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Abstract: The growing frequency of cyber threats in Internet of Things (IoT) 

networks, including attacks on RPL routing, requires the creation of strong 

detection systems to safeguard network integrity and provide dependable 

communication. This study is driven by the pressing necessity to tackle the 

security weaknesses in IoT networks, where threats such as black holes, 

version number alteration, DIS flooding, and others present substantial 

threats to the integrity of data and the operation of the network. The main 

goal of this study is to provide a reliable detection system that can detect and 

classify ten different RPL routing attacks using machine learning and deep 

learning methods concurrently. The methodology presented utilizes a 

Multilayer Perceptron (MLP) model that has been trained and evaluated on 

a dataset produced by thorough simulations using the Cooja simulator. This 

dataset encompasses both natural network traffic and diverse malicious 

actions. The dataset comprises 850,562 transmissions, split equally between 

454,781 malicious and 395,801 benign transmissions, covering several attack 

scenarios. The results indicate that the model has a high level of accuracy, 

demonstrated by its area under the receiver operating characteristic curve 

(AUC) of 0.92 and precision-recall area of 0.91. These results successfully 

differentiate between normal and malicious events. Further confirmation of 

the model's capacity is provided by the confusion matrix, which demonstrates 

few false positives and negatives. This study emphasizes the need to create 

flexible, immediate security measures to strengthen the ability of IoT 

networks to resist changing cyber risks. This approach establishes a crucial 

basis for future progress in IoT network security. 

 

Keywords: Cooja, Cyber Threats, Deep Learning, IoT, Intrusion Detection 

System (IDS), Machine Learning, Multilayer Perceptron (MLP), Multi-

Attack Detection, Network Security, RPL Routing Attacks 

 

Introduction 

The exponential growth of the Internet of Things 

(IoT) has drastically transformed several sectors, such 

as healthcare, smart cities, and industrial automation, 

by facilitating uninterrupted connection and data 

interchange across an extensive network of devices 

(Shafique et al., 2020). Nevertheless, this rapid 

expansion has also made IoT networks vulnerable to a 

diverse array of cyber risks. Among the various risks, 

routing attacks that specifically target the IPv6 Routing 

Protocol for Low-Power and Lossy networks (RPL) are 

of utmost concern because of their capacity to interrupt 

network performance, undermine the integrity of data, 

and enable unauthorized access. Exploiting the 

weaknesses inherent in RPL, attacks such as black 

holes, version number modification, DIS flooding, and 

routing table falsification pose serious threats to the 

stability and reliability of IoT settings (Sadhu et al., 2022). 

Even though there is increasing recognition of these 

risks, current security measures frequently concentrate on 

identifying a single kind of attack or depend on 

conventional techniques, such as encryption and firewalls, 

which are inadequate against the complex, protocol-

specific characteristics of RPL attacks. The present study 

aims to fill a significant void in the existing body of 

knowledge by introducing a complete detection 
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framework that has the ability to concurrently detect and 

classify ten different RPL routing attacks.  

This study diverges from other studies that usually 

concentrate on detecting individual attacks by 

highlighting a multi-attack detection strategy, therefore 

offering a more resilient and comprehensive method for 

safeguarding IoT data networks. 

The primary novelty of this study is in the utilization 

of sophisticated machine learning and deep learning 

methodologies, particularly a Multilayer Perceptron 

(MLP) model, to create a flexible security system that can 

promptly react to various threats in real time. A large 

dataset built using the Cooja simulator, consisting of over 

850,000 communications including both legitimate traffic 

and a wide spectrum of malicious actions, is used to train 

and validate the proposed model. The diversity of this 

dataset guarantees that the model is well prepared to 

manage different assault scenarios, thereby improving its 

precision and dependability in practical applications. 

This study has two major contributions: Firstly, it 

showcases the practicality and efficiency of a multi-

attack detection approach, so greatly enhancing the 

existing level of IoT network security. Furthermore, it 

establishes the foundation for subsequent investigations 

on adaptive, real-time security systems capable of 

adapting to evolving threats. This study presents a 

comprehensive framework for detecting many RPL 

routing attacks concurrently.  

Related Works  

It has been studied how to secure the Routing 

Protocol for Low-power and lossy Networks (RPL) in 

industrial IoT contexts. As described in Table (1) these 

approaches have focused on recognizing and mitigating 

RPL threats such blackhole, version number, and DIS 

flooding. Recent research has used machine learning, 

deep learning, and simulation-based methods to identify 

and mitigate these hazards. Despite their contributions to 

IoT security, these efforts sometimes have limitations, 

such as restricted evaluation metrics, attack simulations, 

and attack detection. A unique machine learning-deep 

learning methodology is introduced in this study to 

expand research. The dataset is used with 10 RPL 

routing attacks and ordinary RPL traffic to create more 

comprehensive and adaptable security measures. This 

research advances RPL network security by fixing 

previous mistakes and prioritizing feature engineering, 

protecting IoT ecosystems from critical attacks. 

Proposed Approach 

The proposed security framework as shown in Figs. (1-2) 

for an IoT network architecture using the Routing 

Protocol for Low-Power and Lossy Networks is shown in 

the illustration. Intrusion Detection Systems (IDSs) are 

key to the multi-attack detection process.  

The RPL IoT ROOT Node manages TCP/IP traffic for 

the network. Network connectivity and data 

communication depend on this management.  

The network relies on many RPL IoT Nodes for RPL 

communications. The method targets security 

vulnerabilities like the red Attacker IoT Node.  

 This node is essential to the framework's ability to 

detect and stop unsafe data transmissions that threaten 

network security (Krari et al., 2023).  

The solution uses a traffic sniffer. Monitoring network 

traffic for anomalies and odd patterns that may indicate 

security breaches is crucial. The proposed architecture's 

Multi-Attack Detection Process module relies on the IDS 

next to the Traffic Sniffer. It analyzes traffic data to 

identify and address cyber threats.  

The architecture improves IoT network security 

without increasing communication overhead or device 

computational needs. 

This strategic design keeps the network efficient and 

the devices sustainable under IoT power limits. The 

following subsection of the paper will describe the IDS's 

Multi-Attack Detection Process features and benefits. 
 
Table 1: Simulation environment 1 configuration 

Work Methodology used Used dataset Work limitations 

Momand et al. (2021) Machine learning 
(SVM, PCA) 

Complex dataset created 
using Cooja Simulator 

No attack simulations, limited evaluation 
metrics, and only 3 attacks detected 

Cakir et al. (2020) Deep learning (GRU) Datasets starting with "SSN" 

created in Contiki OS / Cooja 
Simulator 

Only one attack was detected, no details about 

attack simulations, and limited details about the 
generated dataset 

Belavagi and Muniyal 
(2020) 

Machine learning No dataset used Nodes' energy impacted, limited details about 
attack simulations, 4 possibly detected attacks. 

Zahra et al. (2022) Machine learning 
(Light Gradient 
Boosting Machine) 

Self-generated dataset Only 2 attacks detected limited attacks impact 
analysis and limited dataset details. 

The proposed work Deep learning 

techniques (MLP) 

Multi-attacks dataset for the 

detection of 10 different RPL 
routing attacks  

- 
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Fig. 1: Multi-attack detection methodology 
 

 
 
Fig. 2: Multi-attack classification process 

Materials and Methods 

A complete assessment of the RPL multi-attack 

detection framework has been performed by conducting 

extensive simulations as shown in Table (3) designed to 

mimic real-world IoT network situations. Datasets have 

been built from simulations that replicated both benign 

and malicious traffic events. 

This study presents a comprehensive dataset that 

encompasses routine network traffic as well as several attack 

scenarios, including black holes, selective forwarding, 

sinkholes, routing table overload, DIS flooding, DAO 

flooding, DIO flooding, version number, and rank attacks. 

The Cooja simulator was utilized to build this dataset. The 

specific makeup of various traffic scenarios is displayed in 

Table (2), based on the quantification of malicious and 

benign packets for each type of attack. 

The simulations, together with the underlying dataset, 

will be utilized to train and verify the deep learning 

models for their efficacy in countering various RPL 

attacks on IoT networks. 

The sample maps show the network topology in both 

normal and attack scenarios in Figs. (3-4). 

 
Table 2: Simulations configuration 

Parameters Values 

Node type SKY Mote 

OS version Contiki 3.0  

Routing protocol RPL 

Radio medium Unit disk graph 

Medium: Distance loss 

OF MRHOF 

Tx Range 50/100 m 

Interface range 50/100 m 

Simulation area 100100 m 

MTU Size 1280 Byte 

Simulation duration 60 min 

No. of sender nodes 23 

No. of sink node1 1 

No. of repetitions 5 

 
Table 3: Simulations scenarios 

Scenario 
Malicious 
packets 

Benign 
packets 

Total 
packets 

Legitimate 0 100,258 100,258 

Blackhotenle 49,116 30,366 79,482 

Selective forward 36,614 24,495 61,109 

Sinkhole 52,718 35,820 88,538 

Routing table overload 34,249 21,102 55,351 

DIS flooding 46,914 31,449 78,363 

DAO flooding 31,276 20,973 52,249 

DIO flooding 45,928 32,272 78,200 

Version number 54,070 33,753 87,823 

Rank 51,399 33,129 84,528 

Routing table 
falsification  

52,477 32,184 84,661 

Total 454,781 395,801 850,562 



Ayoub Krari et al. / Journal of Computer Science 2025, 21 (4): 836.850 

DOI: 10.3844/jcssp.2025.836.850 

 

839 

 
 
Fig. 3: Multi-attack classification process 
 

 
 
Fig. 4: Multi-attack classification process 

 

Normal Simulation Results  

Historical Power Consumption 

The power usage as shown in Fig. (5) trends of various 

IoT nodes over time under normal operating conditions. 

The graph in Fig. (5) shows the power consumption (in 

mW) on the y-axis and time on the x-axis, with each line 

representing a different node in the network.  

The data indicates a general trend of high-power 
consumption initially, followed by a gradual decrease and 

stabilization over time. This pattern suggests that the 

nodes experience a higher load at the beginning, 

potentially due to initial network setup and 

communication overhead, before settling into a more 

stable, lower power state.  

The variations between the lines also highlight the 

different power requirements of individual nodes, 

possibly due to their roles or distances from the network's 

root node. Understanding these power consumption 

patterns is crucial for optimizing energy efficiency and 

extending the lifespan of IoT networks. 

Latency 

The Latency graph in Fig. (6) indicates the amount of 

time delay in packet transmission across a network. The 
flat straight line is always at the top to indicate a low and 
stable latency value that speaks for the effectiveness and 
reliability of inter-node communications. 

This is the bar chart of the power consumption for each 
node, broken down into different components: LPM, 
CPU, radio listening, and radio transmission.  

It can be clearly noted that radio listening and 
transmission activities dominate the major share in 
consuming power, which is very critical in keeping the 
network connected and communication alive. 

Beacon Interval 

The beacon interval graph in Fig. (7) was obtained from 
the time intervals by which nodes transmitted beacon 
signals. From the increasing trend in the graph, perhaps 
there could have been an adaptive mechanism whereby 

nodes changed their beacon intervals with time for 
optimum network performance to avoid a lot of collisions. 
 

 
 
Fig. 5: Historical Power Consumption during normal simulation 
 

 
 
Fig. 6: Latency during normal simulation 
 

 
 
Fig. 7: Beacon interval during normal simulation 
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Neighbor Count 

This graph in Fig. (8) describes the number of 

neighboring nodes for every node during the simulation.  

A consistent count indicates stable network 

topology and reliable connectivity amongst the nodes 

(Pushpalatha et al., 2021). 

Packet Reception 

According to the graph depicted in Fig. (9), which 

shows the total number of packets received, the total 

number of packets received was 220, with each of the 24 

nodes sending out 220 packets. As a result, it is possible 

to draw the conclusion that there was no loss of packets, 

which demonstrates that the network is very reliable and 

efficient while operating under typical circumstances. 

Average Radio Duty Cycle 

An illustration of the typical radio duty cycle for each 

node is presented in the form of a bar chart for Fig. (10).  

The figure illustrates the percentage of time that the 

radio is operational for the purposes of transmitting and 

listening to broadcasts. A duty cycle that is correctly 

balanced demonstrates that the radio is being utilized in a 

productive manner.  

This indicates that the radio is utilized as little as 

possible while still delivering sufficient network 

performance. Therefore, the quantity of energy that is 

consumed will decrease as a result of this. 

Packet Loss 

The graph of lost packets that can be found in Fig. (11) 

provides an indication of the quantity of packets that have 

been lost in relation to the passage of time.  

One interpretation of the flat line at 0 is that it shows 

that there were no packets lost during the experiment.  

This interpretation is possible. This would be an 

indication of how dependable the network is as well as how 

resilient the communication is under these circumstances. 

 

 
 
Fig. 8: Nighbor count during normal simulation 

 
 
Fig. 9: Received packets during normal simulation 

 

 
 
Fig. 10: Average Radio during normal simulation 

 

 
 
Fig. 11: Packets loss during normal simulation 

 

Simulation Results During Attack Scenarios 

The graphs (Figs. 12-14) illustrate various types of 

attacks on the IoT network, highlighting changes in power 
consumption, packet loss, and beacon intervals. 

The graph in Fig. (12) represents the Instantaneous 

power consumption by nodes under a flooding attack 

test indicating a high spike in power consumption, 

especially in radio listening and transmission activities. 

Thus, it proves an increase in network activities and 

load due to flooding. 
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Fig. 12: Power consumption during a flooding attack 
 

 
 
Fig. 13: Packets loss during a blackhole attack simulation 
 

 
 
Fig. 14: Beacon interval during attack simulation 
 

The graph in Fig. (13) represents packet loss during 

the blackhole attack showing that 104 packets were 

received from 24 nodes and an approximation of lost 

packets is 2. The steep rise of lost packets corresponds to 

the disruption caused by the blackhole attack where 

malicious nodes drop packets instead of forwarding, 

which causes immense loss in data. 

In attacks on the version number, the graph in Fig. (14) 

shows the beacon intervals in irregular and large intervals, 

which means a lot of network instability. Nodes are 
puzzled by frequent topological changes resulting from 

the malicious manipulation of version numbers; normal 

network operations are disturbed. 

All these results clearly demonstrated the negative 
effect of certain kinds of attacks on the IoT network's 
performance. On the other hand, huge changes in power 
consumption, packet loss, and beacon intervals under 
different scenarios of attack infer a strong need for 
efficient detection and mitigation schemes to ensure 
resilience against attacks and reliability in the operations 
of networks (Alazab et al., 2023). 

Features Selection 

Table (4) summarizes the key features of common 
attacks on the RPL protocol. The listed attributes 
encompass disruptions to the DODAG structure, induced 
queuing and routing delays, direct packet loss, packet loss 
via overhead, and the possibility of collaboration and 

forgery (Alfriehat et al., 2024).  
This taxonomy helps to enhance comprehension of the 

methodology of each attack and assists in the categorization 
and identification of network security mechanisms: 
 
 The blackhole attack is characterized by the 

malicious node absorbing packets without 
forwarding them, resulting in direct packet loss. This 
attack leaves no trace in terms of overhead or delays 
(Krari et al., 2021) 

 Selective forwarding is an attack where packets are 
dropped, resulting in direct packet loss. However, 
unlike a Blackhole attack, this method does not 

necessarily impact the DODAG structure or cause 
delays (Krari et al., 2024) 

 The sinkhole attack is a deceptive tactic that 
manipulates network traffic by masquerading a 
malicious node as the most efficient route. This 
insidious maneuver disrupts the DODAG structure 
and can lead to congestion and delays as it attracts an 
unusually high volume of traffic (Zaminkar and 
Fotohi, 2020) 

 The DAO flood attack aims to compromise the 
integrity of the DODAG by overloading it with a 
large number of DAO messages. This flood results in 

increased overhead and packet loss, which can 
potentially lead to the dissemination of false routing 
information and the risk of forgery (Krari et al., 2024) 

 The overload of the routing table can cause nodes to 
exceed their capacity, resulting in queuing delays and 
packet loss. This occurs due to the additional 
overhead, without directly impacting the 
transmission of packets (Krari and Hajami, 2024) 

 The act of providing inaccurate routing information 
can result in routing delays and packet loss, which in 
turn can disrupt the formation of the DODAG 
network structure, this attack, known as the Version 

Number Attack, has a significant impact on the 
DODAG versioning. It results in nodes having 
outdated or incorrect views of the DODAG structure, 
which in turn leads to packet loss and potential 
forgery within the network (Patel, 2022) 
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 The rank attack compromises the DODAG by 

advertising a false rank, resulting in routing delays and 

potential forgery as it misrepresents the node's position 
in the network hierarchy (Boudouaia et al., 2020) 

 DIO flooding is a network issue that occurs when 

an excessive number of DIO messages are sent, 

causing congestion and packet loss in the DODAG 

(Krari et al., 2024) 

 The DIS Flood attack specifically focuses on the 

DODAG structure by flooding the network with DIS 

messages. This results in increased overhead and 

packet loss (Krari et al., 2024) 

 

This classification provides valuable insights for the 
formulation of defensive strategies. By gaining a 

comprehensive understanding of the network features 

that each attack targets, security measures can be 

customized to better detect and mitigate these threats. 

Considering these attack characteristics is crucial when 

designing a comprehensive security solution for RPL-

based IoT networks.  

Features Extraction 

The provided Table (5) presents key features crucial 
to the functionality of the Intrusion Detection System 

(IDS) in an RPL-based IoT network. The IDS is 

designed to detect and respond to various threats, 

highlighting the diverse capabilities of each feature 

(Garcia Ribera et al., 2022). 

Presented below is a scholarly analysis of the table, 

crafted in a concise and academic manner: 

 

 Feature ƒ1 is an important indicator for detecting 

Sinkhole attacks, which involve diverting traffic to a 

malicious node and anomalies in Rank, where a node 
falsely advertises its position in the network 

hierarchy (Omar et al., 2024) 

 Feature ƒ2 helps identify routing table overload, 

which occurs when there is an excessive propagation 

of route information, and routing table falsification, 

which involves the dissemination of corrupt routing 

information (Popoọla, 2023) 

 Feature ƒ3 plays a crucial role in identifying two 
types of attacks: DAO Flooding, which overwhelms 

the network with excessive route information, and 

Sinkhole attacks, which involve redirecting traffic to 

a compromised node. By monitoring the number of 

DAO messages received, these attacks can be 

detected (Kumari and Jain, 2023) 

 Feature ƒ4, the number of DAO messages transmitted, 

is crucial for identifying DAO Flooding, a potential 

attack where the network is flooded with an excessive 

amount of DAO messages (Wadhaj et al., 2020) 

 Feature ƒ5 is an important metric used to detect 
DIS Flooding attacks, which aim to overload the 

network with unnecessary solicitation messages 

(Hamedani, 2023) 

 Feature ƒ6 is crucial in identifying Blackhole attacks, 

where packets are dropped, and Selective Forwarding 

attacks, where only specific packets are forwarded. It 

plays a vital role in recognizing the count of 

application packets received (Muzammal et al., 2022) 

 Feature ƒ7, which measures the number of control 

packets transmitted, plays a crucial role in detecting 

Blackhole and Selective Forwarding attacks by 
analyzing outbound traffic (Malik et al., 2022) 

 Feature ƒ8 offers valuable information on the ratio of 

transmitted to received application packets. It can help 

identify routing table overload situations, where a 

significant difference in this ratio may suggest a network 

that is under excessive strain (Ashraf et al., 2021) 

 Feature ƒ9 is an important attribute for detecting 

attacks on Rank and Version Number. It is directly 

linked to a node's reliability and position within the 

network's topology (Bang and Rao, 2022) 

 Feature ƒ10, the RPL Version Number is monitored 
to identify any inconsistencies in version numbers 

that could indicate potential Version Number attacks 

targeting the coherence of the DODAG version 

(Shirafkan et al., 2021) 

 
Table 4: Attack features 

Attack DODAG 
Queueing 
delay 

Routing 
delay 

Packet loss 
directly 

Packet loss 
via overhead Collaboration Forgery 

Blackhole 
   

✓ 
   

Selective forward 
   

✓ 
   

Sinkhole ✓ 
 

✓ 
    

DAO flood ✓ 
 

✓ 
    

Routing Table Overload  
  

✓ 
 

✓ ✓ 
 

Routing table falsification ✓ 
    

✓ ✓ 

Version Number ✓ 
   

✓ 
 

✓ 

Rank ✓ 
 

✓ 
    

DIO flood ✓ 
 

✓ ✓ ✓ 
  

DIS flood ✓   ✓ ✓ ✓     
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Table 5: Extracted features 

# Features Attacks detected 

ƒ1 Number of DIO messages received Sinkhole, rank, routing table falsification 

ƒ2 Number of DIO messages transmitted Routing table overload, routing table falsification 

ƒ3 Number of DAO messages received DAO flooding, sinkhole, routing table falsification 

ƒ4 Number of DAO messages transmitted DAO flooding 

ƒ5 Number of DIS messages transmitted DIS flooding, routing table falsification 

ƒ6 Number of control packets received Blackhole, selective forward, routing table falsification 

ƒ7 Number of application packets transmitted Blackhole, selective forward 

ƒ8 The ratio of Transmitted vs received application packets Routing table overload, routing table falsification 

ƒ9 Node rank Rank, version number, routing table falsification 

ƒ10 Number of RPL version number Version number 

 

The IDS is designed to effectively detect a broad 
spectrum of attacks by closely monitoring different aspects 

of network behavior.  

This comprehensive approach enhances the security 

and resilience of IoT environments, protecting them against 

sophisticated threats. 

Historical Sequence of Feature 

In this approach, network traffic is analyzed in discrete 

time windows to assess the behavior of each node within 

the network. 
Formally, let N represent an RPL network consisting 

of ∣N∣ nodes and let (𝑊𝑖
𝑡) denote the traffic collected at 

the ith node, ni, during the time window t.  

The approach constructs a feature set F, consisting of 

10 distinct features, to characterize the traffic both 

quantitatively and qualitatively, as delineated in the 

referenced Table (5). 

The first eight features, ƒ1-8, are quantitative and 
provide metrics on the volume of traffic, such as the 
number of received or forwarded control packets (e.g., 
DIO messages). These features are instrumental in 
gauging the traffic load managed by each node. 

The remaining features, ƒ9-10, are qualitative and 

offer insights into the status of the node itself, such as its 
rank in the RPL topology. 

Each node's traffic (𝑊𝑖
𝑡) is then encapsulated into a 

feature vector 𝐹𝑖
𝑡, which is expressed as: 

 
𝐹𝑖
𝑡 = [𝑓1(𝑊𝑖

𝑡), 𝑓2(𝑊𝑖
𝑡), . . . , 𝑓11(𝑊𝑖

𝑡)] 
 

This vector forms the basis for the analysis, allowing us 

to apply machine learning or statistical techniques to detect 

anomalies that may indicate security threats such as 

intrusion attempts or misconfigurations within the network. 
The network representation schema, depicted in 

Fig. (15), illustrates how each node n maintains its own 

behavioral history.  

These histories exhibit distinct patterns that differ 

across various features, reflecting the unique operational 

roles and network positions of the nodes. 

Fig. (15) provides an overview of the feature extraction 

process within the proposed security framework, focusing 

on the analysis of IoT network traffic. At each discrete time 

window (𝑊𝑖
𝑡), a feature vector 𝐹𝑖

𝑡  is extracted for every 

node-i in the network. This vector is the culmination of 10 
representative features, carefully selected for their 

relevance in characterizing network behavior and 

identifying potential security threats. 

For each node i, the behavior Bi is constructed based 

on the composition of its respective feature vectors 𝐹𝑖
𝑡 

over time.  

These behavioral compositions allow for temporal 

analysis of network activity, facilitating the detection of 

anomalies or irregularities that may indicate malicious 

actions or network vulnerabilities. 

 The systematic aggregation of these feature vectors 

enables a robust security posture, allowing for proactive 

threat detection and response within the IoT network. 

In the proposed security framework, the features are 

extracted from the traffic received at each node to 

characterize the device's behavior.  

For each node ni, the extracted feature vector 𝐹𝑖
𝑡 

encapsulates the quantifiable attributes of the traffic at a 

given time window t. This vector is then sequentially 

integrated into the behavioral history Bi of the node, 

which is formally represented as: 
 

𝐵𝑖 = [𝐹0
𝑡 , . . . , 𝐹𝑖

𝑡] 
 

Sample of Node Behaviors During Attack Scenarios  

The historical sequence of feature vectors allows for a 
comprehensive behavioral analysis over time. 

Figures (16-17) provide a visual comparison of 

behavioral patterns related to the features ƒ5 and ƒ7 
specifically, the number of DIS Messages Transmitted and 
the number of application packets transmitted. These figures 
reveal the distinct activity profiles of three nodes, labeled 
Node 4, Node 21, and Node 9. The depicted patterns reflect 
the nodes' varying roles and positions within the RPL 
hierarchy, as modeled in a simulation environment. 

In Fig. (16), the fluctuation in the number of DIS 
Messages transmitted suggests different exposure levels to 
DIS Flooding attacks, with each node responding according 
to its unique network context. 

Meanwhile, Fig. (17) illustrates the transmission 

activity of application packets, providing insights into 
how each node contributes to the network's functionality, 
potentially indicating susceptibility to Blackhole or 
Selective Forward attacks. 
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Fig. 15: Historical sequence of nodes' behaviors and features 

 

 
 

Fig. 16: Number of DIS Messages Transmitted (ƒ5) 
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Fig. 17: Number of control packets Received (ƒ6) 
 
Table 6: Sample of the dataset 

No Time 

Source 

Node 

Destination 

Node Length Info ƒ1 ƒ2 ƒ3 ƒ4 ƒ5 ƒ6 ƒ7 ƒ8 ƒ9 ƒ10 LABEL 

1 0.475 15 9999 64 2 10 5 8 7 15 100 150 1.205 9 1 0 

2 0.487 25 9999 64 2 11 100 9 6 200 300 400 1.312 10 2 1 

3 0.493 2 9999 64 2 9 4 10 8 12 80 120 1.507 11 1 0 

4 0.499 25 9999 64 2 12 90 7 5 180 270 360 1.329 12 2 1 

5 0.511 8 9999 64 2 10 6 9 7 14 90 130 1.413 10 1 0 

6 1.301 25 9999 64 2 11 110 8 6 220 330 440 1.301 9 3 1 

7 1.31 7 9999 64 2 9 7 10 8 16 95 140 1.519 11 1 0 

8 1.318 25 9999 64 2 12 95 7 5 190 285 380 1.324 12 2 1 

9 1.326 15 9999 64 2 10 8 9 7 18 85 125 1.546 10 1 0 

10 1.334 25 9999 64 2 11 105 8 6 210 315 420 1.378 9 3 1 

11 1.935 2 9999 64 2 9 9 10 8 20 100 150 1.502 11 1 0 

 

The comparative analysis facilitated by these figures 

highlights the precision of the feature extraction 

methodology, which successfully identifies and 

differentiates the operational behaviors of individual 

nodes in the IoT network. 

This differentiation is critical for the accurate 

detection and classification of potential security threats 

based on the traffic patterns observed (Table 6). 

Results and Discussion 

Model Accuracy 

The graph in Fig. (18) illustrates the performance of 

the Multilayer Perceptron (MLP) model throughout 500 

epochs, providing valuable insights into its ability to learn 

and generalize. The training accuracy quickly reaches a 

high level of approximately 99%, suggesting successful 

learning from the training data. Nevertheless, the testing 

accuracy remains consistently at around 90%, with minor 

fluctuations. This indicates that the model is capable of 

effectively identifying various RPL routing attacks. 

However, it is important to note there may be slight 

variations in its performance when dealing with 

unfamiliar data. The disparity between the accuracy of the 

model during training and testing draws attention to a 

possible overfitting concern. This occurs when the model 

becomes too focused on learning specific patterns from 

the training set, which may not be applicable to new data.  

Nevertheless, the model's high testing accuracy serves 

as a strong indicator of its effectiveness in real-world 

scenarios (Egbueri and Agbasi, 2022). Potential future 

enhancements involve the implementation of 

regularization or dropout techniques to improve 

generalization and further reduce overfitting. 

Model Receiver Operating Characteristic ROC  

The "Receiver Operating Characteristic (ROC)" graph 

in Fig. (19) depicts the performance of the Multilayer 
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Perceptron (MLP) model in differentiating between 

normal and malicious traffic in Internet of Things (IoT) 

networks. The Receiver Operating Characteristic (ROC) 

curve is a graphical representation that illustrates the 

relationship between the true positive rate (also known as 

sensitivity) and the false positive rate (Patel et al., 2021). 

This curve serves as a visual indicator of the model's 

ability to distinguish between different classes or 

categories. The proximity of the curve to the upper left 

corner indicates a high level of accuracy, as evidenced by 

an Area Under the Curve (AUC) value of 0.92. The high 

AUC value indicates that the model possesses a strong 

capability to accurately classify both positive and 

negative cases, thereby reducing the occurrence of false 

positives and false negatives. The steep ascent of the 

curve in the direction of the upper left corner indicates that 

the model exhibits a consistently high rate of correctly 

identifying positive instances while keeping the rate of 

incorrectly identifying negative instances low. This 

demonstrates the model's strength and dependability in 

accurately detecting various RPL routing attacks in the 

Internet of Things (IoT) environment. 

 

 
 

Fig. 18: Model accuracy 

 

 
 

Fig. 19: Model receiver operating characteristic 

Model Confusion Matrix 

A comprehensive analysis of the classification 

performance of the Multilayer Perceptron (MLP) model 

in differentiating between benign and malicious packets 

in the IoT network is presented in the "Confusion Matrix" 

graph in Fig. (20).  

The matrix indicates that 78,384 true negatives 

(properly recognized normal packets) and 74,046 true 

positives (correctly identified malicious packets) were 

obtained out of the total predictions.  

Nevertheless, there were a total of 6,019 false 

positives, which refer to normal packets that were 
mistakenly identified as malicious, and 2,024 false 

negatives, which refer to poisonous packets inaccurately 

identified as normal.  

The model's high true positive and true negative rates 

demonstrate its robust capability to precisely categorize 

various forms of network traffic. However, the existence 

of certain incorrect positive and negative results indicates 

that there is potential for enhancing the sensitivity and 

specificity of the model.  

The findings validate the model's general efficacy in 

safeguarding IoT networks, while also emphasizing the 
need for additional refinement to improve the accuracy 

of detection. 

Model Precision-Recall Curve 

A detailed representation of the model's ability to 
differentiate between true positives and false positives at 
various thresholds is shown in Fig. (21).  

With an Area Under the Curve (AUC) of 0.91, the 
curve plots recall (the ratio of true positives to the sum of 

true positives and false negatives) versus precision (the 
ratio of true positives to the sum of true positives and 
erroneous negatives). 

The achieved high AUC value suggests that the model 
successfully achieves a favorable equilibrium between 
precision and recall, hence reducing the occurrence of false 
positives and maximizing the capture of genuine positives.  
 

 
 
Fig. 20: Model confusion matrix 
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Fig. 21: Model precision-recall curve 
 

The curve exhibits a pattern where the model maintains 

a high level of precision while recall declines.  

However, there is a significant decline towards the 

end, indicating that the model's capacity to sustain both 

high precision and recall concurrently is tested under 

specific circumstances.  
The model's high precision-recall AUC validates its 

efficacy in precisely identifying certain RPL routing 

exploits in IoT networks.  

However, there is still a need for additional refinement 

to enhance its performance in all situations. 

Discussion and Comparison with other Approaches  

Various approaches, including the "Proposed 

Work," are compared in Table (7) to several other 

methods in their ability to detect a range of RPL routing 

attacks. Blackhole, Selective Forwarding, Sinkhole, 

Continuous Sinkhole, DIS Flooding, DAO Flooding, 

DIO Flooding, Wormhole, Version Number, Rank, 

Worst Parent, Falsification attacks, and routing table 

overload are among the attacks being compared. A 

comprehensive framework is presented to detect many 

types of attacks. 

The exhaustive identification of several attack 

categories demonstrates the adaptability and resilience 

of the suggested method in safeguarding IoT networks. 

Raghavendra et al. (2022) provide detection of 

Blackhole, Selective Forwarding, Sinkhole attacks, as 

well as Rank attacks. Ioulianou et al. (2022) largely 

examine Blackhole and Rank attacks. Both Pu (2020); 

Almusaylim et al. (2020) address the topics of Rank 

and Version Number attacks.  

The detection of Wormhole and Version Number attacks 

has been accomplished by Osman et al. (2021); Zahra et al. 

(2022). The works of Momand et al. (2021); Cakir et al. 

(2020) address the Wormhole vulnerability and exhibit some 

similarities with rank attacks.  

The proposed work exhibits enhanced coverage 

throughout a wider spectrum of attacks in comparison 

to alternative approaches. The extensive coverage of 

the proposed solution enhances its effectiveness in 

offering robust security against RPL routing attacks in 

IoT networks. 

 

Table 7: Comparison with other approaches 

Attacks Proposed work 

Raghavendra 

et al. (2022) 

Ioulianou 

et al. 

(2022) 

Pu 

(2020) 

Almusaylim 

et al. (2020) 

Osman 

et al. 

(2021) 

Zahra 

et al. 

(2022) 

Momand 

et al. 

(2021) 

Cakir 

et al. 

(2020) 

Blackhole ✓ ✓ ✓             

Selective 

forwarding 
✓ ✓               

Sinkhole ✓ ✓               

Continuous 

Sinkhole 
✓                 

DIS 

Flooding  
✓             ✓ ✓ 

DAO 

Flooding 
✓                 

DIO 

Flooding 
✓                 

Wormhole             ✓     

Version 

Number 
✓       ✓     ✓   

Replay                   

Rank ✓ ✓ ✓   ✓ ✓ ✓ ✓   

Worst parent                   

Falsification 

Attacks 

                  

Routing 

table 

overload 

✓                 
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Conclusion 

The present research devised an extensive detection 

framework for various RPL routing exploits in IoT 
networks by employing a Multilayer Perceptron (MLP) 

model. Based upon a dataset produced by thorough 
simulations, the model successfully differentiated 

between valid and malicious communications in ten 
distinct attack scenarios. The model demonstrated 

excellent performance measures, including a Receiver 
Operating Characteristic (ROC) Area Under the Curve 

(AUC) of 0.92 and a Precision-Recall AUC of 0.91. 
These results indicate its robust capacity to identify 

attacks with reduced occurrence of false positives and 
negatives. The observed outcomes highlight the efficacy 

of the suggested methodology in augmenting the 
security and dependability of IoT networks against 

various advanced threats. 
In order to enhance the model's generalization 

capabilities and mitigate overfitting, future research must 
concentrate on integrating methods such as regularization, 

dropout, and data augmentation. Additionally, investigating 
alternative machine learning architectures, such as 

Convolutional Neural Networks (CNNs) or Recurrent 
Neural Networks (RNNs), could result in additional 

enhancements in the accuracy and resilience of detection. 
Incorporating a wider range of attack types and real-world 

traffic patterns into the dataset would further improve the 
model's suitability in other IoT domains. Integration of this 

detection framework with real-time adaptive security 
systems has the potential to provide enhanced and prompt 

protection, therefore bolstering the resilience of IoT 
networks against ever-changing cyber threats. 
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