

© 2025 Shivani Awasthi and Narendra Kohli. This open-access article is distributed under a Creative Commons Attribution

(CC-BY) 4.0 license.

Journal of Computer Science

Original Research Paper

Efficient Data Encryption for Securing HDFS Using DQN-

Enhanced Deep Reinforcement Learning Techniques

1Shivani Awasthi and 2Narendra Kohli

1Department of Computer Science and Engineering, Research Scholar, Harcourt Butler Technical University, Kanpur, India
2Department of Computer Science and Engineering, Professor, Harcourt Butler Technical University, Kanpur, India

Article history
Received: 24-10-2024
Revised: 18-11-2024

Accepted: 22-11-2024

Corresponding Author:
Shivani Awasthi
Department of Computer
Science and Engineering,
Research Scholar, Harcourt
Butler Technical University,
Kanpur, India

Email: awasthisb@gmail.com

Abstract: In the era of big data, ensuring the security of large-scale distributed

storage systems like the Hadoop Distributed File System (HDFS) is critical.

Traditional encryption methods often struggle to balance robust security with

system performance, leading to vulnerabilities and inefficiencies. This study

presents the design and implementation of an efficient data encryption

algorithm for securing HDFS using Deep Q-Network (DQN) enhanced Deep

Reinforcement Learning (DRL) techniques. The proposed model
dynamically optimizes encryption parameters by leveraging the adaptive

capabilities of DQN, ensuring robust security while maintaining high system

performance and scalability. Our approach addresses key limitations of

existing encryption methods by integrating DQN with deep reinforcement

learning to create a dynamic encryption framework that adjusts in real time

based on data access patterns and threat levels. The results demonstrate

significant improvements in security and efficiency compared to

conventional encryption techniques. Specifically, the DQN-enhanced DRL

algorithm consistently outperformed baseline methods regarding encryption

strength, computational efficiency, latency, resource utilization, adaptability,

and energy consumption. The contributions of this research include the

development of a novel DQN-enhanced encryption algorithm tailored for
HDFS, the creation of an adaptive encryption framework that leverages real-

time data dynamics, and a thorough evaluation demonstrating the practical

benefits of the proposed solution. This study paves the way for future

research in intelligent encryption systems, offering a robust and efficient

approach to securing large-scale distributed storage environments. Our

findings underscore the potential of integrating advanced machine learning

techniques into encryption processes to enhance security and performance,

addressing the complex challenges modern data storage systems pose.

Keywords: HDFS Security, Data Encryption, Deep Reinforcement

Learning, Deep Q-Network, Adaptive Encryption Algorithms

Introduction

In the modern era of big data, securing large-scale

distributed storage systems such as the Hadoop
Distributed File System (HDFS) has become increasingly

critical (Alpaydin, 2020). HDFS, widely used for storing

and managing massive amounts of data, faces significant

challenges in ensuring data security due to its distributed

nature and the sensitive nature of the stored information

(Tabbassum et al., 2021). While effective in certain

contexts, traditional encryption methods often struggle to

balance the trade-offs between robust security and system

performance, leading to vulnerabilities and inefficiencies

(Alhazmi and Eassa, 2022). This research aims to address

these challenges by developing an efficient data
encryption algorithm for HDFS utilizing Deep Q-

Network (DQN) enhanced Deep Reinforcement Learning

(DRL) techniques (Ghemawat et al., 2003)

Rapid advancements in data management technologies

have marked the evolution of distributed storage systems

Sunder et al. (2022) HDFS, a cornerstone of big data

platforms like Apache Hadoop, provides scalable and

reliable storage by distributing data across multiple nodes

Belhadaoui et al. (2023). However, the distributed nature

of HDFS introduces complexities in maintaining data

security, especially as data volumes grow and cyber threats

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

742

become more sophisticated (Hamza et al., 2022).

Traditional encryption methods, such as symmetric and

asymmetric encryption, have been the backbone of data
security (Al Jallad et al., 2019; Khandagale et al., 2024).

Despite their strengths, these methods often introduce

significant computational overhead and latency, impeding

system performance and scalability (Mnih et al., 2015). The

significance of securing HDFS lies in its widespread

adoption across various industries, including finance,

healthcare, and telecommunications, where data

breaches can have severe consequences (Shvachko et al.,

2010). Historical data breaches have demonstrated the

devastating impact of inadequate security measures,

leading to financial losses, reputational damage, and
legal repercussions (Silver et al., 2016). As such, there

is a pressing need for advanced encryption solutions that

not only enhance security but also maintain system

efficiency and adaptability Pronika and Tyagi (2021).

The primary motivation behind this research is to

develop a novel encryption algorithm that effectively
balances the competing demands of security and

performance in HDFS environments (Sood et al., 2011).
By leveraging the capabilities of DQN-enhanced DRL

techniques, this research aims to create an adaptive
encryption framework that can dynamically adjust

encryption parameters based on real-time data access
patterns and threat levels Singh et al. (2023). The goal is

to enhance the overall security posture of HDFS without
compromising on computational efficiency or scalability

(Wang et al., 2016). Additionally, this research seeks to
contribute to the broader field of data security by

exploring the potential of reinforcement learning in
optimizing encryption processes (Nenov, 2024). By

integrating machine learning methodologies with
encryption strategies, this study aims to develop a robust,

intelligent encryption system that can autonomously
respond to evolving threats and data usage patterns.

Ultimately, the findings of this research are expected to
offer significant insights and practical solutions for

securing large-scale distributed storage systems, benefiting
both academia and industry (Olaoluwa and Potter, 2024).

In today's digital era, securing large-scale data storage
systems like the Hadoop Distributed File System (HDFS)
is crucial to protect sensitive information from

unauthorized access and cyber threats (Mustafa et al.,
2020). Existing encryption algorithms often fail to balance
security, efficiency, and computational overhead, leading
to vulnerabilities and performance bottlenecks

(Mashonganyika et al., 2020). This research addresses the
need for an efficient data encryption algorithm tailored for
HDFS by leveraging Deep Q-Network (DQN)--enhanced

deep reinforcement learning techniques. The proposed
solution aims to optimize encryption processes, ensuring
robust security while maintaining high system
performance and scalability (Xiao et al., 2019) by

integrating advanced machine learning methodologies,

this study seeks to develop a dynamic, adaptive
encryption framework that can intelligently respond to
evolving threats and data access patterns, ultimately

enhancing the overall security posture of HDFS
environments Wang et al. (2024).

Addressing the Need for Adaptability and

Responsive Security in HDFS

HDFS requires more adaptability and responsive
security Measures as listed below.

HDFS Distributed and Dynamic Nature

HDFS used for efficient data storage and retrieval of
data across multiple nodes in the distributed network. This
setup introduces numerous attacks. Each node and data
block can likely attack the surface-making system for

more prompt for unauthorized access and beaches.
Without adaptive security, standard encryption may fail to
protect each node efficiently. When the number of nodes
and volume of data grows.

Limitation of Standard Methods

Traditional encryption methods AES and RSA are static
and computationally intensive. Traditional encryption
methods apply the same method in each block unrelatedly
to access frequency and sensitivity. So, the infrequently
accessed data is encrypted with a similar computational
load as high-priority data, consuming unnecessary
resources. Traditional encryption AES and RSA also lack
the flexibility to adapt to changing threat points.

Dynamic Threat Environment and Real-Time

Adaptation

HDFS environments often involve changing access
patterns, varying from high-traffic periods to idle times.

In real time an adaptive encryption system, based on

DQN-enhanced DRL, could monitor these access forms

and threat levels. By doing so, it can dynamically regulate

encryption strength and computational resources based on

current needs, fortifying data efficiently without imposing

unnecessary load during low-activity periods. This

reaction is important as data grows. A static model may

become increasingly unusable due to the high

computational cost of applying uniform encryption across

all data nodes, whereas an adaptive model can allocate
encryption resources more effectively.

Impacts on Performance and Scalability

Traditional encryption methods can lead to system

inefficiencies in HDFS will simplify the need for adaptive

security. Traditional methods may cause latency and

resource bottlenecks, as HDFS is used in real-time

applications that require fast data retrieval and minimal

delay. Adaptive security systems can optimize the

encryption-decryption cycle.

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

743

Potential for Security Breaches

In a static encryption system, attackers who gain access

to a node may exploit the uniform encryption parameters

across HDFS, increasing the chances of breaching

additional nodes. In contrast, an adaptive system can

respond to distrustful activity patterns by raising security

measures dynamically, thus better protecting sensitive data

and reacting promptly to possible cracks.

In this way, HDFS needs adaptive security solutions

and DQN-enhanced DRL. This is a powerful solution that

traditional methods do not.

The major goal of this research is to design an
enhanced HDFS security system utilizing modern deep

reinforcement learning approaches as applied to the new

advanced encryption algorithm for adaptive data security.

It also is the basis for the goal of this research, which is to

improve HDFS security while minimizing impacts on

system performance and scalability. The specific

objectives of this research are as follows:

1. This primer explains the process of developing an

enhanced deep reinforcement-learning algorithm

based on DQN for improving the parameters of
encryption in HDFS.

2. To build a flexible encryption model that can learn and

grow as the organization harnesses its data in real-time

and faces varying levels of threats. In this context, the

proposed solution involves applying multi-agent

reinforcement learning techniques to enable the

development a hierarchical encryption system to

manage the complexity and dynamics of HDFS

3. In order to draw a comparison between the proposed

encryption algorithms and the state-art-techniques

based on security, complexity and scalability

Overall, this research contributes in several ways to

the study of data encryption and distributed storage

systems. Based on the outcomes of this research study, it

can be suggested that the improving approaches will

improve the safety and reliability of HDFS. The specific

contributions of this research are as follows:

 A novel modified for HDFS through deepening of

parameters for encryption which enhances the

security and efficiency through Deep Q-learning
Network (DQN) enhanced deep reinforcement

learning algorithm

 The development of an efficient and evolutionary

system of encryption strategy that will be built upon

the data access patterns of the real-time environment

in conjunction with threat levels

 A self-adaptive encryption system that used multi-

agent reinforcement learning to have agents learn

appropriate encryption levels at various tiers of the

HDFS hierarchy

 Comprehensive analysis of the proposed algorithms

and comparing it to current encryption techniques

and showing how the proposed algorithms/easily
outperform other methods in terms of security,

complexity and capacity

This work is divided into five sections. The original

text contains no references to parenthetical section

numbers. In the Introduction, the author outlines the

research problem, goals and the importance of coming up

with an optimal data encryption algorithm within HDFS

by utilizing the application of DQN deep reinforcement

learning. The Literature Review look into present

Encryption techniques and its drawbacks and identify
scopes for Intelligent Encryption systems. The

Methodology section describes the conceptual framework

and empirical development of the suggested DQN-

enhanced and multi-agent reinforcement learning-based

encryption algorithms and mathematical formulae to

address the research questions with appropriate measures.

Primary outcomes of the Research: The Results and

Discussions sections describe the comparison of the

performance of the proposed algorithms against the

traditional methods taking into the account of security,

time complexity and scalability. Last of them, the

Conclusions contain the major results, research
contributions as well as directions for future work.

Literature Review

Today’s proliferation of programs that handle huge

amounts of information has put pressure on data storage

platforms to include Hadoop Distributed File System

(HDFS) to contain and secure data efficiently. HDFS data

security is a critical research area of study due to its

challenges in sharing huge datasets across distributed

systems and the recent emergence of sophisticated artificial

intelligent learning algorithms. This study aims at a review

of the related literature containing the proposed approaches

and methodologies towards the improvement of data

encryption and security in HDFS by employing multiple

approaches, including Deep Reinforcement Learning

(DRL) and other related technologies.

Incorporation of machine learning solutions into

security standards such as encryption has proven to be

effective in increasing the flexibility and resilience of

algorithms. Alpaydin (2020) also identifies machine

learning as being crucial in creating dynamic security

solutions that may counter emerging security threats in

real-time. Computer algorithms can identify diffusion

patterns in data access and usage to potentially discover

vulnerabilities that hacker groups will exploit. These

models can also be trained to detect possible threats and

adjust the encryption measures in real time and thus have

the advantage of not being set. This strategy does not

present its use in security as a strong rule dominating in

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

744

its power but as a new approach to creating more

sophisticated and effective solutions for data protection in

distributed environments.
Blockchain technology has been used to explore data

security in an increased manner in distributed systems.
(Alhazmi and Eassa, 2022) designed a security model to

maintain the integrity and authenticity of data within a
blockchain-based on HDFS. This model employs

blockchain to preserve a secure and tamper-proof ledger
of Data events and transactions or access and changes.

The improvement in HDFS using the blockchain-based
implementation model led to a 50% decrease in data

manipulation cases. The study reveals the effectiveness of
blockchain as a framework with its capability to offer a

decentralized system in the handling of information on
distributed file systems.

Zero-trust security model has recently been adopted in
distributed storage systems such as the HDFS in cloud

infrastructure. Regarding its security, Tabbassum et al.
(2021) have introduced a zero-trust security model for

HDFS that provides an ongoing check for the identity of
the user and the rights granted to the user; only

authenticated users are permitted to access the data. This
approach adds an extra layer of security over the

traditional system where there is implicit trusting of other
systems and nodes in the network by continually asking

for the identity of the requesting party, therefore
decreasing substantially the probability of threats posed

by insiders and unauthorized access.
Previously, simplex encryption techniques such as

AES and RSA encryption algorithms have been
extensively implemented to safeguard data in distributed

structures. It is significant to note that the above methods
are standard, delivering moderate security levels that are

adequate for most applications. However, they can create
scalability issues as the number of inputs increases and

this slows down the system. Some of the outstanding
topics that are briefly covered by the authors of the paper

(Ghemawat et al., 2003) include security and performance
with the latter being described as requiring efficient

encryption. Although the level of security provided by
traditional encryption is high and has proven to be

adequate in most scenarios, it can also be seen that it
imposes additional load in the computation and

consequently results in latencies that are not desirable in
high-performance environments such as HDFS. This

trade-off between having high-security levels and optimal
system performance is a major challenge when it comes

to encryption for the HDFS.
Future studies have concentrated on developing a high

level of security and high levels of performance of Hybrid
encryption techniques. Sunder et al. (2022) described a

novel hybrid encryption model, where both symmetric
and asymmetric encryption techniques are used to offer

additional layers of security to the actual data stored in the
HDFS while minimizing the time it takes to encrypt the

overall system. It therefore makes use of the speed of
symmetric encryption for bulk data encryption together

with the secure key exchange capabilities of asymmetric
encryption. This offers good security since the system is

not compromised with the broadcast of the symmetric
keys while the efficiency of the system is not impacted as

the symmetric keys can be encrypted and shared
asymmetrically. Test outcomes revealed it was 20% faster

and 30% more efficient than existing models with less
computation required for the encryption process.

Homomorphic encryption can compute on the
encrypted data without decrypting them; that is the reason

why it keeps the data secure during computation. Another
work by (Hamza et al., 2022) explored the HDFS’s

integration and usage of homomorphic encryption,
showing that this technique may be used to preserve data

confidentiality during data processing operations. The
demonstration of their implementation reviewed the fact

that performing homomorphic encryption in the HDFS
environment made it easy to perform data processing with

confidentiality and privacy while not causing
deterioration of performance.

As with all systems, HDFS is also vulnerable to
threats, and thus access control mechanisms need to be

enhanced to better protect data stored in the system.
Belhadaoui et al. (2023) proposed an extended RBAC

model that integrated access control through the use of an
ABT-ABE technique. This model offers high-level

entitlement management that restricts the access of
information to only those who have inherent rights to

access it depending on the role they play in an
organization. Their implementation was about a reduction

of 35% in attempted unauthorized access as well as
enhancement of standards and policies on the governance

of data. It was also found that the integration of RBAC
and ABE was highly effective in providing dynamic as

well as context-based access control for HDFS and
thereby strengthening its security.

The use of AI in security issues has shown great
improvements in implementing its mechanisms. On their

part, Al Jallad et al. (2019) created an AI-based security
framework that utilizes machine learning techniques to

identify security threats while preventing them
simultaneously. This framework uses deep learning

models for analyzing data access patterns to detect any
trends that could signify the possibility of a security

compromise. The mentioned model worked further to
detect unauthorized access with 95% accuracy while

reducing false positive rates by 90% more than
the classical rule-based system. The offered AI-based

framework brings the possibility of learning new threats
and being updated regularly, which makes it more

protective and effective against potential threats.
There are newer HDFS security features of threat

detection systems that use artificial intelligence to detect
potential threats. Khandagale et al. (2024) brought a

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

745

unique paper that offered an intrusion detection system
designed using AI with a machine learning method for

detecting security threats in real-time. This system
consistently scans for traffic on the networks/procedures

and the logs of the system operation to detect any form of
intrusion and eliminate it without much loss. By

employing the AI-based system, it emerged that the
system had better capabilities of both threat detection and

threat containment than the conventional methods hence
improving security at HDFS.

Deep Reinforcement Learning (DRL) is a learning

approach based on deep learning extended by incorporating

decision-making principles through reinforcement
learning. In their work presented by Mnih et al. (2015), the

authors provided the general state of DRL and offered

theoretical possibilities of its utilization in the

cybersecurity perspective, including intrusion

identification and flexible encryption. The last component

of DRL systems is adaptability; they can modify and

develop the strategies used throughout interactions with

the environment based on feedback. Amidst HDFS

security, DRL can be used to define extremely

complicated encrypting algorithms that adapt to evolving

risks and request patterns. This characteristic makes DRL

appealing to control regularly strong safety systems in the
distributed storage architecture.

The Hadoop HDFS is one of the central components

of the Hadoop ecosystem, which is used for bulk storage.
However, its architecture based on the principle of

universality and product efficiency is not always
invulnerable to hacking. As noted by Shashkov et al.

(2010), HDFS has some limitations due to which data
security in the system is an increasingly important

problem because HDFS does not have native encryption
and authentication of stored data. The fundamental

structure of HDFS is optimized for big data storage and
retrieval purposes and due to this feature, this system

becomes vulnerable to threats that relate to data
protection, such as acts of vandalism, hacking, and

manipulation. This is because HDFS is distributed; it
incorporates many nodes which are scattered throughout

different areas and each of these nodes is a weakness that
hackers can exploit if the system is not well protected.

Other works like Silver et al. (2016) have shown that
DRL is effective for managing encryption tasks where it

is used to alter between DC and AC to optimize the trade-
off between encryption strength and computation time. It

is possible to build a database that has the matrix of the
most suitable encryption methods and their settings

depending on the parameters of the system; Using DRL,
one can avoid the necessity of decision-making

regarding the choice of the most suitable encryption
methods and configurations for the specifics of the given

system. Such optimization can result in the enhancement
of two main aspects, which are security and

performance, where the time and processing power

required to perform encryption as used in prior
methodologies may be substantially eliminated without

compromising the level of protection adopted.

Specific research by Pronika and Tyagi (2021) has

focused on the use of encryption algorithms in distributed
systems with a particular reference to distributed file

systems, meaning that there are still challenges in terms of

schemes that can be implemented to improve security

without bogging the system down in terms of performance
costs. Specific and important issues in encryption concerns

include the dispersion of keys in the system nodes in the

case of Distributed Systems, and issues on conformity to
certain security policies among the dispersed system nodes.

Their study also reveals the need to design other suitable

encryption schemes that can be deployed to satisfy the
needs of distributed structures like HDFS. This requires

that solutions developed for distributed storage also

incorporate the security criteria necessary for security-

sensitive data such as keys while at the same time not
making the encryption process a bottleneck on the system.

Although the Hadoop Distributed File System (HDFS)

has robust security measures at a traditional storage
system level, various proposals have been designed to

improve its security. For instance, Sood et al., (2011)

employed a technique that incorporates encryption with

policies of access control for HDFS environments. This
framework incorporates widely known encryption

techniques with more enhanced access control so that only

the right people are allowed to get at the data. A
combination of encryption and access control also makes

a strong safety solution because both of them protect the

data and the person who is using the system. Sood et al.,

(2011) study also affirms the need for overall security
frameworks that incorporate both technological and

procedural controls for the security of HDFS.

The HDFS framework incorporates privacy-
preserving data mining techniques to ensure the safety of

the data. Singh et al. (2023) proposed an algorithm

concerning data mining to privacy-preserving: The
method of differential privacy is adopted for the provision

of protection to the sensitive data while data analysis tasks

can be permitted. This indicates that the individual entries

in data cannot be seen while the aggregate results can be
obtained, a measure that maintains an appropriate

discretion and usefulness of data.

Done dynamically, it results in enhanced security of
the encrypted data and this is through key management.

(Nenov, 2024) investigate deep reinforcement learning

for Key Management in Hadoop Distributed File System

(HDFS) in the following research. In their work, they
showcased how DRL algorithms can be used to improve

key creation, dissemination, and renewal to guarantee key

security while maintaining efficiency. By doing so, the
method enables overall flexibility in the key management

system in case of emerging new security needs and threats

and ensures the preservation of the encryption quality.

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

746

However, the works that can be found in the current

literature propose IDS solutions for HDFS using deep

reinforcement learning (DRL). Olaoluwa and Potter

(2024) also came up with an IDS framework for DRL
which stands for Deep Reinforcement Learning based

network IDS designed to continuously analyze the flow of

traffic within a network and identify intrusions in real-
time. To enhance the accuracy of the threat detection and

to enable the system to evolve and respond to new kinds

of threats, this system employs DRL. Their IDS had the

highest accuracy of 92% in the detection of the initial
zero-day attacks and a false alarm rate reduction of about

15% compared to the other IDS models. The DRL-based

approach of the system allows for continuous training
based on chronic security events, adding the capacity to

distinguish between new and complex incursions by

malicious actors.

DQN is a form of DRL algorithms, which have earlier
been presented as proven models for complicated

decision-making. In the paper of Wang et al. (2016) they

indicated that the DQNs could be utilized for improving
the efficiency of the encryption processes since they

consume much fewer resources. DQNs operate under an

approximate action-value function which is a neural
network making them capable of selecting an action

depending on the current environment state. In the context

of HDFS, DQNs can be helpful for the employment of

encryption for choosing the right type of encryption and
associated parameters depending on the current

information and threat. These optimizations can result in

vast enhancements in both the security and performance
attributes of PSN.

The current and past research on cryptographic

algorithms has made the encrypting method for HDFS to

be more secure and reliable. In subsequent work,
(Mustafa et al., 2020) proposed an improved

cryptographic algorithm that encompasses both lattices

and conventional methods to produce better security
against new risks such as quantum threats. This

convection of using these two kinds of cryptographic

techniques helps to improve security as it provides good

solutions to current and future security threats.
This challenge is closely related to the new possibilities

opened by edge computing and their ultimately heightened

security risk. (Xiao et al., 2019) continue the topic by
examining how edge computing benefits HDFS in terms of

security. Their solution entails placing security measures at

the perimeter of the network since this amounts to the
location where data production and utilization occurs and

this will minimize the amount of delay regarding security

protocols. By analyzing data on the edge, their model saved

up to 40% of the response time for security checks and up
to 25% increased the system’s overall throughput. This

also greatly reduces data interception threats during

transmission, thus strengthening the protection of edge
computing environments.

Researchers have conducted investigations into the

use of reinforcement learning in HDFS security. Du et al.

(2020) presented the concept of developing a model that

uses the method of reinforcement learning to adaptively

control the parameters for encryption depending on the

sensitivity of the data and the threat exposures. This

approach employs reinforcement learning methods

wherein the encryption process is constantly observed and

adjusted, consequently protecting data from certain

threats. By learning the features of the data an agent with

reinforcement learning can select the best encryption

strategies depending on current threats and characteristics

of data to be protected thus offering a more efficient way

of protecting HDFS.

The advancement in passing partial gradients in a

decentralized manner has been proposed in federated

learning for improving data safety. Wang et al. (2024)

have put forward a federated-learning-based security

framework for the HDFS in which the model can be

trained securely without having exposure to the

information. It guarantees data confidentiality regarding

distributed computing necessities for amplified security.

In their framework, they noted a 15% improvement in the

accuracy of their model and a 20% decrease in leakage of

data while they employed centralized training compared

to when they used centralized training methods. This

makes federated learning to act as an efficient method to

safeguard the process of collaborating across several

nodes while training the AI models in sensitive regions.

HDFS security in the coming generations can,

therefore, be ascertained to rely on more enhanced AI

techniques such as DQN-enhanced DRLs. The authors

(Nijil Raj et al., 2024) opine that there will be a progressive

advancement in the DRL algorithms in the future and this

will in turn result in advanced security solutions for

distributed storage systems. This technology is expected to

afford growing significance to resolve the multi-reg risks

issues of HDFS, as the advancement of DRL technology

continues. In the future, research will likely continue

refining these types of algorithms, optimize the scalability,

and discover methods in which they may be applied in

combination with other emergent technologies to provide

an extensive level of security to distributed systems.

Safety can be considered critical for shared

environments in which HDFS is used. (Li et al., 2023)

have presented a secure data-sharing framework with the

use of both ABE and blockchain solutions. Doubling for

safe communication and protection of data exchanged

between the users this framework makes sure that the data

exchanged is encrypted and can only be accessed and used

by the right and authenticated users. I conclude that

incorporating ABE gives permission control to the fine-

grain level and the incorporation of blockchain enables

traceability and evidence of the integrity of shared data,

enhancing the ability to securely share data.

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

747

Table 1: Comparative Analysis of Security Study in HDFS

Study Encryption Technique Security Focus Key Contribution

Shvachko et al. (2010) NA HDFS vulnerabilities Identifies security gap in HDFS
Ghemawat et al. (2003) NA Security Vs

Performance
Discussed the performance impact of
encryption

Mnih et al. (2015) Deep Reinforcement
learning

Adaptive Encryption Applied DRL for dynamic security policies

Wang et al. (2016) Deep-Q- Network Optimization of
performance

Enhanced efficiency of the Encryption
process

Sunder et al. (2022) Hybrid Encryption Data Security Combined symmetric and asymmetric

encryption for efficiency and security
Al Jallad et al. (2019) AI-driven security Real-time threat

detection
Developed a real-time AI security
framework

Anand and Hassabnis (2024) Quantum Resistant
Encryption

Future threat
mitigation

Developed algorithm resistant to quantum
attack

Alhazmi and Eassa (2022) Blockchain Data integrity Implemented Blockchain for secure data
tracking

Nenov (2024) Deep Reinforcement

Learning

Key management Optimize key management process using

DRL
Mustafa et al. (2022) Enhanced cryptographic

algorithms
Quantum-Resistant
Security

Combined lattice-based cryptography with
traditional encryption method

Quantum computing of late poses a threat to
commonly applied encryption methods owing to its

capability to unravel most encrypted codes. Anand and
Hassabnis (2024) investigated different algorithms known

as post-quantum cryptography aimed at protecting data
stored in HDFS from quantum computing attacks. They

stick to lattice-based cryptography, which is thought to be
not susceptible to quantum assault. In their work, they

showed that it is possible to obtain a solution that would
cause a negligible impact on performance while also

enabling lattice-based encryption to perform similarly to
classical encryption algorithms and even offer more

protection against quantum attackers. As this research
shows, it is imperative to work on improving encryption

algorithms that could be resistant to quantum computers
one day to maintain data integrity.

Variable encryption schemes have emerged of particular

interest due to the desirability of adaptable parameters

for encryption mechanisms. Mashonganyika et al.

(2020) suggested using an adaptive encryption framework
that refers to the current load of a system and the

necessary levels of protection to make adjustments to

every parameter. In this way, this approach is used to

guarantee the effectiveness of the encryption process for

different loads, high and low, to provide the optimal

performance of the procedure and application of the

encryption. Table (1) shows the comparative analysis of

security studies in HDFS.

Materials and Methods

The implementations and experiments are based on

the Hadoop cluster running on Google Colab using

Pyspark Firstly, an HDFS environment is set up using

Google Drive for storage and Pyspark for distributed

computing. A Hadoop-like environment is set up in

Google Colab by installing Java 8 and Hadoop Spark

3.3.2. After that, simulate the HDFS using Google Drive

and also create Namenode and Datanode. In this
configuration, we use the Intel Core i7- 1165G7, a

2.80GHz processor with 16 GB RAM, and Kaggle data

sets to measure the performance.

This section explains how we developed an optimized

data encryption algorithm for protecting the Hadoop

Distributed File System (HDFS) through a DQN-DDPG

architecture with enhanced deep reinforcement learning

(DRL). The proposed methodology integrates three

distinct models: Soft Computing for HDFS: Enhancing

Encryption Efficiency: Deep Q Learning Dynamic

Resource Management; Deep Q learning Adaptation for

HDFS Encryption; and Hierarchical Reinforcement

Learning for Efficient HDFS Encryption. Every one of

these models tackles various aspects of the encryption

algorithms and practices with the objective of improving

security while at the same time not hampering the

performance and grow-ability of the system.

Optimizing Encryption Efficiency in HDFS Using

DQN-Enhanced DRL

The area of concern is in the enhancement of HDFS’s

encryption effectiveness, all the while maintaining the

strength as well as the performance. By employing

traditional encryption algorithms there is always a

tradeoff of computation time and actual time, which slows
down the performance of the whole system. This problem

focuses on creating an improvement to DQN, which is

a deep reinforcement learning algorithm to enable real-

time control of the encryption parameters with concern to

security and the time taken in calculations. It is better to

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

748

let 𝐸(𝑥) denote the encryption function for data block x

residing in HDFS. The goal is thus one of maximizing

𝐸(𝑥) about both C and S simultaneously, thus with a

tradeoff between the two.

State space St: Represents the current system state,

including data characteristics and current encryption

parameters.

Action space At: Set of possible actions, including

selecting different encryption algorithms and parameter

configurations

Reward function Rt: Combines the negative

computational cost and positive security benefit:

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡, 𝐴𝑡) (1)

where:

Rt = α ⋅ (S(E(xt)) + λ ⋅ ∑ ∫ ϕi

1

0

n

i=1

(fi(xt)) dx) − β

⋅ (C(E(xt)) + ∑ ∫ ψj

1

0

m

j=1

(gj(xt))  dx) (2)

α, β, λ

> 0 (weighting factors for security, cost and additional factors) (3)

𝜙𝑖(𝑓𝑖(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖(𝑓𝑖(𝑥𝑡)−𝜇𝑖)
 (4)

𝜓𝑗 (𝑔𝑗(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗(𝑔𝑗(𝑥𝑡)−𝜈𝑗)
 (5)

Here, 𝜙𝑖 and 𝜓𝑗 are sigmoid functions representing

additional security and cost-related factors with

parameters 𝑘𝑖 , 𝜇𝑖 , ℎ𝑗 , 𝜈𝑗 .

This problem formulation puts into practice a

reinforcement learning paradigm, where the DQN agent

learns to determine the most suitable encryption

parameters that would yield a high cumulative reward

function in the long run. The probability of selection of a

particular key size reflects weights between security

defined by the key size and computational overhead

defined by encryption and decryption time, while other

factors are taken into account with the help of sigmoid

functions. The discount rate 𝛾 helps to optimize for the

future as well since they take into consideration the

rewards that would be realized in the future.

Dynamic Adaptive Encryption for HDFS Using

Deep Reinforcement Learning

Specifically, the problem encompasses developing a

dynamic and adaptability-based encryption algorithm

capable of serving HDFS that would consider the actual

traffic patterns of data and the current levels of threats.

The print-screen approach cannot change with the current

condition and this leaves the system open to other forms

of insecurity and reduces efficiency. This formulation
seeks to work towards the creation of an adaptive

encryption framework based on Deep Reinforcement

Learning DRL that is capable of learning from its

environment and adapting the encryption strategies used

in real time to meet security and performance goals. Let

𝜋(𝑎|𝑠) be a deterministic policy function that prescribes

the probability density of taking action in state s. A target

policy 𝜋∗ that aims at solving this problem should drive the

expected cumulative reward 𝐽(𝜋) to the optimal level.
State space St: Includes real-time data access patterns,

current threat level, and system performance metrics.

Action space At: Set of encryption strategies and

configurations.

Reward function Rt: Integrates security effectiveness,

response time and resource utilization:

𝐽(𝜋) = 𝔼𝜋 [∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡] (6)

where:

Rt = α ⋅ (S(E(xt), T(t)) + ∑ ∫ φi

1

0

p

i=1

(θi(xt, T(t)))  dx) − β

⋅ (C(E(xt)) + ∑ ∫ χj

1

0

q

j=1

(ηj(xt))  dx

+ U(E(xt))) (7)

α, β
> 0 (weighting factors for security, cost and utilization) (8)

Here, φi and χj are functions representing additional

security and cost-related factors with parameters θi and ηj.

𝜑𝑖 (𝜃𝑖(𝑥𝑡, 𝑇(𝑡))) =
1

1 + 𝑒−𝑚𝑖(𝜃𝑖(𝑥𝑡,𝑇(𝑡))−𝜉𝐼)
 (9)

𝜒𝑗 (𝜂𝑗(𝑥𝑡)) =
1

1 + 𝑒−𝑛𝑗(𝜂𝑗(𝑥𝑡)−𝜌𝑗)
 (10)

This formulation uses DRL where the properties of the

system change depending on the dynamics of the system

and where the agent changes their encryption strategies.
It is specified, the reward function is a compromise

between the efficiency of the security system, time

response and the level of consumption of resources,

other parameters are defined with help of sigmoid

functions. The policy 𝜋∗ is to select action 𝑎𝑡 to get the

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

749

maximum expected cumulative reward that benefits

from adaptive and efficient encryption for HDFS. It must

be noted that to reflect, for example, threat levels 𝑇(𝑡),

as well as other security and cost factors, 𝜑𝑖 and 𝜒𝑗 , the

system becomes more flexible, affording better security

in any given conditions.

Adaptive Hierarchical Encryption for HDFS Using

Multi-Agent Reinforcement Learning

The problem can be stated as follows: Considering the

Challenging environment of the Hadoop Distributed File

System (HDFS), the problem concerns the specification

of adaptive hierarchical encryption for HDFS utilizing

frameworks from Multi-Agent Reinforcement Learning

(MARL). Analogous data encryption schemes do not

profile well in large, complex, geographically distributed

storage systems because of their rigidity in terms of the

structure of the hierarchy. This research intends to

propose a MARL-based encryption system where

encryption and decryption algorithms of HDFS will be

self-controlled, adjusting the degree of security as well as

the complexity of encryption and decryption with the help

of MARL on different levels of HDFS. Let 𝐸𝑙(𝑥) denoted

as an encryption function in a hierarchical level l of data

block x in a Hadoop-distributed file system. In this case,

the aim is to find alternation of 𝐸𝑙(𝑥) that achieves lowest

overall system latency L and the optimum composite

security score S.

State space 𝑆𝑡
𝑙 : Represents the system state at

hierarchical level l at time t, including data characteristics

and current encryption parameters.

Action space 𝐴𝑡
𝑙 : Set of possible actions at hierarchical

level l, including selecting different encryption algorithms

and parameter configurations.

Reward function 𝑅𝑡
𝑙 : Combines the negative system

latency and positive security benefit:

𝑚𝑎𝑥𝔼𝜋 [∑ ∑ 𝛾𝑙,𝑡

𝑇

𝑡=0

𝐿

𝑙=1

𝑅𝑡
𝑙(𝑆𝑡

𝑙 , 𝐴𝑡
𝑙)] (11)

where:

𝑅𝑡
𝑙 − 𝛼(𝑆(𝐸𝑙(𝑥𝑡))𝛿 ∑ ∫ 𝜙𝑖

𝑙
1

0

(𝑓𝑖
𝑙(𝑥𝑡))𝑑𝑥

𝑛

𝑖=1

)

−𝛽(𝐿(𝐸𝑙(𝑥𝑡)) + ∑ ∫ 𝜓𝑗
𝑙(𝑔𝑗

𝑙 (𝑥𝑡))𝑑𝑥
1

0

𝑚

𝑗=1

)          (12)

𝛽, 𝛿 > (
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 sec𝑢𝑟𝑖𝑡, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑎𝑛𝑑 

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
)  (13)

𝜙𝑖
𝑙 (𝑓𝑖

𝑙(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖
𝑙(𝑓𝑖

𝑙(𝑥𝑡)−𝜇𝑖
𝑙)

 (14)

𝜓𝑗
𝑙 (𝑔𝑗

𝑙 (𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗
𝑙(𝑔𝑗

𝑙(𝑥𝑡)−𝜈𝑗
𝑙)

 (15)

Here, 𝜙𝑖
𝑙 and 𝜓𝑗

𝑙 are sigmoid functions representing

additional security and latency-related factors at the level

l with parameters 𝑘𝑖
𝑙 , 𝜇𝑖

𝑙 , ℎ𝑗
𝑙 , 𝜈𝑗

𝑙.

The problem formulation involves applying the
concept of multi-agent reinforcement learning where

enhancing hierarchies agents will learn how to choose

parameters of encryption that bring about the highest

overall gain in the long run. The reward function

integrates security concerns (encryption strength) and

system latency or time delay caused by the encryption

process while other aspects are incorporated using the

sigmoid function. The systems are hierarchical and are

described by the below equation that sums over all the

levels of l to optimize the solution both inside and

across the various layers of the hierarchy. The

parameters l and t make sure that the provision of future
rewards is advised, hence making the plans great.

Design of HDFS

In this section, we describe the usage of the Hadoop

Distributed File System (HDFS) in general and more

specifically its integration into our proposed efficient data

encryption algorithm based on DQN-enriched DL models. It

is a design that aims at improving security and performance

through dynamic adjustment of encryption parameters as a

function of the data utilization patterns and security threats
perceived in real time to meet these objectives.

HDFS Architecture Overview

HDFS’s characteristic is that it is designed to store

large datasets and reliably stream these datasets at high

bandwidth for user applications. An HDFS instance

comprises one NameNode, a master server that has the

responsibility of managing the namespace operations and

coordination of the client’s access to files. In addition,

there can only be multiple DataNodes, generally one per

node in the cluster as they control storage that is attached

to nodes they directly run on. The HDFS architecture has

been shown in Fig. (1):

 NameNode: The location of every file and every

directory of the file system tree is managed in the

NameNode also the metadata for all the files and

directories. It also tracks the location of all blocks of

files in the system and thereby provides a backup

option to retrieve files even when it was not initially

designed with the intention of providing such a feature

 DataNode: DataNodes are supposed to hold the

actual data of HDFS as intended by the architecture.

The clients can read from it and write it into the disk

or any other storage media through them

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

750

Fig. 1: HDFS architecture

Data Encryption in HDFS

In the traditional HDFS implementations, some

issues prevail concerning the synchronization of

security and system performance. The basic encryption

method employed in HDFS incorporates symmetric

key encryption, for instance, Advanced Encryption

Standard AES. However, this can lead to much

computation and latency in the execution of the

associated programs. To overcome such drawbacks,

this study proposes the development of an adaptive

encryption system for HDFS using enhanced deep

reinforcement learning with DQN shown in Fig. (2).

The integration involves the following components:

 Data preprocessing module: This module assists in

the preprocessing of the raw data set of encrypted

traffic in the SUT. This is carried out to reduce the

data and eliminate any interfering data that may

hinder the execution of subsequent processes on the

data including normalization of data, elimination of

noise and feature extraction among others. In data

preprocessing the min and max scaling is applied. All

data features are in a comparable range. Either min

range or max range. After that noise extraction the

medium filter helps to remove noise helps to focus on

the data patterns. Features extraction used the

dimensional reduction technique such as Fourier

transformation for frequency-based features such as

time series or event-driven access logs. Feature

extraction enables the model to learn from essential

data characteristics without being overwhelmed by

irrelevant details, improving computational

efficiency. After that label encoding method is used

for transform categorical encoding into numerical

form for machine learning

 Training set: The preprocessed data is divided into

train and the test set is ready for use in the model.

development. In the DQN training set, the goal is to

train the model

 DQN module: Adopting the Deep Q-Network, this

new module actively and flexibly controls encryption

parameters. As an input, the DQN module receives

the state of the system in which the characteristics of

the data and the current encryption parameters are

defined and as an output, the best encryption strategy

is determined

 Optimal model: Just like the DQN module which gets

better at this step by step, the present switch is aimed

at optimizing the encryption parameters so that it has

the least CPU overhead while at the same time having

maximum security

 Final detection model: Once the optimal model has

been generated, this is used to make predictions on

the test dataset with the view of assessing the

performance of the model. The last detection model

covers several significant characteristics: High

system performance and strong security throughout

the detection model

Fig. 2: Data encryption through HDFS

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

751

Mathematical Formulation

The optimization of encryption parameters using Deep

Q-Networks (DQN) can be reduced to a Markov Decision

Process (MDP). In this context, we intend to make the

encryption parameters adaptive such that, the security as

well as the performance of HDFS is optimized.

State Space 𝑆𝑡

The state space represents the current system state,

which includes:

 Data characteristics such as size and type

 Current encryption parameters like encryption

algorithm and key length

Mathematically, the state at time t can be denoted as:

St = {data_size
t
, data_type

t
, encryption_algorithm

t
, key_length

t
}(16)

Action Space 𝐴𝑡

The action space consists of the set of possible actions

that can be taken to adjust the encryption parameters.

These actions include:

 Selecting different encryption algorithms

 Adjusting the key length and other relevant

parameters

Denoted as:

𝐴𝑡 = {select_algorithm, adjust_key_length, … } (17)

Reward Function 𝑅𝑡

The reward function is designed to balance security

and computational efficiency. It combines the negative
computational cost with the positive security benefit:

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡)) + 𝜆 ⋅ ∑ ∫ 𝜙𝑖

1

0

𝑛

𝑖=1

(𝑓𝑖(𝑥𝑡)) 𝑑𝑥)

− 𝛽 (𝐶(𝐸(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗

1

0

𝑚

𝑗=1

(𝑔𝑗(𝑥𝑡))  𝑑𝑥) (18)

where:

 𝛼, 𝛽, 𝜆 are weighting factors for security, cost and

additional factors respectively

 𝑆(𝐸(𝑥𝑡)) represents the security level of the

encryption function E applied to data x

 𝐶(𝐸(𝑥𝑡)) represents the computational cost

 𝜙𝑖(𝑓𝑖(𝑥𝑡)) and 𝜓𝑗 (𝑔𝑗(𝑥𝑡)) are sigmoid functions

representing additional security and cost-related

factors

The objective is to maximize the cumulative reward

over time:

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡 , 𝐴𝑡) (19)

where, γ is the discount factor.

Algorithm 1: DQN-based Dynamic Encryption Optimization

1. Initialize Replay memory D and Capacity N

2. Initialize action-value function Q with random weights

3. Initialize target action-value function �̂� with weights -

= for episode 1 to M
4. Initialize state S1 for t = 1 to T do

5. With probability select the random function At

6. Otherwise select At = max a Q (St, a;)
7. Execute action At and observe reward Rt and next state

St+1
8. Store transition (St, At, Rt, St+1) into D

9. Sample random mini-batch transitions (Sj, Aj, Rj, Sj+1)
from D

10. Set Yj= {
𝑅𝑗 𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎𝑡 𝑠𝑡𝑒𝑝𝑠 𝑗 + 1

𝑅𝑗 + 𝛾𝑚𝑎𝑥𝑎′ �̂� (𝑆𝑗+1 , 𝑎′; 𝜃−) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

11. Perform the gradient descent step on (Yj – Q (Sj, Aj;

𝜃−))2 concerning the network parameter

12. Every C step reset �̂� = Q

The optimization of encryption parameters using

DQN can be formulated as a Markov Decision Process

(MDP) where:

 State space 𝑆𝑡: Represents the current state of the system:

data attributes and current encryption parameters

 Action space 𝐴𝑡: List of possible actions, which can

be chosen to improve the result, such as choosing

various encryption algorithms and parameters

 Reward function 𝑅𝑡: Is a combination of the negative

computational cost and the positive security benefit

The objective is to maximize the cumulative reward

over time:

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡, 𝐴𝑡) (20)

where, γ is the discount factor ensuring future rewards are

considered.

The reward function 𝑅𝑡 is defined as:

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡)) + 𝜆 ⋅ ∑ ∫ 𝜙𝑖

1

0

𝑛

𝑖=1

(𝑓𝑖(𝑥𝑡)) 𝑑𝑥) − 𝛽

⋅ (𝐶(𝐸(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗

1

0

𝑚

𝑗=1

(𝑔𝑗(𝑥𝑡))  𝑑𝑥) (21)

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

752

where:

α, β, λ
> 0 (weighting factors for security, cost and additional factors)

𝜙𝑖(𝑓𝑖(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖(𝑓𝑖(𝑥𝑡)−𝜇𝑖)
 (22)

𝜓𝑗 (𝑔𝑗(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗(𝑔𝑗(𝑥𝑡)−𝜈𝑗)
 (23)

Changes from Previous HDFS Implementation

The primary distinction between our solution and the

prior work on HDFS encryption is in the fact that our

approach is more flexible. In traditional methods, the
values of the encryption parameters are fixed and do not

take into consideration the actual access to data or the

threat level. However, the proposed DRL algorithm based

on DQN is performed in a self-organized manner and

always adjusts the parameters of the encryption system to

minimize the vulnerability of the system while

maximizing the performance.

This adaptive approach helps to cut down the amount of

computation and time required to execute the requests,

making HDFS safer and more efficient. Using

reinforcement learning as the base method, our framework
can adapt to new threats and data usage independently.

Optimizing Encryption Efficiency in HDFS Using

DQN-Enhanced DRL

The first model shown in Fig. (3) relates to improving

the efficiency of encryption in HDFS through the varying

of parameters with the help of DQN-enhanced DRL. This

approach utilizes the flexibility of DQN to manage the
trade-off of security with computational complexity.

Fig. 3: Enhanced DQN architecture

State space 𝑆𝑡: It is the data and characteristics or state

of the system at the time of the dump, as well as current
encryption settings.

Action space 𝐴𝑡: List of potential decisions, including

the choice of different encryption algorithms and

parameters for those algorithms.

Reward function 𝑅𝑡 : This is because it has both the

negative computational cost of the security benefit and the

positive security benefit of the negative computational cost:

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡, 𝐴𝑡) (24)

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡)) + 𝜆 ⋅ ∑ ∫ 𝜙𝑖

1

0

𝑛

𝑖=1

(𝑓𝑖(𝑥𝑡)) 𝑑𝑥) − 𝛽

⋅ (𝐶(𝐸(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗

1

0

𝑚

𝑗=1

(𝑔𝑗(𝑥𝑡))  𝑑𝑥) (25)

𝜙𝑖(𝑓𝑖(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖(𝑓𝑖(𝑥𝑡)−𝜇𝑖)
 (26)

𝜓𝑗 (𝑔𝑗(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗(𝑔𝑗(𝑥𝑡)−𝜈𝑗)
 (27)

This also includes formulating a self-synthetic

encryption mechanism that aims to change with the

current data access pattern and security threats. This

framework consists of DRL to enable the adaptive

encryption that learns from the past and present strategies,

to make the best current and future decisions shown in

Fig. (4).

State space 𝑆𝑡: It involves accessing patterns of data

utilization in real-time and the current threat level and
performance of the system.

Action space At : Set of encryption strategies and

configurations.

Reward function Rt: Integrates security effectiveness,

response time and resource utilization.

𝐽(𝜋) = 𝔼𝜋 [∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡] (28)

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡), 𝑇(𝑡)) + ∑ ∫ 𝜑𝑖

1

0

𝑝

𝑖=1

(𝜃𝑖(𝑥𝑡, 𝑇(𝑡)))  𝑑𝑥)

− 𝛽 (𝐶(𝐸(𝑥𝑡)) + ∑ ∫ 𝜒𝑗

1

0

𝑞

𝑗=1

(𝜂𝑗(𝑥𝑡))  𝑑𝑥

+ 𝑈(𝐸(𝑥𝑡))) (29)

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

753

Fig. 4: Dynamic Adaptive Encryption using HDFS and DQN

φi (θi(xt, T(t))) =
1

1 + e−mi(θi(xt,T(t))−ξi)
 (30)

𝜒𝑗 (𝜂𝑗(𝑥𝑡)) =
1

1 + 𝑒−𝑛𝑗(𝜂𝑗(𝑥𝑡)−𝜌𝑗)
 (31)

To develop an adaptive hierarchical encryption system

with the utilization of MARL methods, this framework

can self-optimize encryption approaches and levels in the

HDFS hierarchy while maintaining security and

minimizing resource consumption.

State space 𝑆𝑡
𝑙: It stands for the values and characteristics

of data in the system at the hierarchical level l, as well as the

current values of the encryption parameters.

Action space 𝐴𝑡
𝑙 : A set of possible actions at the

hierarchical level ‘l’ depends on the selection of

different encryption algorithms and the parameter

setting for each level.

Reward function 𝑅𝑡
𝑙: Sum of the system latency (Sign -1)

plus Security Benefit Sign adjusted for interaction level.

𝑚𝑎𝑥𝔼𝜋 [∑ ∑ 𝛾𝑙,𝑡

𝑇

𝑡=0

𝐿

𝑙=1

𝑅𝑡
𝑙(𝑆𝑡

𝑙 , 𝐴𝑡
𝑙)] (32)

𝑅𝑡
𝑙 = 𝛼 ⋅ (𝑆(𝐸𝑙(𝑥𝑡)) + 𝛿 ⋅ ∑ ∫ 𝜙𝑖

𝑙
1

0

𝑛

𝑖=1

(𝑓𝑖
𝑙(𝑥𝑡))  𝑑𝑥) − 𝛽

⋅ (𝐿(𝐸𝑙(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗
𝑙

1

0

𝑚

𝑗=1

(𝑔𝑗
𝑙(𝑥𝑡))  𝑑𝑥) (33)

𝜙𝑖
𝑙 (𝑓𝑖

𝑙(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖
𝑙(𝑓𝑖

𝑙(𝑥𝑡)−𝜇𝑖
𝑙)

 (34)

𝜓𝑗
𝑙 (𝑔𝑗

𝑙(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗
𝑙(𝑔𝑗

𝑙 (𝑥𝑡)−𝜈𝑗
𝑙)

 (35)

Evaluation Metrics

In order to assess the overall effectiveness of the DRL-

based encryption optimization with the inclusion of DQN

for HDFS, we use the following performance indicators.

These metrics will be aimed at evaluating the extent of

security and performance of the encryption algorithms.

Here is a set of evaluation metrics on which the model

performance has been evaluated with formulas given in

tabular form in Table (2).

Security Level (S)

The security level evaluates the ability of the
encryption algorithm to secure data by estimating the

level of protection it provides. It is generally assessed

according to the ability of the encryption algorithm to

sustain different cryptographical attacks:

𝑆 =
Number of successful attacks

Total number of attempted attacks
 (36)

Computational Overhead (C)

Some definitions emphasize computational overhead,

which, in this context, means the extra time needed for

encryption and decryption in comparison with a scenario

where no encryption is performed. However, it is crucial

to keep this overhead low in order to ensure the systems

remain efficient:

𝐶 = 𝑇encrypted − 𝑇baseline (37)

where, 𝑇encrypted is the processing time with encryption

and Tbaseline is the processing time without encryption.

Latency (L)

Latency defines how much time the encryption

process takes in getting access to the data stored.

Reducing latency is desired in order to avoid delays when

accessing the encrypted data:

𝐿 = 𝑇end − 𝑇start (38)

where, 𝑇start is the time at which a data access request is

made and 𝑇end is the time at which the data is retrieved.

Resource Utilization (U)

Resource utilization measures the percentage of

calculated resources such as CPU and memory that was

employed during the encryption. Resource consumption

should be given sufficient consideration in efficient

encryption techniques:

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

754

Table 2: Evaluation metrics for encryption optimization

Metric Description Formula

Security Level (S) Strength of encryption algorithm
𝑆 =

Number of successful attacks

Total number of attempted attacks

Computational Overhead (C) Additional processing time 𝐶 = 𝑇encrypted − 𝑇baseline

Latency (L) Delay introduced by encryption 𝐿 = 𝑇end − 𝑇start
Resource Utilization (U) Percentage of resources used

𝑈 =
Resources used by encryption

Total available resources
× 100%

Adaptability (A) Ability to adjust to varying conditions
𝐴 =

Performance under varying conditions

Performance under standard conditions

Energy Consumption (E) Power required for encryption 𝐸 = 𝑃encrypted × 𝑇encrypted

𝑈 =
Resources used by encryption

Total available resources
× 100% (39)

Adaptability (A)

Flexibility specifies the ability of the encryption

algorithm to modify its security provision due to

different access patterns and threat levels. This is

commonly assessed based on how the algorithm will

behave in other situations:

𝐴 =
Performance under varying conditions

Performance under standard conditions
 (40)

Energy Consumption (E)

Energy efficiency considers the amount of energy

needed to perform encryption and decryption functions.

This is quite a critical factor when it comes to encryption

processes because it will ascertain whether the process

will be sustainable in terms of energy consumption:

𝐸 = 𝑃encrypted × 𝑇encrypted (41)

where, 𝑃encrypted is the power consumption rate during

encryption and 𝑇encrypted is the time taken for encryption.

All these metrics, in their totality, offer a balanced

evaluation model that can be used to gauge the impact and

efficiency of the proposed encryption optimization

technique. Through these values, it is possible to

guarantee that the encryption approach is effective and
suitable for different cases.

Results and Discussion

In this section, we outline the specific findings that

encompass our proposed DQN-enhanced DRL-based

encryption optimization for HDFS. Next, we compare the

performance of our proposed solution with HDFS that does

not incorporate the DQN algorithm. The metrics that have
been considered for evaluation are Security Level,

Computation Overhead, Latency, Resource consumption,

adaptability and energy consumption. Overall, the results

of the experiments confirm the proposed approach and its

ability to improve data encryption for HDFS. The main

purpose of the evaluation metric is to reflect on the

effectiveness of the proposed HDFS-DQN model against

the base HDFS model. Through a brief assessment of the

above-mentioned key performance indicators, it is possible

to identify the benefits of integrating enhanced DQN DRL

in HDFS for dynamic encryption optimization. The
following tables provide a summary of the results obtained

for every measure used in the evaluation process.

Security Level (S)

The security level is determined by the ratio of actually

achieved attacks to the overall number of launched

attacks. Table (3) shows the security level comparison

between HDFS and HDFS-DQN. Figures (5-6) show the

HDFS-DQN gives better security.

Computational Overhead (C)

Computational overhead measures the additional

processing time required for encryption compared to a

baseline without encryption shown in Figs. (7-8). Table (4).

shows the computational overhead comparison with and

without processing time.

Table 3: Security level comparison

Metric HDFS HDFS-DQN
Total number of attempted
attacks

1000 1000

Number of successful
attacks

50 10

Security level (S) 50

1000
= 0.05

10

1000
= 0.01

Fig. 5: Data plot of security level

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

755

Fig. 6: Contour plot of security level

Fig. 7: Computational overhead

Fig. 8: Contour plot of computational overhead

Table 4: Computational overhead comparison

Metric HDFS HDFS-DQN

Processing time with

encryption (𝑇encrypted)

120 ms 100 ms

Processing time without

encryption (𝑇baseline)

80 ms 80 ms

Computational
overhead (C)

120 − 80 = 40
ms

100 − 80 =
20 ms

Latency (L)

The latency shown in Fig. (9) measures the delay

introduced by the encryption process when accessing

data. Table (5). shows the latency comparison between

HDFS and HDFS-DQN.

Resource Utilization (U)

Resource utilization assesses the percentage of

computational resources used during the encryption

process. Resource utilization comparisons are shown in
Table (6) and Fig. (10).

Table 5: Latency comparison

Metric HDFS HDFS-DQN

Access request

time (𝑇start)

0 ms 0 ms

Data retrieval

time (𝑇end)

150 ms 110 ms

Latency (L) 150 − 0 = 150 ms 110 − 0 = 110 ms

Table 6: Resource utilization comparison

Metric HDFS (%) HDFS-DQN (%)

Resources used by
encryption

60 45

Total available
resources

100 100

Resource utilization
(U)

60

100
× 100

= 60

45

100
× 100 = 45

Fig. 9: Latency (L)

Fig. 10: Resource allocation

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

756

Adaptability (A)

Adaptability measures the ability of the encryption

algorithm to adjust to varying data access patterns and

threat levels shown in Figs. (11-12). Table (7) shows the

adaptability comparison between HDFS and HDFS-DQN.

Energy Consumption (E)

Energy consumption evaluates the power required to

perform encryption and decryption operations shown in

Figs. (13-14). Table (8) shows that the HDFS-DQN gives
a better than HDFS based on energy saving.

Fig. 11: Adaptability line plot

Fig. 12: Adaptability contour plot

Table 7: Adaptability comparison

Metric HDFS (%) HDFS-DQN (%)

Performance under

standard conditions

85 90

Performance under
varying conditions

70 85

Adaptability (A) 70

85
= 0.82

85

90
= 0.94

Table 8: Energy consumption comparison

Metric HDFS HDFS-DQN

Power consumption rate

(𝑃encrypted)

50 W 40 W

Time taken for encryption

(𝑇encrypted)

120 ms 100 ms

Energy consumption (E) 50 × 0.12 =
6 J

40 × 0.1 =
4 J

Fig. 13: Energy consumption line plot

Fig. 14: Energy consumption contour plot

Discussion

The recommended results from our flexible analysis

clearly depict the fact that the proposed DRL-based

encryption model that involves DQN is significantly

superior to the existing HDFS model. Therefore, each

evaluation metric establishes that the HDFS-DQN model

surpasses the others and proves that it can improve data
security and system performance. In the next sections, we

report the results of the learning analytics in their entirety

for each of the metrics selected.

Security Level (S)

The security level is the standard that defines the

efficiency of the system at times when the amasses

attacks. It is defined as the ratio of broken exploits to the

overall number of exploit attempts that were carried out.

The safety extent can be defined by the ratio of the size of
an organism to its predators; the lower figure means a

higher security level.

The best security level was described to be 0 in the

employment of the conventional HDFS model. 05 is the

success rate with fifty attack targets successfully

compromised out of 1000 attempts. On the other hand,

the HDFS-DQN model was able to earn a security level

of 0 which is quite a contrast of the traditional model.

01, which is equal to 10/ 1000, meaning a very low

success rate of 1 percent. The decrease in the rate of

successful attacks to a mere 13% points to the

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

757

effectiveness of the security features of the HDFS-DQN

model shown in Table (3). This adaptive control can be

attributed to the integration of DQN to the DRL where
the encryption strategy is adapted near real-time in

accordance with the access and threat patterns hence

mitigating the vulnerabilities and enhancing the security

of the overall system.

Computational Overhead (C)

When discussing computational overhead one has to

identify the load in terms of time which is required to

perform encryption in comparison with the point of time

which is needed without the encryption. This metric is
crucial for monitoring the performance of the encryption

algorithms where more computational overhead equates

to the system’s slower running.

When considering Table (4) the results of our

evaluation, we find that the traditional HDFS model has a

computational overhead of 40 ms and encrypted

processing took 120 ms than the baseline of 80 ms when

using HDFS-DQN we pointed out that there would be a

significant cut down on computational overhead because

it only takes 20 ms when processing the overhead and 100

ms when processing the encrypted values. This way, the
DQN-enhanced DRL integration allows the system to

update encryption parameters in the process dynamically

and makes the process much faster compared to when it

has to encrypt it on its own.

Latency (L)

Whereas, throughput introduced the concept of

latency, which is the additional amount of time taken to

encrypt data when it is being accessed. This is an

important criterion for processing real-time data and its

quality and usability for end-users.

In the conventional HDFS model shown in Table (5),

latency was recorded to be around 150 ms while in the

HDFS-DQN model latency varied around 110 ms; thus,

reducing latency by 40 ms needs a good strategy to be

applied and this was made possible by the DQN-enhanced

DRL approach that minimized delays caused by

encryption. The capability of the HDFS-DQN model in

constantly studying and training based on the changing

access data patterns means that the model enhances the

encryption process to increase the rate of data retrieval

and reduce the time hence increasing user satisfaction.

Resource Utilization (U)

Resource utilization aims to determine the number of

computational resources that are employed while

encrypting. Resource utilization must hence be optimized

to ensure that an increase in productivity is realized and

that scalability of the systems is achieved.

In the traditional HDFS model entirely 60% resources
were dedicated for the encryption, where in the HDFS-

DQN model only 45% were dedicated for the same. This

cuts down the resource that is required especially in a

physical setting hence creating efficiency in the proposed
model shown in Table (6). To address the above problem,

the HDFS-DQN model adjusts encryption parameters and

dynamically allocates resources to keep the encrypted

processes within system limits the proposed HDFS-DQN

model increases the system performance and scalability

by setting optimal encryption parameters and managing

the system resources.

Adaptability (A)

Regarding adaptability, this refers to how well the
encryption algorithm can perform amidst fluctuating data

access patterns and threat levels. It is a valuable measure

when determining how well-prepared and adaptable that

strategy of encrypting is.

Thus, the HDFS-DQN model appears far more

adaptable than the baseline model; the percentage of

performance metrics more accurately represented as a

score yields an adaptability figure of 0.94 compared to

0.82 in the case of the original HDFS model of computing.

This means that the HDFS-DQN agent has the ability to

determine fluctuating conditions in order to optimize on
encryption procedures of HDFS to ensure optimum

security and performance shown in Table (7). The

reinforcement learning contour enables the model to self-

devel over data access patterns and threats experienced

and improve its encryption method accordingly.

Energy Consumption (E)

Energy consumption measures how much power is

used to achieve the functionality of the mathematical

algorithms for encryption and decryption. Thus, the
consumption of energy is desirable by reducing the

overall expenses as well as environmental impact.

The last indicator shown in Table (8) was the energy

consumption of the HDFS model and the HDFS-DQN

model differently. The HDFS consumed 6 J for

encryption and the proposed HDFS-DQN consumed 4 J;

that is, the HDFS-DQN consumed a third less energy

compared to the traditional HDFS. In this respect, the

computational time and energy consumption in HDFS-

DQN is reduced, besides enhancing the performance by

optimizing the values of the encryption parameters

necessary for the functioning of large-scale distributed

storage systems.

Significance of Proposed Model

The achievement of HDFS-DQN with multiple

aspects of every index is higher than the comparative

HDFS, it shows that HDFS-DQN is superior to HDFS.

The proposed DQN-integrated DRL approach improves

security, its efficiency with less overhead, relatively low

latency, better resource utilization, better adaptability and

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

758

low energy requirement. All the improvements

highlighted above prove that the increase in the extent of

reinforcement learning makes it possible to use new
methods in the development of encryption tactics for

distributed storage systems. This research opens new

avenues for more investigations in intelligent encryption

systems, hence providing a solid and optimized

framework to protect LSM-DS storage architectures. The

proposed security model is scalable and highly adaptive

to the change in threat patterns and data access; making it

possible to fit current and future datasets storage systems.

Scalability and Limitations

In an HDFS environment, with fluctuating traffic and
access patterns, several aspects are examined. First,

HDFS grows then the capability of encryption may face
limitations such as latency and resource demand due to an

increase the computational overhead. While DQN
enhanced DRL approach adapts encryption in real time it

might still experience performance degradation when
managing large and complex distributed environments

across nodes. Furthermore, in high-traffic cases, the
model faces latency issues if the model adaptive

framework fails to balance between rapid data access and
robust security requirements. The solution of this case

involves optimal reinforcement learning parameters and
includes multi-agent reinforcement parameters to

distribute the decision-making nodes across multi-agents.
Furthermore, using hierarchical adaptive encryption

techniques would allow for variable safety forces across
different layers of HDFS, enhancing scalability and

performance without compromising security. This
balance integrates the model in complex and real-world

distributed environments.

Conclusion

Therefore, this research proposes an innovative

encryption model for HDFS using DRL with DQN

enhancement to boost the securities against the

conventional model and improve the computational time,

latency, resource usage, flexibility and power profile of

the Hadoop environment. When the values and accesses

are reflected in the data the model can dynamically and

efficiently change the encryption parameters thus offering

proper security to the data. However, the study is not

without its drawbacks; the first is that such an advanced

technique may not be easily implemented in most existing
systems and the second is the computationally intensive

process involved in the training step. For future work,

development must be made in fine-tuning the model to

minimize the computational load as much as possible;

the scalability of the approach in various data settings

must be explored; and different flavors of machine

learning paradigms must be incorporated to make it

more responsive. Additionally, authors simulated the

development of the proposed Hybrid AI to enhance

scalability and accuracy, switch to unsupervised

learning and federating learning solutions across
distributed nodes and encryptions to self-adjust in

response to real-time threat assessments. Furthermore,

authors are encouraged to conduct more studies to

identify possible weaknesses and countermeasures to

enhance the random nature of the applied cryptography

technique to withstand other cyber threats.

Acknowledgment

Thank you to the publisher for their support in the

publication of this research article. We are grateful for the

resources and platform provided by the publisher, which

have enabled us to share our findings with a wider

audience. We appreciate the efforts of the editorial team

in reviewing and editing our work, and we are thankful for

the opportunity to contribute to the field of research

through this publication.

Funding Information

The authors have not received any financial support or

funding to report.

Author’s Contributions

Shivani Awasthi: Conceived and designed the

experiments, performed the experiments, performed the

computation work, analyzed the results, prepared all

figures and/or tables, and prepared all the drafts and the

final manuscript.

Narendra Kohli: Supervised the entire work and

approved the final draft.

Ethics

The authors confirm that this manuscript has not been

published elsewhere and that no ethical issues are

involved.

References

Al Jallad, K., Aljnidi, M., & Desouki, M. S. (2019). Big

data analysis and distributed deep learning for next-

generation intrusion detection system optimization.

Journal of Big Data, 6(1), 88.

https://doi.org/10.1186/s40537-019-0248-6

Alhazmi, H. E., & Eassa, F. E. (2022). BCSM: A

BlockChain-based Security Manager for Big Data.

International Journal of Advanced Computer Science

and Applications, 13(3).

https://doi.org/10.14569/ijacsa.2022.0130364

Alpaydin, E. (2020). Introduction to Machine Learning,
4th Ed.

https://doi.org/10.1186/s40537-019-0248-6
https://doi.org/10.14569/ijacsa.2022.0130364

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

759

Anand, A., & Hassabnis, A. (2024). Qcrypt: Leveraging

Post-Quantum Cryptography for Enhanced Security

of Data at Rest. 2024 15th International Conference

on Computing Communication and Networking

Technologies (ICCCNT), 1–9.

https://doi.org/10.1109/icccnt61001.2024.10725265

Belhadaoui, H., Filali, R., & Malassé, O. (2023). A Role-

Attribute Based Access Control Model for Dynamic

Access Control in Hadoop Ecosystem. IAENG

International Journal of Computer Science, 50(1).

Du, H., Han, P., Xiang, Q., & Huang, S. (2020).

MonkeyKing: Adaptive Parameter Tuning on Big

Data Platforms with Deep Reinforcement Learning.

Big Data, 8(4), 270–290.

https://doi.org/10.1089/big.2019.0123

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The

Google file. Proceedings of the Nineteenth ACM

Symposium on Operating Systems Principles, 29–43.

https://doi.org/10.1145/945445.945450

Hamza, R., Hassan, A., Ali, A., Bashir, M. B., Alqhtani,

S. M., Tawfeeg, T. M., & Yousif, A. (2022). Towards

Secure Big Data Analysis via Fully Homomorphic

Encryption Algorithms. Entropy, 24(4), 519.

https://doi.org/10.3390/e24040519

Khandagale, S. B., Narain, B., & Jadhav, B. T. (2024).

Enhancing Big Data Security in Hadoop using

Machine Learning. International Journal of

Scientific Research in Science, Engineering and

Technology, 11(6), 304–309.

https://doi.org/10.32628/ijsrset24116182

Li, Y., Chen, R., & Rahmani, R. (2023). Secure Data

Sharing in Internet of Vehicles Based on Blockchain

and Attribute-Based Encryption. 2023 IEEE

International Conference on Smart Internet of Things

(SmartIoT), 56–63.

https://doi.org/10.1109/smartiot58732.2023.00016

Mashonganyika, F., Chibaya, C., & Rupere, T. (2020). Real-

Time Self-Adaption of Network Security Mechanisms

for Dependable Distributed Systems. 2020 2nd

International Multidisciplinary Information Technology

and Engineering Conference (IMITEC), 1–7.

https://doi.org/10.1109/imitec50163.2020.9334148

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A.,

Veness, J., Bellemare, M. G., Graves, A.,

Riedmiller, M., Fidjeland, A. K., Ostrovski, G.,

Petersen, S., Beattie, C., Sadik, A., Antonoglou, I.,

King, H., Kumaran, D., Wierstra, D., Legg, S., &

Hassabis, D. (2015). Human-Level Control Through

Deep Reinforcement Learning. Nature, 518(7540),

529–533. https://doi.org/10.1038/nature14236

Mustafa, I., Khan, I. U., Aslam, S., Sajid, A., Mohsin, S. M.,

Awais, M., & Qureshi, M. B. (2020). A Lightweight

Post-Quantum Lattice-Based RSA for Secure

Communications. IEEE Access, 8, 99273–99285.

https://doi.org/10.1109/access.2020.2995801

Nenov, L. (2024). Reinforcement Learning for Key

Management in Distributed Systems. 2024 32nd

National Conference with International

Participation (TELECOM), 1–5.

https://doi.org/10.1109/TELECOM63374.2024.108

12245

Nijil Raj, N., Rajesh, R., Justin, A., & Shihab, F. (2024).

Enhancing Network Intrusion Detection Using Deep

Reinforcement Learning: An Adaptive Learning

Approach. Proceedings of the Second International

Conference on Computing, Communication, Security

and Intelligent Systems, 297–315.

https://doi.org/10.1007/978-981-99-8398-8_21

Olaoluwa, F., & Potter, K. (2024). Deep Learning for

Intrusion Detection Systems (IDS). Preprints.

https://doi.org/10.20944/preprints202409.0411.v1

Pronika, & Tyagi, S. S. (2021). Secure Data Storage in

Cloud using Encryption Algorithm. 2021 Third

International Conference on Intelligent

Communication Technologies and Virtual Mobile

Networks (ICICV), 136–141.

https://doi.org/10.1109/icicv50876.2021.9388388

Shvachko, K., Kuang, H., Radia, S., & Chansler, R.

(2010). The Hadoop Distributed File System. 2010

IEEE 26th Symposium on Mass Storage Systems and

Technologies (MSST), 1–10.

https://doi.org/10.1109/msst.2010.5496972

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L.,

van den Driessche, G., Schrittwieser, J., Antonoglou,

I., Panneershelvam, V., Lanctot, M., Dieleman, S.,

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I.,

Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel,

T., & Hassabis, D. (2016). Mastering the game of Go

with deep neural networks and tree search. Nature,

529(7587), 484–489.

https://doi.org/10.1038/nature16961

Singh, S., Jasim, L. H. D., Dhote, V., Suseela, D., &

Venkatasubramanian, R. (2023). Privacy-Preserving

Data Mining Methods for Sensitive Information.

2023 3rd International Conference on Technological

Advancements in Computational Sciences (ICTACS),

841–844.

https://doi.org/10.1109/ictacs59847.2023.10390087

Sood, S. K., Sarje, A. K., & Singh, K. (2011). A secure

dynamic identity-based authentication protocol for

multi-server architecture. Journal of Network and

Computer Applications, 34(2), 609–618.

https://doi.org/10.1016/j.jnca.2010.11.011

Sunder, A., Shabu, N., & Remya Nair, T. (2022). Securing

Big Data in Hadoop Using Hybrid Encryption.

Ubiquitous Intelligent Systems, 521–530.

https://doi.org/10.1007/978-981-16-3675-2_39

https://doi.org/10.1109/icccnt61001.2024.10725265
https://doi.org/10.1089/big.2019.0123
https://doi.org/10.1145/945445.945450
https://doi.org/10.3390/e24040519
https://doi.org/10.32628/ijsrset24116182
https://doi.org/10.1109/smartiot58732.2023.00016
https://doi.org/10.1109/imitec50163.2020.9334148
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/access.2020.2995801
https://doi.org/10.1109/TELECOM63374.2024.10812245
https://doi.org/10.1109/TELECOM63374.2024.10812245
https://doi.org/10.1007/978-981-99-8398-8_21
https://doi.org/10.20944/preprints202409.0411.v1
https://doi.org/10.1109/icicv50876.2021.9388388
https://doi.org/10.1109/msst.2010.5496972
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/ictacs59847.2023.10390087
https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1007/978-981-16-3675-2_39

Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760

DOI: 10.3844/jcssp.2025.741.760

760

Tabbassum, A., & Abdul Kareem, S. (2021).

Implementing Zero Trust Security Models in Cloud

Infrastructures. International Journal of Science and

Research (IJSR), 10(11), 1582–1586.

https://doi.org/10.21275/sr211110212612

Wang, H., Wang, Q., Ding, Y., Tang, S., & Wang, Y.

(2024). Privacy-preserving federated learning based

on partial low-quality data. Journal of Cloud

Computing, 13(1), 62.

https://doi.org/10.1186/s13677-024-00618-8

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M.,

& Freitas, N. (2016). Dueling network architectures

for deep reinforcement learning. Proceedings of the
33rd International Conference on Machine Learning,

1995–2003.

Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., & Lv, W.

(2019). Edge Computing Security: State of the Art

and Challenges. Proceedings of the IEEE, 107(8),

1608–1631.

https://doi.org/10.1109/jproc.2019.2918437

https://doi.org/10.21275/sr211110212612
https://doi.org/10.1186/s13677-024-00618-8
https://doi.org/10.1109/jproc.2019.2918437

