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Abstract: In the era of big data, ensuring the security of large-scale distributed 

storage systems like the Hadoop Distributed File System (HDFS) is critical. 

Traditional encryption methods often struggle to balance robust security with 

system performance, leading to vulnerabilities and inefficiencies. This study 

presents the design and implementation of an efficient data encryption 

algorithm for securing HDFS using Deep Q-Network (DQN) enhanced Deep 

Reinforcement Learning (DRL) techniques. The proposed model 
dynamically optimizes encryption parameters by leveraging the adaptive 

capabilities of DQN, ensuring robust security while maintaining high system 

performance and scalability. Our approach addresses key limitations of 

existing encryption methods by integrating DQN with deep reinforcement 

learning to create a dynamic encryption framework that adjusts in real time 

based on data access patterns and threat levels. The results demonstrate 

significant improvements in security and efficiency compared to 

conventional encryption techniques. Specifically, the DQN-enhanced DRL 

algorithm consistently outperformed baseline methods regarding encryption 

strength, computational efficiency, latency, resource utilization, adaptability, 

and energy consumption. The contributions of this research include the 

development of a novel DQN-enhanced encryption algorithm tailored for 
HDFS, the creation of an adaptive encryption framework that leverages real-

time data dynamics, and a thorough evaluation demonstrating the practical 

benefits of the proposed solution. This study paves the way for future 

research in intelligent encryption systems, offering a robust and efficient 

approach to securing large-scale distributed storage environments. Our 

findings underscore the potential of integrating advanced machine learning 

techniques into encryption processes to enhance security and performance, 

addressing the complex challenges modern data storage systems pose. 

 

Keywords: HDFS Security, Data Encryption, Deep Reinforcement 

Learning, Deep Q-Network, Adaptive Encryption Algorithms 

 

Introduction 

In the modern era of big data, securing large-scale 

distributed storage systems such as the Hadoop 
Distributed File System (HDFS) has become increasingly 

critical (Alpaydin, 2020). HDFS, widely used for storing 

and managing massive amounts of data, faces significant 

challenges in ensuring data security due to its distributed 

nature and the sensitive nature of the stored information 

(Tabbassum et al., 2021). While effective in certain 

contexts, traditional encryption methods often struggle to 

balance the trade-offs between robust security and system 

performance, leading to vulnerabilities and inefficiencies 

(Alhazmi and Eassa, 2022). This research aims to address 

these challenges by developing an efficient data 
encryption algorithm for HDFS utilizing Deep Q-

Network (DQN) enhanced Deep Reinforcement Learning 

(DRL) techniques (Ghemawat et al., 2003) 

Rapid advancements in data management technologies 

have marked the evolution of distributed storage systems 

Sunder et al. (2022)  HDFS, a cornerstone of big data 

platforms like Apache Hadoop, provides scalable and 

reliable storage by distributing data across multiple nodes 

Belhadaoui et al. (2023). However, the distributed nature 

of HDFS introduces complexities in maintaining data 

security, especially as data volumes grow and cyber threats 
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become more sophisticated (Hamza et al., 2022). 

Traditional encryption methods, such as symmetric and 

asymmetric encryption, have been the backbone of data 
security (Al Jallad et al., 2019; Khandagale et al., 2024). 

Despite their strengths, these methods often introduce 

significant computational overhead and latency, impeding 

system performance and scalability (Mnih et al., 2015). The 

significance of securing HDFS lies in its widespread 

adoption across various industries, including finance, 

healthcare, and telecommunications, where data 

breaches can have severe consequences (Shvachko et al., 

2010). Historical data breaches have demonstrated the 

devastating impact of inadequate security measures, 

leading to financial losses, reputational damage, and 
legal repercussions (Silver et al., 2016). As such, there 

is a pressing need for advanced encryption solutions that 

not only enhance security but also maintain system 

efficiency and adaptability Pronika and Tyagi (2021). 

The primary motivation behind this research is to 

develop a novel encryption algorithm that effectively 
balances the competing demands of security and 

performance in HDFS environments (Sood et al., 2011). 
By leveraging the capabilities of DQN-enhanced DRL 

techniques, this research aims to create an adaptive 
encryption framework that can dynamically adjust 

encryption parameters based on real-time data access 
patterns and threat levels Singh et al. (2023). The goal is 

to enhance the overall security posture of HDFS without 
compromising on computational efficiency or scalability 

(Wang et al., 2016). Additionally, this research seeks to 
contribute to the broader field of data security by 

exploring the potential of reinforcement learning in 
optimizing encryption processes (Nenov, 2024). By 

integrating machine learning methodologies with 
encryption strategies, this study aims to develop a robust, 

intelligent encryption system that can autonomously 
respond to evolving threats and data usage patterns. 

Ultimately, the findings of this research are expected to 
offer significant insights and practical solutions for 

securing large-scale distributed storage systems, benefiting 
both academia and industry (Olaoluwa and Potter, 2024). 

In today's digital era, securing large-scale data storage 
systems like the Hadoop Distributed File System (HDFS) 
is crucial to protect sensitive information from 

unauthorized access and cyber threats (Mustafa et al., 
2020). Existing encryption algorithms often fail to balance 
security, efficiency, and computational overhead, leading 
to vulnerabilities and performance bottlenecks 

(Mashonganyika et al., 2020). This research addresses the 
need for an efficient data encryption algorithm tailored for 
HDFS by leveraging Deep Q-Network (DQN)--enhanced 

deep reinforcement learning techniques. The proposed 
solution aims to optimize encryption processes, ensuring 
robust security while maintaining high system 
performance and scalability (Xiao et al., 2019) by 

integrating advanced machine learning methodologies, 

this study seeks to develop a dynamic, adaptive 
encryption framework that can intelligently respond to 
evolving threats and data access patterns, ultimately 

enhancing the overall security posture of HDFS 
environments Wang et al. (2024). 

Addressing the Need for Adaptability and 

Responsive Security in HDFS 

HDFS requires more adaptability and responsive 
security Measures as listed below. 

HDFS Distributed and Dynamic Nature 

HDFS used for efficient data storage and retrieval of 
data across multiple nodes in the distributed network. This 
setup introduces numerous attacks. Each node and data 
block can likely attack the surface-making system for 

more prompt for unauthorized access and beaches. 
Without adaptive security, standard encryption may fail to 
protect each node efficiently. When the number of nodes 
and volume of data grows. 

Limitation of Standard Methods  

Traditional encryption methods AES and RSA are static 
and computationally intensive. Traditional encryption 
methods apply the same method in each block unrelatedly 
to access frequency and sensitivity. So, the infrequently 
accessed data is encrypted with a similar computational 
load as high-priority data, consuming unnecessary 
resources. Traditional encryption AES and RSA also lack 
the flexibility to adapt to changing threat points.  

Dynamic Threat Environment and Real-Time 

Adaptation 

HDFS environments often involve changing access 
patterns, varying from high-traffic periods to idle times. 

In real time an adaptive encryption system, based on 

DQN-enhanced DRL, could monitor these access forms 

and threat levels. By doing so, it can dynamically regulate 

encryption strength and computational resources based on 

current needs, fortifying data efficiently without imposing 

unnecessary load during low-activity periods. This 

reaction is important as data grows. A static model may 

become increasingly unusable due to the high 

computational cost of applying uniform encryption across 

all data nodes, whereas an adaptive model can allocate 
encryption resources more effectively. 

Impacts on Performance and Scalability 

Traditional encryption methods can lead to system 

inefficiencies in HDFS will simplify the need for adaptive 

security. Traditional methods may cause latency and 

resource bottlenecks, as HDFS is used in real-time 

applications that require fast data retrieval and minimal 

delay. Adaptive security systems can optimize the 

encryption-decryption cycle. 
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Potential for Security Breaches 

In a static encryption system, attackers who gain access 

to a node may exploit the uniform encryption parameters 

across HDFS, increasing the chances of breaching 

additional nodes. In contrast, an adaptive system can 

respond to distrustful activity patterns by raising security 

measures dynamically, thus better protecting sensitive data 

and reacting promptly to possible cracks. 

In this way, HDFS needs adaptive security solutions 

and DQN-enhanced DRL. This is a powerful solution that 

traditional methods do not.  

The major goal of this research is to design an 
enhanced HDFS security system utilizing modern deep 

reinforcement learning approaches as applied to the new 

advanced encryption algorithm for adaptive data security. 

It also is the basis for the goal of this research, which is to 

improve HDFS security while minimizing impacts on 

system performance and scalability. The specific 

objectives of this research are as follows: 

 

1. This primer explains the process of developing an 

enhanced deep reinforcement-learning algorithm 

based on DQN for improving the parameters of 
encryption in HDFS. 

2. To build a flexible encryption model that can learn and 

grow as the organization harnesses its data in real-time 

and faces varying levels of threats. In this context, the 

proposed solution involves applying multi-agent 

reinforcement learning techniques to enable the 

development a hierarchical encryption system to 

manage the complexity and dynamics of HDFS 

3. In order to draw a comparison between the proposed 

encryption algorithms and the state-art-techniques 

based on security, complexity and scalability 

 
Overall, this research contributes in several ways to 

the study of data encryption and distributed storage 

systems. Based on the outcomes of this research study, it 

can be suggested that the improving approaches will 

improve the safety and reliability of HDFS. The specific 

contributions of this research are as follows: 
 

 A novel modified for HDFS through deepening of 

parameters for encryption which enhances the 

security and efficiency through Deep Q-learning 
Network (DQN) enhanced deep reinforcement 

learning algorithm 

 The development of an efficient and evolutionary 

system of encryption strategy that will be built upon 

the data access patterns of the real-time environment 

in conjunction with threat levels 

 A self-adaptive encryption system that used multi-

agent reinforcement learning to have agents learn 

appropriate encryption levels at various tiers of the 

HDFS hierarchy 

 Comprehensive analysis of the proposed algorithms 

and comparing it to current encryption techniques 

and showing how the proposed algorithms/easily 
outperform other methods in terms of security, 

complexity and capacity 

 

This work is divided into five sections. The original 

text contains no references to parenthetical section 

numbers. In the Introduction, the author outlines the 

research problem, goals and the importance of coming up 

with an optimal data encryption algorithm within HDFS 

by utilizing the application of DQN deep reinforcement 

learning. The Literature Review look into present 

Encryption techniques and its drawbacks and identify 
scopes for Intelligent Encryption systems. The 

Methodology section describes the conceptual framework 

and empirical development of the suggested DQN-

enhanced and multi-agent reinforcement learning-based 

encryption algorithms and mathematical formulae to 

address the research questions with appropriate measures. 

Primary outcomes of the Research: The Results and 

Discussions sections describe the comparison of the 

performance of the proposed algorithms against the 

traditional methods taking into the account of security, 

time complexity and scalability. Last of them, the 

Conclusions contain the major results, research 
contributions as well as directions for future work. 

Literature Review 

Today’s proliferation of programs that handle huge 

amounts of information has put pressure on data storage 

platforms to include Hadoop Distributed File System 

(HDFS) to contain and secure data efficiently. HDFS data 

security is a critical research area of study due to its 

challenges in sharing huge datasets across distributed 

systems and the recent emergence of sophisticated artificial 

intelligent learning algorithms. This study aims at a review 

of the related literature containing the proposed approaches 

and methodologies towards the improvement of data 

encryption and security in HDFS by employing multiple 

approaches, including Deep Reinforcement Learning 

(DRL) and other related technologies.  

Incorporation of machine learning solutions into 

security standards such as encryption has proven to be 

effective in increasing the flexibility and resilience of 

algorithms. Alpaydin (2020) also identifies machine 

learning as being crucial in creating dynamic security 

solutions that may counter emerging security threats in 

real-time. Computer algorithms can identify diffusion 

patterns in data access and usage to potentially discover 

vulnerabilities that hacker groups will exploit. These 

models can also be trained to detect possible threats and 

adjust the encryption measures in real time and thus have 

the advantage of not being set. This strategy does not 

present its use in security as a strong rule dominating in 
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its power but as a new approach to creating more 

sophisticated and effective solutions for data protection in 

distributed environments. 
Blockchain technology has been used to explore data 

security in an increased manner in distributed systems. 
(Alhazmi and Eassa, 2022) designed a security model to 

maintain the integrity and authenticity of data within a 
blockchain-based on HDFS. This model employs 

blockchain to preserve a secure and tamper-proof ledger 
of Data events and transactions or access and changes. 

The improvement in HDFS using the blockchain-based 
implementation model led to a 50% decrease in data 

manipulation cases. The study reveals the effectiveness of 
blockchain as a framework with its capability to offer a 

decentralized system in the handling of information on 
distributed file systems. 

Zero-trust security model has recently been adopted in 
distributed storage systems such as the HDFS in cloud 

infrastructure. Regarding its security, Tabbassum et al. 
(2021) have introduced a zero-trust security model for 

HDFS that provides an ongoing check for the identity of 
the user and the rights granted to the user; only 

authenticated users are permitted to access the data. This 
approach adds an extra layer of security over the 

traditional system where there is implicit trusting of other 
systems and nodes in the network by continually asking 

for the identity of the requesting party, therefore 
decreasing substantially the probability of threats posed 

by insiders and unauthorized access. 
Previously, simplex encryption techniques such as 

AES and RSA encryption algorithms have been 
extensively implemented to safeguard data in distributed 

structures. It is significant to note that the above methods 
are standard, delivering moderate security levels that are 

adequate for most applications. However, they can create 
scalability issues as the number of inputs increases and 

this slows down the system. Some of the outstanding 
topics that are briefly covered by the authors of the paper 

(Ghemawat et al., 2003) include security and performance 
with the latter being described as requiring efficient 

encryption. Although the level of security provided by 
traditional encryption is high and has proven to be 

adequate in most scenarios, it can also be seen that it 
imposes additional load in the computation and 

consequently results in latencies that are not desirable in 
high-performance environments such as HDFS. This 

trade-off between having high-security levels and optimal 
system performance is a major challenge when it comes 

to encryption for the HDFS. 
Future studies have concentrated on developing a high 

level of security and high levels of performance of Hybrid 
encryption techniques. Sunder et al. (2022) described a 

novel hybrid encryption model, where both symmetric 
and asymmetric encryption techniques are used to offer 

additional layers of security to the actual data stored in the 
HDFS while minimizing the time it takes to encrypt the 

overall system. It therefore makes use of the speed of 
symmetric encryption for bulk data encryption together 

with the secure key exchange capabilities of asymmetric 
encryption. This offers good security since the system is 

not compromised with the broadcast of the symmetric 
keys while the efficiency of the system is not impacted as 

the symmetric keys can be encrypted and shared 
asymmetrically. Test outcomes revealed it was 20% faster 

and 30% more efficient than existing models with less 
computation required for the encryption process. 

Homomorphic encryption can compute on the 
encrypted data without decrypting them; that is the reason 

why it keeps the data secure during computation. Another 
work by (Hamza et al., 2022) explored the HDFS’s 

integration and usage of homomorphic encryption, 
showing that this technique may be used to preserve data 

confidentiality during data processing operations. The 
demonstration of their implementation reviewed the fact 

that performing homomorphic encryption in the HDFS 
environment made it easy to perform data processing with 

confidentiality and privacy while not causing 
deterioration of performance. 

As with all systems, HDFS is also vulnerable to 
threats, and thus access control mechanisms need to be 

enhanced to better protect data stored in the system. 
Belhadaoui et al. (2023) proposed an extended RBAC 

model that integrated access control through the use of an 
ABT-ABE technique. This model offers high-level 

entitlement management that restricts the access of 
information to only those who have inherent rights to 

access it depending on the role they play in an 
organization. Their implementation was about a reduction 

of 35% in attempted unauthorized access as well as 
enhancement of standards and policies on the governance 

of data. It was also found that the integration of RBAC 
and ABE was highly effective in providing dynamic as 

well as context-based access control for HDFS and 
thereby strengthening its security. 

The use of AI in security issues has shown great 
improvements in implementing its mechanisms. On their 

part, Al Jallad et al. (2019) created an AI-based security 
framework that utilizes machine learning techniques to 

identify security threats while preventing them 
simultaneously. This framework uses deep learning 

models for analyzing data access patterns to detect any 
trends that could signify the possibility of a security 

compromise. The mentioned model worked further to 
detect unauthorized access with 95% accuracy while 

reducing false positive rates by 90% more than 
the classical rule-based system. The offered AI-based 

framework brings the possibility of learning new threats 
and being updated regularly, which makes it more 

protective and effective against potential threats. 
There are newer HDFS security features of threat 

detection systems that use artificial intelligence to detect 
potential threats. Khandagale et al. (2024) brought a 
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unique paper that offered an intrusion detection system 
designed using AI with a machine learning method for 

detecting security threats in real-time. This system 
consistently scans for traffic on the networks/procedures 

and the logs of the system operation to detect any form of 
intrusion and eliminate it without much loss. By 

employing the AI-based system, it emerged that the 
system had better capabilities of both threat detection and 

threat containment than the conventional methods hence 
improving security at HDFS. 

Deep Reinforcement Learning (DRL) is a learning 

approach based on deep learning extended by incorporating 

decision-making principles through reinforcement 
learning. In their work presented by Mnih et al. (2015), the 

authors provided the general state of DRL and offered 

theoretical possibilities of its utilization in the 

cybersecurity perspective, including intrusion 

identification and flexible encryption. The last component 

of DRL systems is adaptability; they can modify and 

develop the strategies used throughout interactions with 

the environment based on feedback. Amidst HDFS 

security, DRL can be used to define extremely 

complicated encrypting algorithms that adapt to evolving 

risks and request patterns. This characteristic makes DRL 

appealing to control regularly strong safety systems in the 
distributed storage architecture. 

The Hadoop HDFS is one of the central components 

of the Hadoop ecosystem, which is used for bulk storage. 
However, its architecture based on the principle of 

universality and product efficiency is not always 
invulnerable to hacking. As noted by Shashkov et al. 

(2010), HDFS has some limitations due to which data 
security in the system is an increasingly important 

problem because HDFS does not have native encryption 
and authentication of stored data. The fundamental 

structure of HDFS is optimized for big data storage and 
retrieval purposes and due to this feature, this system 

becomes vulnerable to threats that relate to data 
protection, such as acts of vandalism, hacking, and 

manipulation. This is because HDFS is distributed; it 
incorporates many nodes which are scattered throughout 

different areas and each of these nodes is a weakness that 
hackers can exploit if the system is not well protected. 

Other works like Silver et al. (2016) have shown that 
DRL is effective for managing encryption tasks where it 

is used to alter between DC and AC to optimize the trade-
off between encryption strength and computation time. It 

is possible to build a database that has the matrix of the 
most suitable encryption methods and their settings 

depending on the parameters of the system; Using DRL, 
one can avoid the necessity of decision-making 

regarding the choice of the most suitable encryption 
methods and configurations for the specifics of the given 

system. Such optimization can result in the enhancement 
of two main aspects, which are security and 

performance, where the time and processing power 

required to perform encryption as used in prior 
methodologies may be substantially eliminated without 

compromising the level of protection adopted. 

Specific research by Pronika and Tyagi (2021) has 

focused on the use of encryption algorithms in distributed 
systems with a particular reference to distributed file 

systems, meaning that there are still challenges in terms of 

schemes that can be implemented to improve security 

without bogging the system down in terms of performance 
costs. Specific and important issues in encryption concerns 

include the dispersion of keys in the system nodes in the 

case of Distributed Systems, and issues on conformity to 
certain security policies among the dispersed system nodes. 

Their study also reveals the need to design other suitable 

encryption schemes that can be deployed to satisfy the 
needs of distributed structures like HDFS. This requires 

that solutions developed for distributed storage also 

incorporate the security criteria necessary for security-

sensitive data such as keys while at the same time not 
making the encryption process a bottleneck on the system. 

Although the Hadoop Distributed File System (HDFS) 

has robust security measures at a traditional storage 
system level, various proposals have been designed to 

improve its security. For instance, Sood et al., (2011) 

employed a technique that incorporates encryption with 

policies of access control for HDFS environments. This 
framework incorporates widely known encryption 

techniques with more enhanced access control so that only 

the right people are allowed to get at the data. A 
combination of encryption and access control also makes 

a strong safety solution because both of them protect the 

data and the person who is using the system. Sood et al., 

(2011) study also affirms the need for overall security 
frameworks that incorporate both technological and 

procedural controls for the security of HDFS. 

The HDFS framework incorporates privacy-
preserving data mining techniques to ensure the safety of 

the data. Singh et al. (2023) proposed an algorithm 

concerning data mining to privacy-preserving: The 
method of differential privacy is adopted for the provision 

of protection to the sensitive data while data analysis tasks 

can be permitted. This indicates that the individual entries 

in data cannot be seen while the aggregate results can be 
obtained, a measure that maintains an appropriate 

discretion and usefulness of data. 

Done dynamically, it results in enhanced security of 
the encrypted data and this is through key management. 

(Nenov, 2024) investigate deep reinforcement learning 

for Key Management in Hadoop Distributed File System 

(HDFS) in the following research. In their work, they 
showcased how DRL algorithms can be used to improve 

key creation, dissemination, and renewal to guarantee key 

security while maintaining efficiency. By doing so, the 
method enables overall flexibility in the key management 

system in case of emerging new security needs and threats 

and ensures the preservation of the encryption quality. 
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However, the works that can be found in the current 

literature propose IDS solutions for HDFS using deep 

reinforcement learning (DRL). Olaoluwa and Potter 

(2024) also came up with an IDS framework for DRL 
which stands for Deep Reinforcement Learning based 

network IDS designed to continuously analyze the flow of 

traffic within a network and identify intrusions in real-
time. To enhance the accuracy of the threat detection and 

to enable the system to evolve and respond to new kinds 

of threats, this system employs DRL. Their IDS had the 

highest accuracy of 92% in the detection of the initial 
zero-day attacks and a false alarm rate reduction of about 

15% compared to the other IDS models. The DRL-based 

approach of the system allows for continuous training 
based on chronic security events, adding the capacity to 

distinguish between new and complex incursions by 

malicious actors. 

DQN is a form of DRL algorithms, which have earlier 
been presented as proven models for complicated 

decision-making. In the paper of Wang et al. (2016) they 

indicated that the DQNs could be utilized for improving 
the efficiency of the encryption processes since they 

consume much fewer resources. DQNs operate under an 

approximate action-value function which is a neural 
network making them capable of selecting an action 

depending on the current environment state. In the context 

of HDFS, DQNs can be helpful for the employment of 

encryption for choosing the right type of encryption and 
associated parameters depending on the current 

information and threat. These optimizations can result in 

vast enhancements in both the security and performance 
attributes of PSN. 

The current and past research on cryptographic 

algorithms has made the encrypting method for HDFS to 

be more secure and reliable. In subsequent work, 
(Mustafa et al., 2020) proposed an improved 

cryptographic algorithm that encompasses both lattices 

and conventional methods to produce better security 
against new risks such as quantum threats. This 

convection of using these two kinds of cryptographic 

techniques helps to improve security as it provides good 

solutions to current and future security threats. 
This challenge is closely related to the new possibilities 

opened by edge computing and their ultimately heightened 

security risk. (Xiao et al., 2019) continue the topic by 
examining how edge computing benefits HDFS in terms of 

security. Their solution entails placing security measures at 

the perimeter of the network since this amounts to the 
location where data production and utilization occurs and 

this will minimize the amount of delay regarding security 

protocols. By analyzing data on the edge, their model saved 

up to 40% of the response time for security checks and up 
to 25% increased the system’s overall throughput. This 

also greatly reduces data interception threats during 

transmission, thus strengthening the protection of edge 
computing environments. 

Researchers have conducted investigations into the 

use of reinforcement learning in HDFS security. Du et al. 

(2020) presented the concept of developing a model that 

uses the method of reinforcement learning to adaptively 

control the parameters for encryption depending on the 

sensitivity of the data and the threat exposures. This 

approach employs reinforcement learning methods 

wherein the encryption process is constantly observed and 

adjusted, consequently protecting data from certain 

threats. By learning the features of the data an agent with 

reinforcement learning can select the best encryption 

strategies depending on current threats and characteristics 

of data to be protected thus offering a more efficient way 

of protecting HDFS. 

The advancement in passing partial gradients in a 

decentralized manner has been proposed in federated 

learning for improving data safety. Wang et al. (2024) 

have put forward a federated-learning-based security 

framework for the HDFS in which the model can be 

trained securely without having exposure to the 

information. It guarantees data confidentiality regarding 

distributed computing necessities for amplified security. 

In their framework, they noted a 15% improvement in the 

accuracy of their model and a 20% decrease in leakage of 

data while they employed centralized training compared 

to when they used centralized training methods. This 

makes federated learning to act as an efficient method to 

safeguard the process of collaborating across several 

nodes while training the AI models in sensitive regions. 

HDFS security in the coming generations can, 

therefore, be ascertained to rely on more enhanced AI 

techniques such as DQN-enhanced DRLs. The authors 

(Nijil Raj et al., 2024) opine that there will be a progressive 

advancement in the DRL algorithms in the future and this 

will in turn result in advanced security solutions for 

distributed storage systems. This technology is expected to 

afford growing significance to resolve the multi-reg risks 

issues of HDFS, as the advancement of DRL technology 

continues. In the future, research will likely continue 

refining these types of algorithms, optimize the scalability, 

and discover methods in which they may be applied in 

combination with other emergent technologies to provide 

an extensive level of security to distributed systems. 

Safety can be considered critical for shared 

environments in which HDFS is used. (Li et al., 2023) 

have presented a secure data-sharing framework with the 

use of both ABE and blockchain solutions. Doubling for 

safe communication and protection of data exchanged 

between the users this framework makes sure that the data 

exchanged is encrypted and can only be accessed and used 

by the right and authenticated users. I conclude that 

incorporating ABE gives permission control to the fine-

grain level and the incorporation of blockchain enables 

traceability and evidence of the integrity of shared data, 

enhancing the ability to securely share data. 
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Table 1: Comparative Analysis of Security Study in HDFS 

Study Encryption Technique Security Focus Key Contribution 

Shvachko et al. (2010) NA HDFS vulnerabilities Identifies security gap in HDFS 
Ghemawat et al. (2003) NA Security Vs 

Performance 
Discussed the performance impact of 
encryption 

Mnih et al. (2015) Deep Reinforcement 
learning 

Adaptive Encryption Applied DRL for dynamic security policies 

Wang et al. (2016) Deep-Q- Network  Optimization of 
performance  

Enhanced efficiency of the Encryption 
process 

Sunder et al. (2022) Hybrid Encryption Data Security Combined symmetric and asymmetric 

encryption for efficiency and security 
Al Jallad et al. (2019) AI-driven security Real-time threat 

detection 
Developed a real-time AI security 
framework 

Anand and Hassabnis (2024) Quantum Resistant 
Encryption   

Future threat 
mitigation 

Developed algorithm resistant to quantum 
attack 

Alhazmi and Eassa (2022) Blockchain Data integrity  Implemented Blockchain for secure data 
tracking 

Nenov (2024) Deep Reinforcement 

Learning  

Key management Optimize key management process using 

DRL 
Mustafa et al. (2022) Enhanced cryptographic 

algorithms 
Quantum-Resistant 
Security 

Combined lattice-based cryptography with 
traditional encryption method 

 

Quantum computing of late poses a threat to 
commonly applied encryption methods owing to its 

capability to unravel most encrypted codes. Anand and 
Hassabnis (2024) investigated different algorithms known 

as post-quantum cryptography aimed at protecting data 
stored in HDFS from quantum computing attacks. They 

stick to lattice-based cryptography, which is thought to be 
not susceptible to quantum assault. In their work, they 

showed that it is possible to obtain a solution that would 
cause a negligible impact on performance while also 

enabling lattice-based encryption to perform similarly to 
classical encryption algorithms and even offer more 

protection against quantum attackers. As this research 
shows, it is imperative to work on improving encryption 

algorithms that could be resistant to quantum computers 
one day to maintain data integrity. 

Variable encryption schemes have emerged of particular 

interest due to the desirability of adaptable parameters 

for encryption mechanisms. Mashonganyika et al. 

(2020) suggested using an adaptive encryption framework 
that refers to the current load of a system and the 

necessary levels of protection to make adjustments to 

every parameter. In this way, this approach is used to 

guarantee the effectiveness of the encryption process for 

different loads, high and low, to provide the optimal 

performance of the procedure and application of the 

encryption. Table (1) shows the comparative analysis of 

security studies in HDFS. 

Materials and Methods 

The implementations and experiments are based on 

the Hadoop cluster running on Google Colab using 

Pyspark Firstly, an HDFS environment is set up using 

Google Drive for storage and Pyspark for distributed 

computing. A Hadoop-like environment is set up in 

Google Colab by installing Java 8 and Hadoop Spark 

3.3.2. After that, simulate the HDFS using Google Drive 

and also create Namenode and Datanode. In this 
configuration, we use the Intel Core i7- 1165G7, a 

2.80GHz processor with 16 GB RAM, and Kaggle data 

sets to measure the performance. 

This section explains how we developed an optimized 

data encryption algorithm for protecting the Hadoop 

Distributed File System (HDFS) through a DQN-DDPG 

architecture with enhanced deep reinforcement learning 

(DRL). The proposed methodology integrates three 

distinct models: Soft Computing for HDFS: Enhancing 

Encryption Efficiency: Deep Q Learning Dynamic 

Resource Management; Deep Q learning Adaptation for 

HDFS Encryption; and Hierarchical Reinforcement 

Learning for Efficient HDFS Encryption. Every one of 

these models tackles various aspects of the encryption 

algorithms and practices with the objective of improving 

security while at the same time not hampering the 

performance and grow-ability of the system. 

Optimizing Encryption Efficiency in HDFS Using 

DQN-Enhanced DRL 

The area of concern is in the enhancement of HDFS’s 

encryption effectiveness, all the while maintaining the 

strength as well as the performance. By employing 

traditional encryption algorithms there is always a 

tradeoff of computation time and actual time, which slows 
down the performance of the whole system. This problem 

focuses on creating an improvement to DQN, which is 

a deep reinforcement learning algorithm to enable real-

time control of the encryption parameters with concern to 

security and the time taken in calculations. It is better to 
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let 𝐸(𝑥) denote the encryption function for data block x 

residing in HDFS. The goal is thus one of maximizing 

𝐸(𝑥) about both C and S simultaneously, thus with a 

tradeoff between the two. 

State space St: Represents the current system state, 

including data characteristics and current encryption 

parameters. 

Action space At: Set of possible actions, including 

selecting different encryption algorithms and parameter 

configurations 

Reward function Rt: Combines the negative 

computational cost and positive security benefit: 
 

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡, 𝐴𝑡)                                                                      (1) 

 
where: 
 

Rt = α ⋅ (S(E(xt)) + λ ⋅ ∑ ∫ ϕi

1

0

n

i=1

(fi(xt)) dx) − β

⋅ (C(E(xt)) + ∑ ∫ ψj

1

0

m

j=1

(gj(xt))  dx) (2) 

 
α, β, λ

> 0 (weighting factors for security, cost and additional factors)        (3) 
 

𝜙𝑖(𝑓𝑖(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖(𝑓𝑖(𝑥𝑡)−𝜇𝑖)
                                                 (4) 

 

𝜓𝑗 (𝑔𝑗(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗(𝑔𝑗(𝑥𝑡)−𝜈𝑗)
                                              (5) 

 
Here, 𝜙𝑖  and 𝜓𝑗  are sigmoid functions representing 

additional security and cost-related factors with 

parameters 𝑘𝑖 , 𝜇𝑖 , ℎ𝑗 , 𝜈𝑗 . 

This problem formulation puts into practice a 

reinforcement learning paradigm, where the DQN agent 

learns to determine the most suitable encryption 

parameters that would yield a high cumulative reward 

function in the long run. The probability of selection of a 

particular key size reflects weights between security 

defined by the key size and computational overhead 

defined by encryption and decryption time, while other 

factors are taken into account with the help of sigmoid 

functions. The discount rate 𝛾 helps to optimize for the 

future as well since they take into consideration the 

rewards that would be realized in the future. 

Dynamic Adaptive Encryption for HDFS Using 

Deep Reinforcement Learning 

Specifically, the problem encompasses developing a 

dynamic and adaptability-based encryption algorithm 

capable of serving HDFS that would consider the actual 

traffic patterns of data and the current levels of threats. 

The print-screen approach cannot change with the current 

condition and this leaves the system open to other forms 

of insecurity and reduces efficiency. This formulation 
seeks to work towards the creation of an adaptive 

encryption framework based on Deep Reinforcement 

Learning DRL that is capable of learning from its 

environment and adapting the encryption strategies used 

in real time to meet security and performance goals. Let 

𝜋(𝑎|𝑠) be a deterministic policy function that prescribes 

the probability density of taking action in state s. A target 

policy 𝜋∗ that aims at solving this problem should drive the 

expected cumulative reward 𝐽(𝜋) to the optimal level. 
State space St: Includes real-time data access patterns, 

current threat level, and system performance metrics. 

Action space At: Set of encryption strategies and 

configurations. 

Reward function Rt: Integrates security effectiveness, 

response time and resource utilization: 

 

𝐽(𝜋) = 𝔼𝜋 [∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡]                                                                   (6) 

 

where: 

 

Rt = α ⋅ (S(E(xt), T(t)) + ∑ ∫ φi

1

0

p

i=1

(θi(xt, T(t)))  dx) − β

⋅ (C(E(xt)) + ∑ ∫ χj

1

0

q

j=1

(ηj(xt))  dx

+ U(E(xt)))                                             (7) 

 
α, β
> 0 (weighting factors for security, cost and utilization) (8) 

 

Here, φi  and χj  are functions representing additional 

security and cost-related factors with parameters θi and ηj. 

 

𝜑𝑖 (𝜃𝑖(𝑥𝑡, 𝑇(𝑡))) =
1

1 + 𝑒−𝑚𝑖(𝜃𝑖(𝑥𝑡,𝑇(𝑡))−𝜉𝐼)
                (9) 

 

𝜒𝑗 (𝜂𝑗(𝑥𝑡)) =
1

1 + 𝑒−𝑛𝑗(𝜂𝑗(𝑥𝑡)−𝜌𝑗)
                               (10) 

 
This formulation uses DRL where the properties of the 

system change depending on the dynamics of the system 

and where the agent changes their encryption strategies. 
It is specified, the reward function is a compromise 

between the efficiency of the security system, time 

response and the level of consumption of resources, 

other parameters are defined with help of sigmoid 

functions. The policy 𝜋∗ is to select action 𝑎𝑡  to get the 



Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760 

DOI: 10.3844/jcssp.2025.741.760 

 

749 

maximum expected cumulative reward that benefits 

from adaptive and efficient encryption for HDFS. It must 

be noted that to reflect, for example, threat levels 𝑇(𝑡), 

as well as other security and cost factors, 𝜑𝑖 and 𝜒𝑗 , the 

system becomes more flexible, affording better security 

in any given conditions. 

Adaptive Hierarchical Encryption for HDFS Using 

Multi-Agent Reinforcement Learning 

The problem can be stated as follows: Considering the 

Challenging environment of the Hadoop Distributed File 

System (HDFS), the problem concerns the specification 

of adaptive hierarchical encryption for HDFS utilizing 

frameworks from Multi-Agent Reinforcement Learning 

(MARL). Analogous data encryption schemes do not 

profile well in large, complex, geographically distributed 

storage systems because of their rigidity in terms of the 

structure of the hierarchy. This research intends to 

propose a MARL-based encryption system where 

encryption and decryption algorithms of HDFS will be 

self-controlled, adjusting the degree of security as well as 

the complexity of encryption and decryption with the help 

of MARL on different levels of HDFS. Let 𝐸𝑙(𝑥) denoted 

as an encryption function in a hierarchical level l of data 

block x in a Hadoop-distributed file system. In this case, 

the aim is to find alternation of 𝐸𝑙(𝑥) that achieves lowest 

overall system latency L and the optimum composite 

security score S. 

State space 𝑆𝑡
𝑙 : Represents the system state at 

hierarchical level l at time t, including data characteristics 

and current encryption parameters.  

Action space 𝐴𝑡
𝑙 : Set of possible actions at hierarchical 

level l, including selecting different encryption algorithms 

and parameter configurations. 

Reward function 𝑅𝑡
𝑙 : Combines the negative system 

latency and positive security benefit: 
 

𝑚𝑎𝑥𝔼𝜋 [∑ ∑ 𝛾𝑙,𝑡

𝑇

𝑡=0

𝐿

𝑙=1

𝑅𝑡
𝑙(𝑆𝑡

𝑙 , 𝐴𝑡
𝑙 )]                                               (11) 

 
where: 
 

𝑅𝑡
𝑙 − 𝛼(𝑆(𝐸𝑙(𝑥𝑡))𝛿 ∑ ∫ 𝜙𝑖

𝑙
1

0

(𝑓𝑖
𝑙(𝑥𝑡))𝑑𝑥

𝑛

𝑖=1

)

−𝛽(𝐿(𝐸𝑙(𝑥𝑡)) + ∑ ∫ 𝜓𝑗
𝑙(𝑔𝑗

𝑙 (𝑥𝑡))𝑑𝑥
1

0

𝑚

𝑗=1

)                              (12)

 

 

𝛽, 𝛿 > (
𝑤𝑒𝑖𝑔ℎ𝑡𝑖𝑛𝑔 𝑓𝑎𝑐𝑡𝑜𝑟𝑠 𝑓𝑜𝑟 sec𝑢𝑟𝑖𝑡, 𝑙𝑎𝑡𝑒𝑛𝑐𝑦 𝑎𝑛𝑑 

𝑎𝑑𝑑𝑖𝑡𝑖𝑜𝑛𝑎𝑙 𝑓𝑎𝑐𝑡𝑜𝑟𝑠
)  (13) 

 

𝜙𝑖
𝑙 (𝑓𝑖

𝑙(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖
𝑙(𝑓𝑖

𝑙(𝑥𝑡)−𝜇𝑖
𝑙)

                                          (14) 

𝜓𝑗
𝑙 (𝑔𝑗

𝑙 (𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗
𝑙(𝑔𝑗

𝑙(𝑥𝑡)−𝜈𝑗
𝑙)

                                         (15) 

 

Here, 𝜙𝑖
𝑙  and 𝜓𝑗

𝑙  are sigmoid functions representing 

additional security and latency-related factors at the level 

l with parameters 𝑘𝑖
𝑙 , 𝜇𝑖

𝑙 , ℎ𝑗
𝑙 , 𝜈𝑗

𝑙. 

The problem formulation involves applying the 
concept of multi-agent reinforcement learning where 

enhancing hierarchies agents will learn how to choose 

parameters of encryption that bring about the highest 

overall gain in the long run. The reward function 

integrates security concerns (encryption strength) and 

system latency or time delay caused by the encryption 

process while other aspects are incorporated using the 

sigmoid function. The systems are hierarchical and are 

described by the below equation that sums over all the 

levels of l to optimize the solution both inside and 

across the various layers of the hierarchy. The 

parameters l and t make sure that the provision of future 
rewards is advised, hence making the plans great. 

Design of HDFS 

In this section, we describe the usage of the Hadoop 

Distributed File System (HDFS) in general and more 

specifically its integration into our proposed efficient data 

encryption algorithm based on DQN-enriched DL models. It 

is a design that aims at improving security and performance 

through dynamic adjustment of encryption parameters as a 

function of the data utilization patterns and security threats 
perceived in real time to meet these objectives. 

HDFS Architecture Overview 

HDFS’s characteristic is that it is designed to store 

large datasets and reliably stream these datasets at high 

bandwidth for user applications. An HDFS instance 

comprises one NameNode, a master server that has the 

responsibility of managing the namespace operations and 

coordination of the client’s access to files. In addition, 

there can only be multiple DataNodes, generally one per 

node in the cluster as they control storage that is attached 

to nodes they directly run on. The HDFS architecture has 

been shown in Fig. (1): 

 

 NameNode: The location of every file and every 

directory of the file system tree is managed in the 

NameNode also the metadata for all the files and 

directories. It also tracks the location of all blocks of 

files in the system and thereby provides a backup 

option to retrieve files even when it was not initially 

designed with the intention of providing such a feature 

 DataNode: DataNodes are supposed to hold the 

actual data of HDFS as intended by the architecture. 

The clients can read from it and write it into the disk 

or any other storage media through them 
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Fig. 1: HDFS architecture 

 

Data Encryption in HDFS 

In the traditional HDFS implementations, some 

issues prevail concerning the synchronization of 

security and system performance. The basic encryption 

method employed in HDFS incorporates symmetric 

key encryption, for instance, Advanced Encryption 

Standard AES. However, this can lead to much 

computation and latency in the execution of the 

associated programs. To overcome such drawbacks, 

this study proposes the development of an adaptive 

encryption system for HDFS using enhanced deep 

reinforcement learning with DQN shown in Fig. (2). 

The integration involves the following components: 

 

 Data preprocessing module: This module assists in 

the preprocessing of the raw data set of encrypted 

traffic in the SUT. This is carried out to reduce the 

data and eliminate any interfering data that may 

hinder the execution of subsequent processes on the 

data including normalization of data, elimination of 

noise and feature extraction among others. In data 

preprocessing the min and max scaling is applied. All 

data features are in a comparable range. Either min 

range or max range. After that noise extraction the 

medium filter helps to remove noise helps to focus on 

the data patterns. Features extraction used the 

dimensional reduction technique such as Fourier 

transformation for frequency-based features such as 

time series or event-driven access logs. Feature 

extraction enables the model to learn from essential 

data characteristics without being overwhelmed by 

irrelevant details, improving computational 

efficiency. After that label encoding method is used 

for transform categorical encoding into numerical 

form for machine learning 

 Training set: The preprocessed data is divided into 

train and the test set is ready for use in the model. 

development. In the DQN training set, the goal is to 

train the model  

 DQN module: Adopting the Deep Q-Network, this 

new module actively and flexibly controls encryption 

parameters. As an input, the DQN module receives 

the state of the system in which the characteristics of 

the data and the current encryption parameters are 

defined and as an output, the best encryption strategy 

is determined 

 Optimal model: Just like the DQN module which gets 

better at this step by step, the present switch is aimed 

at optimizing the encryption parameters so that it has 

the least CPU overhead while at the same time having 

maximum security 

 Final detection model: Once the optimal model has 

been generated, this is used to make predictions on 

the test dataset with the view of assessing the 

performance of the model. The last detection model 

covers several significant characteristics: High 

system performance and strong security throughout 

the detection model 

 

 

 
Fig. 2: Data encryption through HDFS 
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Mathematical Formulation 

The optimization of encryption parameters using Deep 

Q-Networks (DQN) can be reduced to a Markov Decision 

Process (MDP). In this context, we intend to make the 

encryption parameters adaptive such that, the security as 

well as the performance of HDFS is optimized.  

State Space 𝑆𝑡  

The state space represents the current system state, 

which includes: 
 
 Data characteristics such as size and type 

 Current encryption parameters like encryption 

algorithm and key length 
 

Mathematically, the state at time t can be denoted as: 
 

St = {data_size
t
, data_type

t
, encryption_algorithm

t
, key_length

t
}(16) 

 

Action Space 𝐴𝑡  

The action space consists of the set of possible actions 

that can be taken to adjust the encryption parameters. 

These actions include: 
 
 Selecting different encryption algorithms 

 Adjusting the key length and other relevant 

parameters 
 

Denoted as: 
 

𝐴𝑡 = {select_algorithm, adjust_key_length, … }                   (17) 
 

Reward Function 𝑅𝑡  

The reward function is designed to balance security 

and computational efficiency. It combines the negative 
computational cost with the positive security benefit: 
 

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡)) + 𝜆 ⋅ ∑ ∫ 𝜙𝑖

1

0

𝑛

𝑖=1

(𝑓𝑖(𝑥𝑡)) 𝑑𝑥)

− 𝛽 (𝐶(𝐸(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗

1

0

𝑚

𝑗=1

(𝑔𝑗(𝑥𝑡))  𝑑𝑥)                    (18) 

where: 
 
 𝛼, 𝛽, 𝜆  are weighting factors for security, cost and 

additional factors respectively 

 𝑆(𝐸(𝑥𝑡))  represents the security level of the 

encryption function E applied to data x 

 𝐶(𝐸(𝑥𝑡)) represents the computational cost 

 𝜙𝑖(𝑓𝑖(𝑥𝑡)) and 𝜓𝑗 (𝑔𝑗(𝑥𝑡)) are sigmoid functions 

representing additional security and cost-related 

factors 

The objective is to maximize the cumulative reward 

over time: 
 

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡 , 𝐴𝑡)                                                          (19) 

 
where, γ is the discount factor. 
 
Algorithm 1: DQN-based Dynamic Encryption Optimization 

1. Initialize Replay memory D and Capacity N 

2. Initialize action-value function Q with random weights 

3.  Initialize target action-value function �̂� with weights - 

=  for episode 1 to M 
4. Initialize state S1 for t = 1 to T do  

5.  With probability  select the random function At 

6. Otherwise select At = max a Q (St, a; ) 
7. Execute action At and observe reward Rt and next state 

St+1 
8. Store transition (St, At, Rt, St+1) into D 

9. Sample random mini-batch transitions (Sj, Aj, Rj, Sj+1) 
from D 

10. Set Yj= {
𝑅𝑗    𝑖𝑓 𝑒𝑝𝑖𝑠𝑜𝑑𝑒 𝑡𝑒𝑚𝑖𝑛𝑎𝑡𝑒𝑠 𝑎𝑡  𝑠𝑡𝑒𝑝𝑠 𝑗 + 1

𝑅𝑗 + 𝛾𝑚𝑎𝑥𝑎′  �̂�  (𝑆𝑗+1 , 𝑎′; 𝜃− ) 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
   

11. Perform the gradient descent step on (Yj – Q (Sj, Aj; 

𝜃−))2 concerning the network parameter  

12. Every C step reset �̂� = Q 
 

The optimization of encryption parameters using 

DQN can be formulated as a Markov Decision Process 

(MDP) where: 
 
 State space 𝑆𝑡: Represents the current state of the system: 

data attributes and current encryption parameters 

 Action space 𝐴𝑡: List of possible actions, which can 

be chosen to improve the result, such as choosing 

various encryption algorithms and parameters 

 Reward function 𝑅𝑡: Is a combination of the negative 

computational cost and the positive security benefit 
 

The objective is to maximize the cumulative reward 

over time: 
 

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡, 𝐴𝑡)                                                                   (20) 

 
where, γ is the discount factor ensuring future rewards are 

considered. 

The reward function 𝑅𝑡 is defined as: 
 

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡)) + 𝜆 ⋅ ∑ ∫ 𝜙𝑖

1

0

𝑛

𝑖=1

(𝑓𝑖(𝑥𝑡)) 𝑑𝑥) − 𝛽

⋅ (𝐶(𝐸(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗

1

0

𝑚

𝑗=1

(𝑔𝑗(𝑥𝑡))  𝑑𝑥)                 (21) 
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where: 
 

α, β, λ
> 0 (weighting factors for security, cost and additional factors) 
 

𝜙𝑖(𝑓𝑖(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖(𝑓𝑖(𝑥𝑡)−𝜇𝑖)
                                               (22) 

 

𝜓𝑗 (𝑔𝑗(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗(𝑔𝑗(𝑥𝑡)−𝜈𝑗)
                                           (23) 

 

Changes from Previous HDFS Implementation 

The primary distinction between our solution and the 

prior work on HDFS encryption is in the fact that our 

approach is more flexible. In traditional methods, the 
values of the encryption parameters are fixed and do not 

take into consideration the actual access to data or the 

threat level. However, the proposed DRL algorithm based 

on DQN is performed in a self-organized manner and 

always adjusts the parameters of the encryption system to 

minimize the vulnerability of the system while 

maximizing the performance. 

This adaptive approach helps to cut down the amount of 

computation and time required to execute the requests, 

making HDFS safer and more efficient. Using 

reinforcement learning as the base method, our framework 
can adapt to new threats and data usage independently. 

Optimizing Encryption Efficiency in HDFS Using 

DQN-Enhanced DRL 

The first model shown in Fig. (3) relates to improving 

the efficiency of encryption in HDFS through the varying 

of parameters with the help of DQN-enhanced DRL. This 

approach utilizes the flexibility of DQN to manage the 
trade-off of security with computational complexity. 

 

 
 

Fig. 3: Enhanced DQN architecture 

State space 𝑆𝑡: It is the data and characteristics or state 

of the system at the time of the dump, as well as current 
encryption settings. 

Action space 𝐴𝑡: List of potential decisions, including 

the choice of different encryption algorithms and 

parameters for those algorithms. 

Reward function 𝑅𝑡 : This is because it has both the 

negative computational cost of the security benefit and the 

positive security benefit of the negative computational cost: 
 

𝑚𝑎𝑥 ∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡(𝑆𝑡, 𝐴𝑡)                                                             (24) 

 

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡)) + 𝜆 ⋅ ∑ ∫ 𝜙𝑖

1

0

𝑛

𝑖=1

(𝑓𝑖(𝑥𝑡)) 𝑑𝑥) − 𝛽

⋅ (𝐶(𝐸(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗

1

0

𝑚

𝑗=1

(𝑔𝑗(𝑥𝑡))  𝑑𝑥)                    (25) 

 

𝜙𝑖(𝑓𝑖(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖(𝑓𝑖(𝑥𝑡)−𝜇𝑖)
                                            (26) 

 

𝜓𝑗 (𝑔𝑗(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗(𝑔𝑗(𝑥𝑡)−𝜈𝑗)
                                         (27) 

 
This also includes formulating a self-synthetic 

encryption mechanism that aims to change with the 

current data access pattern and security threats. This 

framework consists of DRL to enable the adaptive 

encryption that learns from the past and present strategies, 

to make the best current and future decisions shown in 

Fig. (4). 

State space 𝑆𝑡: It involves accessing patterns of data 

utilization in real-time and the current threat level and 
performance of the system. 

Action space At : Set of encryption strategies and 

configurations. 

Reward function Rt: Integrates security effectiveness, 

response time and resource utilization. 
 

𝐽(𝜋) = 𝔼𝜋 [∑ 𝛾𝑡

𝑇

𝑡=0

𝑅𝑡]                                                                 (28) 

 

𝑅𝑡 = 𝛼 ⋅ (𝑆(𝐸(𝑥𝑡), 𝑇(𝑡)) + ∑ ∫ 𝜑𝑖

1

0

𝑝

𝑖=1

(𝜃𝑖(𝑥𝑡, 𝑇(𝑡)))  𝑑𝑥)

− 𝛽 (𝐶(𝐸(𝑥𝑡)) + ∑ ∫ 𝜒𝑗

1

0

𝑞

𝑗=1

(𝜂𝑗(𝑥𝑡))  𝑑𝑥

+ 𝑈(𝐸(𝑥𝑡)))                                            (29) 
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Fig. 4: Dynamic Adaptive Encryption using HDFS and DQN 

 

φi (θi(xt, T(t))) =
1

1 + e−mi(θi(xt,T(t))−ξi)
                       (30) 

 

𝜒𝑗 (𝜂𝑗(𝑥𝑡)) =
1

1 + 𝑒−𝑛𝑗(𝜂𝑗(𝑥𝑡)−𝜌𝑗)
                                 (31) 

 
To develop an adaptive hierarchical encryption system 

with the utilization of MARL methods, this framework 

can self-optimize encryption approaches and levels in the 

HDFS hierarchy while maintaining security and 

minimizing resource consumption. 

State space 𝑆𝑡
𝑙: It stands for the values and characteristics 

of data in the system at the hierarchical level l, as well as the 

current values of the encryption parameters. 

Action space 𝐴𝑡
𝑙 : A set of possible actions at the 

hierarchical level ‘l’ depends on the selection of 

different encryption algorithms and the parameter 

setting for each level. 

Reward function 𝑅𝑡
𝑙: Sum of the system latency (Sign -1) 

plus Security Benefit Sign adjusted for interaction level. 

 

𝑚𝑎𝑥𝔼𝜋 [∑ ∑ 𝛾𝑙,𝑡

𝑇

𝑡=0

𝐿

𝑙=1

𝑅𝑡
𝑙(𝑆𝑡

𝑙 , 𝐴𝑡
𝑙 )]                                           (32) 

 

𝑅𝑡
𝑙 = 𝛼 ⋅ (𝑆(𝐸𝑙(𝑥𝑡)) + 𝛿 ⋅ ∑ ∫ 𝜙𝑖

𝑙
1

0

𝑛

𝑖=1

(𝑓𝑖
𝑙(𝑥𝑡))  𝑑𝑥) − 𝛽

⋅ (𝐿(𝐸𝑙(𝑥𝑡))

+ ∑ ∫ 𝜓𝑗
𝑙

1

0

𝑚

𝑗=1

(𝑔𝑗
𝑙(𝑥𝑡))  𝑑𝑥)                   (33) 

 

𝜙𝑖
𝑙 (𝑓𝑖

𝑙(𝑥𝑡)) =
1

1 + 𝑒−𝑘𝑖
𝑙(𝑓𝑖

𝑙(𝑥𝑡)−𝜇𝑖
𝑙)

                                       (34) 

𝜓𝑗
𝑙 (𝑔𝑗

𝑙(𝑥𝑡)) =
1

1 + 𝑒−ℎ𝑗
𝑙(𝑔𝑗

𝑙 (𝑥𝑡)−𝜈𝑗
𝑙)

                                   (35) 

 

Evaluation Metrics 

In order to assess the overall effectiveness of the DRL-

based encryption optimization with the inclusion of DQN 

for HDFS, we use the following performance indicators. 

These metrics will be aimed at evaluating the extent of 

security and performance of the encryption algorithms. 

Here is a set of evaluation metrics on which the model 

performance has been evaluated with formulas given in 

tabular form in Table (2). 

Security Level (S) 

The security level evaluates the ability of the 
encryption algorithm to secure data by estimating the 

level of protection it provides. It is generally assessed 

according to the ability of the encryption algorithm to 

sustain different cryptographical attacks: 

 

𝑆 =
Number of successful attacks

Total number of attempted attacks
                             (36) 

 

Computational Overhead (C) 

Some definitions emphasize computational overhead, 

which, in this context, means the extra time needed for 

encryption and decryption in comparison with a scenario 

where no encryption is performed. However, it is crucial 

to keep this overhead low in order to ensure the systems 

remain efficient: 

 
𝐶 = 𝑇encrypted − 𝑇baseline                                                           (37) 

 

where, 𝑇encrypted  is the processing time with encryption 

and Tbaseline  is the processing time without encryption. 

Latency (L) 

Latency defines how much time the encryption 

process takes in getting access to the data stored. 

Reducing latency is desired in order to avoid delays when 

accessing the encrypted data: 

 
𝐿 = 𝑇end − 𝑇start                                                                         (38) 

 
where, 𝑇start is the time at which a data access request is 

made and 𝑇end is the time at which the data is retrieved. 

Resource Utilization (U) 

Resource utilization measures the percentage of 

calculated resources such as CPU and memory that was 

employed during the encryption. Resource consumption 

should be given sufficient consideration in efficient 

encryption techniques: 
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Table 2: Evaluation metrics for encryption optimization 

Metric Description Formula 

Security Level (S) Strength of encryption algorithm 
𝑆 =

Number of successful attacks

Total number of attempted attacks
 

Computational Overhead (C) Additional processing time 𝐶 = 𝑇encrypted − 𝑇baseline 

Latency (L) Delay introduced by encryption 𝐿 = 𝑇end − 𝑇start 
Resource Utilization (U) Percentage of resources used 

𝑈 =
Resources used by encryption

Total available resources
× 100% 

Adaptability (A) Ability to adjust to varying conditions 
𝐴 =

Performance under varying conditions

Performance under standard conditions
 

Energy Consumption (E) Power required for encryption 𝐸 = 𝑃encrypted × 𝑇encrypted 

 

𝑈 =
Resources used by encryption

Total available resources
× 100%                      (39) 

 

Adaptability (A) 

Flexibility specifies the ability of the encryption 

algorithm to modify its security provision due to 

different access patterns and threat levels. This is 

commonly assessed based on how the algorithm will 

behave in other situations: 

 

𝐴 =
Performance under varying conditions

Performance under standard conditions
    (40) 

 

Energy Consumption (E) 

Energy efficiency considers the amount of energy 

needed to perform encryption and decryption functions. 

This is quite a critical factor when it comes to encryption 

processes because it will ascertain whether the process 

will be sustainable in terms of energy consumption: 

 
𝐸 = 𝑃encrypted × 𝑇encrypted                                                          (41) 

 
where, 𝑃encrypted  is the power consumption rate during 

encryption and 𝑇encrypted is the time taken for encryption. 

All these metrics, in their totality, offer a balanced 

evaluation model that can be used to gauge the impact and 

efficiency of the proposed encryption optimization 

technique. Through these values, it is possible to 

guarantee that the encryption approach is effective and 
suitable for different cases. 

Results and Discussion 

In this section, we outline the specific findings that 

encompass our proposed DQN-enhanced DRL-based 

encryption optimization for HDFS. Next, we compare the 

performance of our proposed solution with HDFS that does 

not incorporate the DQN algorithm. The metrics that have 
been considered for evaluation are Security Level, 

Computation Overhead, Latency, Resource consumption, 

adaptability and energy consumption. Overall, the results 

of the experiments confirm the proposed approach and its 

ability to improve data encryption for HDFS. The main 

purpose of the evaluation metric is to reflect on the 

effectiveness of the proposed HDFS-DQN model against 

the base HDFS model. Through a brief assessment of the 

above-mentioned key performance indicators, it is possible 

to identify the benefits of integrating enhanced DQN DRL 

in HDFS for dynamic encryption optimization. The 
following tables provide a summary of the results obtained 

for every measure used in the evaluation process. 

Security Level (S) 

The security level is determined by the ratio of actually 

achieved attacks to the overall number of launched 

attacks. Table (3) shows the security level comparison 

between HDFS and HDFS-DQN. Figures (5-6) show the 

HDFS-DQN gives better security. 

Computational Overhead (C) 

Computational overhead measures the additional 

processing time required for encryption compared to a 

baseline without encryption shown in Figs. (7-8). Table (4). 

shows the computational overhead comparison with and 

without processing time. 
 
Table 3: Security level comparison 

Metric HDFS HDFS-DQN 
Total number of attempted 
attacks 

1000 1000 

Number of successful 
attacks 

50 10 

Security level (S) 50

1000
= 0.05 

10

1000
= 0.01 

 

 
 
Fig. 5: Data plot of security level 
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Fig. 6: Contour plot of security level 
 

 
 
Fig. 7: Computational overhead 
 

 
 
Fig. 8: Contour plot of computational overhead 
 
Table 4: Computational overhead comparison 

Metric HDFS HDFS-DQN 

Processing time with 

encryption (𝑇encrypted) 

120 ms 100 ms 

Processing time without 

encryption (𝑇baseline) 

80 ms 80 ms 

Computational 
overhead (C) 

120 − 80 = 40 
ms 

100 − 80 =
20 ms 

Latency (L) 

The latency shown in Fig. (9) measures the delay 

introduced by the encryption process when accessing 

data. Table (5). shows the latency comparison between 

HDFS and HDFS-DQN. 

Resource Utilization (U) 

Resource utilization assesses the percentage of 

computational resources used during the encryption 

process. Resource utilization comparisons are shown in 
Table (6) and Fig. (10).  
 
Table 5: Latency comparison 

Metric HDFS HDFS-DQN 

Access request 

time (𝑇start) 

0 ms 0 ms 

Data retrieval 

time (𝑇end) 

150 ms 110 ms 

Latency (L) 150 − 0 = 150 ms 110 − 0 = 110 ms 

 
Table 6: Resource utilization comparison 

Metric HDFS (%) HDFS-DQN (%) 

Resources used by 
encryption 

60 45 

Total available 
resources 

100 100 

Resource utilization 
(U) 

60

100
× 100

= 60 

45

100
× 100 = 45 

 

 
 
Fig. 9: Latency (L) 
 

 
 
Fig. 10: Resource allocation 
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Adaptability (A) 

Adaptability measures the ability of the encryption 

algorithm to adjust to varying data access patterns and 

threat levels shown in Figs. (11-12). Table (7) shows the 

adaptability comparison between HDFS and HDFS-DQN. 

Energy Consumption (E) 

Energy consumption evaluates the power required to 

perform encryption and decryption operations shown in 

Figs. (13-14). Table (8) shows that the HDFS-DQN gives 
a better than HDFS based on energy saving. 
 

 
 
Fig. 11: Adaptability line plot 
 

 
 
Fig. 12: Adaptability contour plot 
 
Table 7: Adaptability comparison 

Metric HDFS (%) HDFS-DQN (%) 

Performance under 

standard conditions 

85 90 

Performance under 
varying conditions 

70 85 

Adaptability (A) 70

85
= 0.82 

85

90
= 0.94 

 
Table 8: Energy consumption comparison 

Metric HDFS HDFS-DQN 

Power consumption rate 

(𝑃encrypted) 

50 W 40 W 

Time taken for encryption 

(𝑇encrypted) 

120 ms 100 ms 

Energy consumption (E) 50 × 0.12 =
6 J 

40 × 0.1 =
4 J 

 
 
Fig. 13: Energy consumption line plot 

 

 
 
Fig. 14: Energy consumption contour plot 

 

Discussion 

The recommended results from our flexible analysis 

clearly depict the fact that the proposed DRL-based 

encryption model that involves DQN is significantly 

superior to the existing HDFS model. Therefore, each 

evaluation metric establishes that the HDFS-DQN model 

surpasses the others and proves that it can improve data 
security and system performance. In the next sections, we 

report the results of the learning analytics in their entirety 

for each of the metrics selected. 

Security Level (S) 

The security level is the standard that defines the 

efficiency of the system at times when the amasses 

attacks. It is defined as the ratio of broken exploits to the 

overall number of exploit attempts that were carried out. 

The safety extent can be defined by the ratio of the size of 
an organism to its predators; the lower figure means a 

higher security level. 

The best security level was described to be 0 in the 

employment of the conventional HDFS model. 05 is the 

success rate with fifty attack targets successfully 

compromised out of 1000 attempts. On the other hand, 

the HDFS-DQN model was able to earn a security level 

of 0 which is quite a contrast of the traditional model. 

01, which is equal to 10/ 1000, meaning a very low 

success rate of 1 percent. The decrease in the rate of 

successful attacks to a mere 13% points to the 
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effectiveness of the security features of the HDFS-DQN 

model shown in Table (3). This adaptive control can be 

attributed to the integration of DQN to the DRL where 
the encryption strategy is adapted near real-time in 

accordance with the access and threat patterns hence 

mitigating the vulnerabilities and enhancing the security 

of the overall system. 

Computational Overhead (C) 

When discussing computational overhead one has to 

identify the load in terms of time which is required to 

perform encryption in comparison with the point of time 

which is needed without the encryption. This metric is 
crucial for monitoring the performance of the encryption 

algorithms where more computational overhead equates 

to the system’s slower running. 

When considering Table (4) the results of our 

evaluation, we find that the traditional HDFS model has a 

computational overhead of 40 ms and encrypted 

processing took 120 ms than the baseline of 80 ms when 

using HDFS-DQN we pointed out that there would be a 

significant cut down on computational overhead because 

it only takes 20 ms when processing the overhead and 100 

ms when processing the encrypted values. This way, the 
DQN-enhanced DRL integration allows the system to 

update encryption parameters in the process dynamically 

and makes the process much faster compared to when it 

has to encrypt it on its own. 

Latency (L) 

Whereas, throughput introduced the concept of 

latency, which is the additional amount of time taken to 

encrypt data when it is being accessed. This is an 

important criterion for processing real-time data and its 

quality and usability for end-users. 

In the conventional HDFS model shown in Table (5), 

latency was recorded to be around 150 ms while in the 

HDFS-DQN model latency varied around 110 ms; thus, 

reducing latency by 40 ms needs a good strategy to be 

applied and this was made possible by the DQN-enhanced 

DRL approach that minimized delays caused by 

encryption. The capability of the HDFS-DQN model in 

constantly studying and training based on the changing 

access data patterns means that the model enhances the 

encryption process to increase the rate of data retrieval 

and reduce the time hence increasing user satisfaction. 

Resource Utilization (U) 

Resource utilization aims to determine the number of 

computational resources that are employed while 

encrypting. Resource utilization must hence be optimized 

to ensure that an increase in productivity is realized and 

that scalability of the systems is achieved. 

In the traditional HDFS model entirely 60% resources 
were dedicated for the encryption, where in the HDFS-

DQN model only 45% were dedicated for the same. This 

cuts down the resource that is required especially in a 

physical setting hence creating efficiency in the proposed 
model shown in Table (6). To address the above problem, 

the HDFS-DQN model adjusts encryption parameters and 

dynamically allocates resources to keep the encrypted 

processes within system limits the proposed HDFS-DQN 

model increases the system performance and scalability 

by setting optimal encryption parameters and managing 

the system resources. 

Adaptability (A) 

Regarding adaptability, this refers to how well the 
encryption algorithm can perform amidst fluctuating data 

access patterns and threat levels. It is a valuable measure 

when determining how well-prepared and adaptable that 

strategy of encrypting is. 

Thus, the HDFS-DQN model appears far more 

adaptable than the baseline model; the percentage of 

performance metrics more accurately represented as a 

score yields an adaptability figure of 0.94 compared to 

0.82 in the case of the original HDFS model of computing. 

This means that the HDFS-DQN agent has the ability to 

determine fluctuating conditions in order to optimize on 
encryption procedures of HDFS to ensure optimum 

security and performance shown in Table (7). The 

reinforcement learning contour enables the model to self-

devel over data access patterns and threats experienced 

and improve its encryption method accordingly. 

Energy Consumption (E) 

Energy consumption measures how much power is 

used to achieve the functionality of the mathematical 

algorithms for encryption and decryption. Thus, the 
consumption of energy is desirable by reducing the 

overall expenses as well as environmental impact. 

The last indicator shown in Table (8) was the energy 

consumption of the HDFS model and the HDFS-DQN 

model differently. The HDFS consumed 6 J for 

encryption and the proposed HDFS-DQN consumed 4 J; 

that is, the HDFS-DQN consumed a third less energy 

compared to the traditional HDFS. In this respect, the 

computational time and energy consumption in HDFS-

DQN is reduced, besides enhancing the performance by 

optimizing the values of the encryption parameters 

necessary for the functioning of large-scale distributed 

storage systems. 

Significance of Proposed Model 

The achievement of HDFS-DQN with multiple 

aspects of every index is higher than the comparative 

HDFS, it shows that HDFS-DQN is superior to HDFS. 

The proposed DQN-integrated DRL approach improves 

security, its efficiency with less overhead, relatively low 

latency, better resource utilization, better adaptability and 
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low energy requirement. All the improvements 

highlighted above prove that the increase in the extent of 

reinforcement learning makes it possible to use new 
methods in the development of encryption tactics for 

distributed storage systems. This research opens new 

avenues for more investigations in intelligent encryption 

systems, hence providing a solid and optimized 

framework to protect LSM-DS storage architectures. The 

proposed security model is scalable and highly adaptive 

to the change in threat patterns and data access; making it 

possible to fit current and future datasets storage systems. 

Scalability and Limitations 

In an HDFS environment, with fluctuating traffic and 
access patterns, several aspects are examined. First, 

HDFS grows then the capability of encryption may face 
limitations such as latency and resource demand due to an 

increase the computational overhead. While DQN 
enhanced DRL approach adapts encryption in real time it 

might still experience performance degradation when 
managing large and complex distributed environments 

across nodes. Furthermore, in high-traffic cases, the 
model faces latency issues if the model adaptive 

framework fails to balance between rapid data access and 
robust security requirements. The solution of this case 

involves optimal reinforcement learning parameters and 
includes multi-agent reinforcement parameters to 

distribute the decision-making nodes across multi-agents. 
Furthermore, using hierarchical adaptive encryption 

techniques would allow for variable safety forces across 
different layers of HDFS, enhancing scalability and 

performance without compromising security. This 
balance integrates the model in complex and real-world 

distributed environments. 

Conclusion 

Therefore, this research proposes an innovative 

encryption model for HDFS using DRL with DQN 

enhancement to boost the securities against the 

conventional model and improve the computational time, 

latency, resource usage, flexibility and power profile of 

the Hadoop environment. When the values and accesses 

are reflected in the data the model can dynamically and 

efficiently change the encryption parameters thus offering 

proper security to the data. However, the study is not 

without its drawbacks; the first is that such an advanced 

technique may not be easily implemented in most existing 
systems and the second is the computationally intensive 

process involved in the training step. For future work, 

development must be made in fine-tuning the model to 

minimize the computational load as much as possible; 

the scalability of the approach in various data settings 

must be explored; and different flavors of machine 

learning paradigms must be incorporated to make it 

more responsive. Additionally, authors simulated the 

development of the proposed Hybrid AI to enhance 

scalability and accuracy, switch to unsupervised 

learning and federating learning solutions across 
distributed nodes and encryptions to self-adjust in 

response to real-time threat assessments. Furthermore, 

authors are encouraged to conduct more studies to 

identify possible weaknesses and countermeasures to 

enhance the random nature of the applied cryptography 

technique to withstand other cyber threats. 

Acknowledgment 

Thank you to the publisher for their support in the 

publication of this research article. We are grateful for the 

resources and platform provided by the publisher, which 

have enabled us to share our findings with a wider 

audience. We appreciate the efforts of the editorial team 

in reviewing and editing our work, and we are thankful for 

the opportunity to contribute to the field of research 

through this publication. 

Funding Information 

The authors have not received any financial support or 

funding to report. 

Author’s Contributions 

Shivani Awasthi: Conceived and designed the 

experiments, performed the experiments, performed the 

computation work, analyzed the results, prepared all 

figures and/or tables, and prepared all the drafts and the 

final manuscript. 

Narendra Kohli: Supervised the entire work and 

approved the final draft. 

Ethics  

The authors confirm that this manuscript has not been 

published elsewhere and that no ethical issues are 

involved.  

References 

Al Jallad, K., Aljnidi, M., & Desouki, M. S. (2019). Big 

data analysis and distributed deep learning for next-

generation intrusion detection system optimization. 

Journal of Big Data, 6(1), 88. 

https://doi.org/10.1186/s40537-019-0248-6 

Alhazmi, H. E., & Eassa, F. E. (2022). BCSM: A 

BlockChain-based Security Manager for Big Data. 

International Journal of Advanced Computer Science 

and Applications, 13(3). 

https://doi.org/10.14569/ijacsa.2022.0130364 

Alpaydin, E. (2020). Introduction to Machine Learning, 
4th Ed. 

https://doi.org/10.1186/s40537-019-0248-6
https://doi.org/10.14569/ijacsa.2022.0130364


Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760 

DOI: 10.3844/jcssp.2025.741.760 

 

759 

Anand, A., & Hassabnis, A. (2024). Qcrypt: Leveraging 

Post-Quantum Cryptography for Enhanced Security 

of Data at Rest. 2024 15th International Conference 

on Computing Communication and Networking 

Technologies (ICCCNT), 1–9. 

https://doi.org/10.1109/icccnt61001.2024.10725265 

Belhadaoui, H., Filali, R., & Malassé, O. (2023). A Role-

Attribute Based Access Control Model for Dynamic 

Access Control in Hadoop Ecosystem. IAENG 

International Journal of Computer Science, 50(1). 

Du, H., Han, P., Xiang, Q., & Huang, S. (2020). 

MonkeyKing: Adaptive Parameter Tuning on Big 

Data Platforms with Deep Reinforcement Learning. 

Big Data, 8(4), 270–290. 

https://doi.org/10.1089/big.2019.0123 

Ghemawat, S., Gobioff, H., & Leung, S.-T. (2003). The 

Google file. Proceedings of the Nineteenth ACM 

Symposium on Operating Systems Principles, 29–43. 

https://doi.org/10.1145/945445.945450 

Hamza, R., Hassan, A., Ali, A., Bashir, M. B., Alqhtani, 

S. M., Tawfeeg, T. M., & Yousif, A. (2022). Towards 

Secure Big Data Analysis via Fully Homomorphic 

Encryption Algorithms. Entropy, 24(4), 519. 

https://doi.org/10.3390/e24040519 

Khandagale, S. B., Narain, B., & Jadhav, B. T. (2024). 

Enhancing Big Data Security in Hadoop using 

Machine Learning. International Journal of 

Scientific Research in Science, Engineering and 

Technology, 11(6), 304–309. 

https://doi.org/10.32628/ijsrset24116182 

Li, Y., Chen, R., & Rahmani, R. (2023). Secure Data 

Sharing in Internet of Vehicles Based on Blockchain 

and Attribute-Based Encryption. 2023 IEEE 

International Conference on Smart Internet of Things 

(SmartIoT), 56–63. 

https://doi.org/10.1109/smartiot58732.2023.00016 

Mashonganyika, F., Chibaya, C., & Rupere, T. (2020). Real-

Time Self-Adaption of Network Security Mechanisms 

for Dependable Distributed Systems. 2020 2nd 

International Multidisciplinary Information Technology 

and Engineering Conference (IMITEC), 1–7. 

https://doi.org/10.1109/imitec50163.2020.9334148 

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., 

Veness, J., Bellemare, M. G., Graves, A., 

Riedmiller, M., Fidjeland, A. K., Ostrovski, G., 

Petersen, S., Beattie, C., Sadik, A., Antonoglou, I., 

King, H., Kumaran, D., Wierstra, D., Legg, S., & 

Hassabis, D. (2015). Human-Level Control Through 

Deep Reinforcement Learning. Nature, 518(7540), 

529–533. https://doi.org/10.1038/nature14236 

Mustafa, I., Khan, I. U., Aslam, S., Sajid, A., Mohsin, S. M., 

Awais, M., & Qureshi, M. B. (2020). A Lightweight 

Post-Quantum Lattice-Based RSA for Secure 

Communications. IEEE Access, 8, 99273–99285. 

https://doi.org/10.1109/access.2020.2995801 

Nenov, L. (2024). Reinforcement Learning for Key 

Management in Distributed Systems. 2024 32nd 

National Conference with International 

Participation (TELECOM), 1–5. 

https://doi.org/10.1109/TELECOM63374.2024.108

12245 

Nijil Raj, N., Rajesh, R., Justin, A., & Shihab, F. (2024). 

Enhancing Network Intrusion Detection Using Deep 

Reinforcement Learning: An Adaptive Learning 

Approach. Proceedings of the Second International 

Conference on Computing, Communication, Security 

and Intelligent Systems, 297–315. 

https://doi.org/10.1007/978-981-99-8398-8_21 

Olaoluwa, F., & Potter, K. (2024). Deep Learning for 

Intrusion Detection Systems (IDS). Preprints. 

https://doi.org/10.20944/preprints202409.0411.v1 

Pronika, & Tyagi, S. S. (2021). Secure Data Storage in 

Cloud using Encryption Algorithm. 2021 Third 

International Conference on Intelligent 

Communication Technologies and Virtual Mobile 

Networks (ICICV), 136–141. 

https://doi.org/10.1109/icicv50876.2021.9388388 

Shvachko, K., Kuang, H., Radia, S., & Chansler, R. 

(2010). The Hadoop Distributed File System. 2010 

IEEE 26th Symposium on Mass Storage Systems and 

Technologies (MSST), 1–10. 

https://doi.org/10.1109/msst.2010.5496972 

Silver, D., Huang, A., Maddison, C. J., Guez, A., Sifre, L., 

van den Driessche, G., Schrittwieser, J., Antonoglou, 

I., Panneershelvam, V., Lanctot, M., Dieleman, S., 

Grewe, D., Nham, J., Kalchbrenner, N., Sutskever, I., 

Lillicrap, T., Leach, M., Kavukcuoglu, K., Graepel, 

T., & Hassabis, D. (2016). Mastering the game of Go 

with deep neural networks and tree search. Nature, 

529(7587), 484–489. 

https://doi.org/10.1038/nature16961 

Singh, S., Jasim, L. H. D., Dhote, V., Suseela, D., & 

Venkatasubramanian, R. (2023). Privacy-Preserving 

Data Mining Methods for Sensitive Information. 

2023 3rd International Conference on Technological 

Advancements in Computational Sciences (ICTACS), 

841–844. 

https://doi.org/10.1109/ictacs59847.2023.10390087 

Sood, S. K., Sarje, A. K., & Singh, K. (2011). A secure 

dynamic identity-based authentication protocol for 

multi-server architecture. Journal of Network and 

Computer Applications, 34(2), 609–618. 

https://doi.org/10.1016/j.jnca.2010.11.011 

Sunder, A., Shabu, N., & Remya Nair, T. (2022). Securing 

Big Data in Hadoop Using Hybrid Encryption. 

Ubiquitous Intelligent Systems, 521–530. 

https://doi.org/10.1007/978-981-16-3675-2_39 

https://doi.org/10.1109/icccnt61001.2024.10725265
https://doi.org/10.1089/big.2019.0123
https://doi.org/10.1145/945445.945450
https://doi.org/10.3390/e24040519
https://doi.org/10.32628/ijsrset24116182
https://doi.org/10.1109/smartiot58732.2023.00016
https://doi.org/10.1109/imitec50163.2020.9334148
https://doi.org/10.1038/nature14236
https://doi.org/10.1109/access.2020.2995801
https://doi.org/10.1109/TELECOM63374.2024.10812245
https://doi.org/10.1109/TELECOM63374.2024.10812245
https://doi.org/10.1007/978-981-99-8398-8_21
https://doi.org/10.20944/preprints202409.0411.v1
https://doi.org/10.1109/icicv50876.2021.9388388
https://doi.org/10.1109/msst.2010.5496972
https://doi.org/10.1038/nature16961
https://doi.org/10.1109/ictacs59847.2023.10390087
https://doi.org/10.1016/j.jnca.2010.11.011
https://doi.org/10.1007/978-981-16-3675-2_39


Shivani Awasthi and Narendra Kohli / Journal of Computer Science 2025, 21 (4): 741.760 

DOI: 10.3844/jcssp.2025.741.760 

 

760 

Tabbassum, A., & Abdul Kareem, S. (2021). 

Implementing Zero Trust Security Models in Cloud 

Infrastructures. International Journal of Science and 

Research (IJSR), 10(11), 1582–1586. 

https://doi.org/10.21275/sr211110212612 

Wang, H., Wang, Q., Ding, Y., Tang, S., & Wang, Y. 

(2024). Privacy-preserving federated learning based 

on partial low-quality data. Journal of Cloud 

Computing, 13(1), 62. 

https://doi.org/10.1186/s13677-024-00618-8 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

Wang, Z., Schaul, T., Hessel, M., Hasselt, H., Lanctot, M., 

& Freitas, N. (2016). Dueling network architectures 

for deep reinforcement learning. Proceedings of the 
33rd International Conference on Machine Learning, 

1995–2003. 

Xiao, Y., Jia, Y., Liu, C., Cheng, X., Yu, J., & Lv, W. 

(2019). Edge Computing Security: State of the Art 

and Challenges. Proceedings of the IEEE, 107(8), 

1608–1631. 

https://doi.org/10.1109/jproc.2019.2918437 

https://doi.org/10.21275/sr211110212612
https://doi.org/10.1186/s13677-024-00618-8
https://doi.org/10.1109/jproc.2019.2918437

