the Creep Mutation flag.

SQL Injection Vulnerable Web Applications

This research utilized a genetic algorithm in a web
application to detect SQL Injection (SQLI)
vulnerabilities. The detection is performed by generating
test cases using a genetic algorithm, as the web
application features user-input text boxes that an attacker
may exploit to insert a malicious part into a text box
concatenated with a full SQL command. Figures 6, 7,
and 8 show examples of web applications that concern
us.

Fig. 6: "Login" web application example

Fig. 7: "Email me" part in a web application example

Fig. 8: "Credit card" part in a web application example

In Figure 6, the User will input their Username and
password to log in to the web application and use it as a
legitimate user. Meanwhile, malicious input could be
inserted by an illegal user to cause a violation at the
database layer of the application. In some cases, this
violation results in an SQL Injection (SQLI). As a result,
sensitive and critical data will be revealed or destroyed
by an illegal user or attacker. In this case, the attacker
could read and obtain the passwords of each User to use
them to log in legally to the web application afterward.

Moreover, he will know the table names, which he
can drop by inserting a drop command into the web
application's username or password text box. Figure 7,
with my web application's email, will work in some
ways, but it will have only one text box. Although Figure
8 shows more than one text box, one could be exploited
to compromise the web application's credit card number
text box under SQL injection.

SQL Injection Statements

In Table 1, variant examples of SQLI statements’
clauses are listed. Instead of using all the statements’
clauses to detect, we emphasized some general cases and
others that could have resulted from them. The selected
clauses are illustrated in Table 4. The first column of
Table 4 defines an input in the text box of a web

http://192.168.1.15/data/13279/fig6.png
http://192.168.1.15/data/13279/fig6.png
http://192.168.1.15/data/13279/fig7.png
http://192.168.1.15/data/13279/fig7.png
http://192.168.1.15/data/13279/fig8.png
http://192.168.1.15/data/13279/fig8.png
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application. As column two shows, this input will be
concatenated with a full SQL command or statement.
The bold part of the statement indicates the input from
the User in the form of the full SQL command.
Table 4: SQLI statements’ clauses and user inputs

Input Statement
'1' or '1'='1')/* SELECT * FROM Users WHERE

(Username='1' or '1'='1')/*) AND
(Password=MD5('password'))

union all select User
from dual --

http://192.168.2.10/oral.php?name=union all select
User from dual --

' OR '=' SELECT name from users WHERE name='' OR '='
AND password=''

x'; DROP TABLE
members; --

SELECT email, passwd, login_id, full_name
FROM members WHERE email='x'; DROP TABLE
members; --

or 1=1 -- SELECT * FROM Users WHERE
username = '' or 1=1 --' AND password = ''

White Box and Black Box Testing of Web
Applications

Testing operations should be conducted to ensure the
security of web applications. As mentioned, the two
primary testing approaches are white-box and black-box
testing. The black-box testing method is employed
because the source code of some web applications is not
available for consideration in this study. Conversely,
white-box testing is applied to web applications that have
accessible, open-source code. The choice between these
two methods depends on whether the web application's
source code is available.

Tested Web Applications

In this study, we investigated the application of
genetic algorithms for detecting SQL Injection (SQLI)
vulnerabilities, focusing on sample web applications.
The testing process included both white-box and black-
box testing methodologies applied to these web
applications.

Figures 9 and 10 show examples of a genetic
algorithm used to generate test cases, as detailed in
Section 3.4. These test cases were designed to identify
SQL Injection (SQLI) vulnerabilities within the web
application at two distinct levels: the username and
password levels.

Furthermore, Figure 11 presents another example of a
web application featuring a single text box as an input
component. This web application is designed to extract
specific columns from a particular database table. The
data displayed upon clicking the search button depends
on the user's input into the search text box. Typically, the
columns selected are considered more critical for users.
However, SQLI attacks can be executed to unveil
columns beyond the initially specified ones, often
containing sensitive data. In this scenario, an attacker
may attempt to reveal the password column from the user
table or even try to drop the user table entirely.

Fig. 9: Login Web application sample 1

Fig. 10: Login Web application sample 2

Fig. 11: Search Web application sample

Web application Prevention from SQLI

This paper uses one of three methods to prevent SQL
Injection (SQLI) in a web application. First, a regular
expression identifies and replaces specific user input
characters in the text box with null or space characters.
After the replacement, the SQL command is executed,
establishing a trusted database connection. Next, the
input text is concatenated with the trusted SQL
command.

The second method utilizes a parameterized query to
achieve the required prevention. The input text is treated
as a parameter in the SQL command. Similarly, the
database connection opens and concatenates the SQL
command, like in the first method.

The final method involves a specific stored procedure
based on a designated value parameter from the input
text box.

SQLI Sample Dataset Analysis Using ANOVA

This paper utilizes a sample from the dataset
available on the Kaggle website and evaluates it using
One-Way Statistical ANOVA (Analysis of Variance). The
ANOVA test assesses whether the difference between the
averages of two or more groups is significant based on
sample data. ANOVA is generally applied when at least
three groups are involved, since the two-tailed pooled
variance t-test and the right-tailed ANOVA test yield the
same result for two groups.

http://192.168.1.15/data/13279/fig9.png
http://192.168.1.15/data/13279/fig9.png
http://192.168.1.15/data/13279/fig10.png
http://192.168.1.15/data/13279/fig10.png
http://192.168.1.15/data/13279/fig11.png
http://192.168.1.15/data/13279/fig11.png
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In this evaluation, we utilize three groups of 500
records, which consist of various SQL statement clauses,
as shown in the table. Table 5 displays the mean and
standard deviation of these data samples. Group 1
contains 1512 values, Group 2 includes 1706 values, and
Group 3 comprises 2924 values.
Table 5: Anova Test - Mean & S 1

Group 1 Group 2 Group 3
Mean 7.22 3.47 3.47
S 2.80 1.43 5.40

Results
This Section shows GA's performance as a test case

generator for web applications. It also discusses
experiments and evaluation parameters, presenting
experimental results and analysis.

Experiment Environment

The experiments were implemented in Visual Studio
2015, making coding easier to maintain and manipulate.
Table 6 presents the machine’s implementation
specifications.
Table 6: Hardware Specifications

Specifications Type Value
Computer Type HP
RAM 4 GB
CPU Type Core i3
CPU Speed 2.40 GHz
System Type 64-bit Operating System
Operating System Windows 8.1

Design and Implementation Issues

As mentioned, the algorithm was implemented in the
C# programming language using Visual Studio, which
provides various features.

The implementation output shows that our algorithm
can be applied to test any web application. More
significantly, this work highlighted the need to test web
applications using GA to detect vulnerabilities as soon as
possible, which may lead to potentially dangerous
attacks. In other words, the algorithm automatically
generates test data that traverses the web application's
code commands under test.

Evaluation Parameters

This paper assessed GA’s performance by
automatically generating test cases for web applications
analyzing the test case generation time and the average
number of generations. The average values were
calculated after running the algorithm five times, each
with a different population size; the experiment was
repeated three times. A population contains all generated
solutions, with the population sizes being 30, 50, 70, 90,
and 110. After each execution, we recorded the average

number of generations and the execution time. The
smallest average number indicates that GA generates the
required test case with the least number of generations,
while the shortest average execution time suggests that it
has more advantages.

The Experiments

In this Section, we will demonstrate the GA
execution for automatically generating test cases for
several specific types of web applications to estimate the
results of this technique.

Web Applications Under Test

We implemented the algorithm on five web
applications and tested it using the Genetic Algorithm
(GA). These web applications and their descriptions are
provided in Table 7. The sizes of the web applications
range from 173 to 1,473 lines of code. Among these, the
login example is particularly crucial, as it represents a
critical security risk—it can potentially cause significant
damage if compromised and may also be an unsecured
page. Detailed descriptions and testing results for each
web application are presented in the following
subsection.
Table 7: Programs under Test

Web application Name Number of Code Lines
WebGoat.NET 1473
Login information by Bryian Tan 590
Learner’s Pvtltd 217
SQL injection 173

Experimental Results

This section presents the web applications under Test
and the outcomes of experiments implementing the GA
to evaluate these web applications.

The WebGoat.NET web application is an open-source
educational platform for users to learn about prevalent
web security vulnerabilities. It encompasses common
security flaws commonly found in web applications and
offers lessons tailored to the .NET framework. These
exercises are carefully designed to teach developers
about web security attacks and how to address them
effectively.

Each of the 60 pages is dedicated to specific
functionalities, such as login, password modification,
password retrieval, user addition, and other operations.
The source code for this web application can be accessed
at (Alshraideh & Bottaci, 2006; GitHub, 2025).

Of particular significance within this web application
is the login page, which offers two distinct login options:
customer login and employee login. Both login pages
feature input fields for usernames and passwords.
Notably, upon code analysis, it becomes evident that
there are no built-in safeguards to protect these input
textboxes from potential user-based attacks.
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The data type assigned to these textboxes is a string,
allowing for the acceptance of various character types,
including letters, numbers, and special characters such as
"% ", "$ ", "# ", and "!". Figure 12 illustrates a portion of
the login code, highlighting the data types assigned to
both the email and password fields, followed by a code
snippet containing user and password information.
Verifying the authenticity of the entered email and
password is performed within the if statement. Code
within this if statement is executed when the user
provides invalid input for email, password, or both, and
it is skipped when valid inputs are provided.

Fig. 12: Part of the Login Code

Table 8 shows the testing results of the
WebGoat.NET web application for each testing metric.
You can see from the table that when the population size
was 30, the average number of generations required to
find the test data was the highest; conversely, the
execution time decreased. Note that this results from
implementing the first case of SQLI, which is 1' or '1' =
'1'))/*.
Table 8: WebGoat.NET Testing Results

Population
Size

Average No. of
Generations

Execution Time
(Seconds)

30 186.8 2.9
50 4 73. 4.1
70 54.8 4.9
90 51.2 6.2
110 39 7.2

Figures 13 and 14 illustrate the behavior of GA as the
population size increases. Figure 13 indicates that the
average number of generations decreases with increased
population. The probability of finding optimal solutions
rises as the generation size of solutions from the search
domain expands, resulting in a smaller number of
generations. In contrast, Figure 13 shows that the
execution time increases in tandem with population
growth. The average number of generations steadily
decreased in Figure 14, as the probability of finding
optimal values increases gradually with the rise in
population size.

Fig. 13: Average Number of Generations for WebGoat.NET

Fig. 14: Execution Time for WebGoat.NET

Login Information by Bryian Tan

The Bryian Tan web application provides login
information. This application represents a small sample
code to test vulnerabilities, such as SQL Injection (SQLI)
and cross-site scripting (XSS). The source code is
available at CodeProject (2025).

However, this application demonstrates that
vulnerabilities can occur through the Query string or
Form input box.

As a query string, the web application shows UNION
SQL Injection like the command:

SELECT * FROM dbo.MyComments WHERE ID =
1 --ORDER BY [Name]

After executing this command, the results show that
the database holds various tables: My Comments,
tbl_SQLInjection, tbl_users, and TestTable. After
revealing the names of tables in the database, the attacker
will retrieve data from the sysprocesses table, for
example. Then, updating the table, deleting table data,
truncating the table, or dropping the table may occur.

Fig. 15: Login screen example of SQLI

On the other hand, as Forms input, illegal users can
bypass the login page by adding ' or 1=1 -- or ') or 1=1--

http://192.168.1.15/data/13279/fig12.png
http://192.168.1.15/data/13279/fig12.png
http://192.168.1.15/data/13279/fig13.png
http://192.168.1.15/data/13279/fig13.png
http://192.168.1.15/data/13279/fig14.png
http://192.168.1.15/data/13279/fig14.png
http://192.168.1.15/data/13279/fig15.png
http://192.168.1.15/data/13279/fig15.png
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to the login ID and putting any value in the password
field. Figure 15, which illustrates an example that was
previously explained. This figure shows that the input
text: ‘ or 1= 1 – makes a successful login to the site.

Figure 16 shows part of the code that illustrates the
types of text boxes and the complete SQL command line
to be executed after the User provides input.

Fig. 16: Code snippet showing the login authentication logic
for the Bryian Tan web application

Table 9: WebGoat.NET Testing Results

Population
Size

Average No. of
Generations

Execution Time
(Seconds)

30 527.6 2
50 321.6 2.9
70 184.8 4.2
90 155.8 6.3
110 111.6 9 6.

Fig. 17: Average Number of Generations for Login Information
by Bryian Tan web Application

Fig. 18: Execution Time for Login information by Bryian Tan
web Application

The results of running the algorithm on this program
are shown in Table 9 and Figures 17 and 18. Figure 17
shows the inverse relationship between the average
number of generations and population size. As the
population size increases, the average generation

decreases. Unfortunately, this is reflected negatively in
the time the algorithm requires to find what it looks for
in many generations, illustrated in Figure 18.

This results from implementing the case: 1' or '1' =
'1'))/*.

However, Learner’s Pvtltd and SQLInjection web
applications show the same behavior as the previous two
examples of web applications.

Discussion
The results from our GA-based SQL Injection

detection experiments demonstrate a significant
improvement in efficiency, adaptability, and detection
accuracy over traditional testing methods. The GA
achieved a consistent reduction in the average number of
generations required as population size increased, albeit
with a corresponding rise in execution time.

The use of the Character Distance fitness function
proved effective in guiding the search process, enabling
the GA to evolve payloads that closely mimic actual
attack vectors. Compared to manual penetration testing
and static analysis tools, our GA-based approach
significantly reduces false positives and adapts well to
diverse input patterns.

The results also confirmed that white-box testing,
enhanced with static analysis, was more effective in
detecting embedded vulnerabilities. In contrast, black-
box testing demonstrated practical utility when source
code was unavailable. The integration of both paradigms
provides a comprehensive strategy applicable to various
real-world scenarios.

Additionally, the statistical analysis using ANOVA
confirmed the significant differences in the detection
performance of various SQLI clauses. The evaluation
across multiple applications revealed consistent patterns
that support the generalizability of the approach.

Nevertheless, the method's effectiveness is influenced
by the proper tuning of genetic parameters (e.g.,
mutation rate, selection pressure). Moreover, execution
time may increase with higher population sizes,
warranting a balance between detection depth and
resource efficiency.

Future work will investigate the integration of
machine learning classifiers, such as Decision Trees or
Deep Neural Networks, to automate the classification of
SQLI commands and further reduce detection time and
error rates. We also plan to explore advanced
evolutionary strategies and multi-objective optimization
to enhance both performance and interpretability.

Conclusion
This study addressed the critical challenge of

detecting SQL Injection (SQLI) vulnerabilities in web
applications by employing a Genetic Algorithm (GA)-

http://192.168.1.15/data/13279/fig16.png
http://192.168.1.15/data/13279/fig16.png
http://192.168.1.15/data/13279/fig17.png
http://192.168.1.15/data/13279/fig17.png
http://192.168.1.15/data/13279/fig18.png
http://192.168.1.15/data/13279/fig18.png
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based test case generation approach. Given the
increasing reliance on web applications for handling
sensitive user data, ensuring their security is paramount.
SQL injections remain among the most prevalent and
damaging security threats, allowing attackers to
manipulate database queries and gain unauthorized
access to confidential data.

Our proposed approach leverages GA to generate
optimized test cases that effectively identify SQLI
vulnerabilities while minimizing the required test cases.
This optimization reduces computational overhead and
enhances the efficiency of the testing process,
contributing to the development of more secure web
applications. Automated test case generation also lowers
maintenance and development costs, making it a
practical and scalable solution for addressing
vulnerability detection.

The findings of this study highlight the potential of
evolutionary algorithms in enhancing the security of web
applications. However, further improvements can be
achieved by integrating additional machine-learning
techniques. Future research will investigate the
application of decision trees as a classifier to categorize
SQL commands, aiming to enhance detection accuracy
and expedite the identification of SQL Injection (SQLI)
vulnerabilities. By refining the vulnerability detection
process, this research contributes to the ongoing efforts
to fortify web applications against cyber threats.

While this study focuses on SQLI detection using
Genetic Algorithms (GA) with ANOVA-based
evaluation, future research will expand the assessment by
incorporating additional performance metrics.
Specifically, we plan to analyze the false positive rate
(FPR) and false negative rate (FNR) to quantify the
accuracy of our detection approach. Additionally, we will
compare execution times between GA-based detection
and conventional SQLI detection methods to assess
computational efficiency. Moreover, we aim to explore
the integration of machine learning classifiers, such as
decision trees or deep learning models, to improve SQL
command classification and enhance detection precision.
These extensions will further validate our approach and
contribute to the development of more effective web
application security mechanisms.
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