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Abstract: The paper presents a dynamic model that works with variable 

internal damping, applicable directly to rigid memory mechanisms. If the 

problem of elasticity is generally solved, the problem of system damping is 

not clear and well-established. It is usually considered a constant "c" value 

for the internal damping of the system and sometimes the same value c and 

for the damping of the elastic spring supporting the valve. However, the 

approximation is much forced, as the elastic spring damping is variable and 

for the conventional cylindrical spring with constant elasticity parameter 

(k) with linear displacement with force, the damping is small and can be 

considered zero. It should be specified that damping does not necessarily 

mean stopping (or opposition) movement, but damping means energy 

consumption to brake the motion (rubber elastic elements have 

considerable damping, as are hydraulic dampers). Metal helical springs 

generally have a low (negligible) damping. The braking effect of these 

springs increases with the elastic constant (the k-stiffness of the spring) and 

the force of the spring (P0 or F0) of the spring (in other words with the arc 

static arrow, x0 = P0/k). Energy is constantly changing but does not 

dissipate (for this reason, the yield of these springs is generally higher). The 

paper presents a dynamic model with a degree of freedom, considering 

internal damping of the system (c), damping for which it is considered a 

special function. More precisely, the cushioning coefficient of the system 

(c) is defined as a variable parameter depending on the reduced mass of the 

mechanism (m* or J reduced) and the time, i.e., c depends on the derivative 

of m reduced in time. The equation of the differential movement of the 

mechanism is written as the movement of the valve as a dynamic response. 

 

Keywords: Robots, Mechatronic Systems, Structure, Dynamics, Dynamics 
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Introduction 

Since today's robotics have grown at a rapid pace, it 
is necessary to better understand the phenomena that 
occur in robotic and mechatronic systems. Robots have 
not only penetrated to create microchips in electronics 
but also in medicine, where it helps to perform difficult 
operations, especially where precision is needed and the 
size is small and any human error could be fatal to the 
patient. Robots assist the doctor in heart, brain, kidney 
operations, not to mention bone implants and repair of 
damaged bones, cartilage and muscles. In this area, new 
materials adapted to the requirements of the human body 
also play an important role. Robots can usually do things 
much more accurate than a man. This provides the first 
motivation for using CAD/CAM systems. Robots can be 
used successfully if the patient has been radiated (e.g., 

with X-radiation), thus not endangering the health of the 
medical team. Since ancient times, the imagination of 
mankind has been concerned with the idea of making 
cars equipped with artificial intelligence to execute 
operations similar to those performed by man. 
Technicians have been used for many years in various 
fields other than medical, such as the automotive 
industry, the underwater environment, the alien space, or 
the areas at risk of nuclear radiation. 

A robot is a mechanic or virtually artificial 
engineer. The robot is a system composed of several 
elements: Mechanical, sensors and actuators as well as 
a steering mechanism. The mechanics determine the 
appearance of the robot and the possible movements 
during operation. Sensors and actuators are used when 
interacting with the system environment. The targeting 
mechanism ensures that the robot accomplishes its goal 
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successfully, for example by evaluating sensor 
information. This mechanism regulates the engines and 
plans the movements to be made. Robots with human 
form are called androids. 

The basics of today's robots are far ahead. The first 

models of cars can be called automated (coming from the 

automated Greek, moving alone). They could do only 

one goal, being constrained by construction. 

The Greek mathematician, Archytas, has, according 

to some accounts, built one of these automated primes: A 

propelled steamed pigeon that could fly alone. This 

wooden cavern was filled with air under pressure. It had 

a valve that allowed opening and closing by a 

counterweight. There have been many models over the 

centuries. Some made work easier and others served to 

people's amusement. 

With the discovery of the 14th-century mechanical 

clock, new and complex possibilities have opened up. 

Not long afterward, the first machines appeared, which 

resembled the robots today. It was possible, however, 

that the movements followed one another without the 

need for manual intervention in that system. 

The development of electro-technics in the twentieth 

century brought with it a development of robotics. 

Among the first mobile robots are the Elmer and Elsie 

system built by William Gray Walter in 1948. These 

tricycles could point to a light source and recognize 

collisions in the surroundings. 

The year 1956 is considered as the birthday of the 

industrial robot. George Devol has applied this year in 

the US for a patent for "scheduled article transfer". A 

few years later he built together with Joseph 

Engelberger UNIMATE. This robot of approx. two tons 

was first introduced into the installation of TV 

iconoscopes and then found its way into the automotive 

industry. The programs for this robot were saved in the 

form of directional commands for motors on a 

magnetic cylinder. Since then, industrial robots as 

UNIMATE have been introduced in many production 

areas and are continually being developed to meet the 

complex demands that are required. 

Intelligent robots possess elements of artificial 

intelligence. They can define their own tasks to solve 

particular problems by considering information about 

the environment (organized in the environment model) 

and can modify their actions according to the 

information provided by the perception system. 

Intelligent robots can be completely autonomous, their 

intelligence depending on the purpose for which they 

are built. The intelligent robot can be defined as a 

system able to perform tasks that require certain human 

qualities: Adaptation, learning, environmental imaging, 

prediction and planning, etc. 

The assembly of the command system, the drive 

system and the perception system is the driving system. 

The mechanical system is the driven system. The robot's 

structure can, therefore, be divided into the mechanical 

structure and the electronic structure. The robot interacts 

with the environment by means of the mechanical 

structure, ensuring the displacement, positioning and 

orientation of the final effector. 

Workspace is the environment in which the robot 

evolves to accomplish the planned task, populated with 

physical, fixed or mobile objects. 

The useful workspace is described by the movements 

of all kinematic couplings within the limits defined by 

the drive motors. Throughout the movement of the robot 

elements, its effector must be contained within the useful 

workspace. In the case of a mobile robot, defining and 

shaping the workspace requires a global approach to the 

entire robot action zone, so also to the obstacles. 

The development and diversification of road vehicles 

and general vehicles, especially of cars, together with 

thermal engines, especially internal combustion engines 

(being more compact, robust, more independent, more 

reliable, stronger, more dynamic etc.)., has also forced 

the development of devices, mechanisms and component 

assemblies at an alert pace. The most studied are power 

and transmission trains. 

The four-stroke internal combustion engine (four-

stroke, Otto or Diesel) comprises in most cases (with the 

exception of rotary motors) and one or more camshafts, 

valves, valves and so on. 

The classical distribution mechanisms are robust, 

reliable, dynamic, fast-response and although they 

functioned with very low mechanical efficiency, taking 

much of the engine power and effectively causing 

additional pollution and increased fuel consumption, they 

could not be abandoned until the present. Another 

problem was the low speed from which these mechanisms 

begin to produce vibrations and very high noises. 

Regarding the situation realistically, the mechanisms 

of cam casting and sticking are those that could have 

produced more industrial, economic, social revolutions 

in the development of mankind. They have contributed 

substantially to the development of internal combustion 

engines and their spreading to the detriment of external 

combustion (Steam or Stirling) combustion engines. 
The problem of very low yields, high emissions and 

very high power and fuel consumption has been greatly 
improved and regulated over the past 20-30 years by 
developing and introducing modern distribution 
mechanisms that, besides higher yields immediately 
deliver a high fuel economy also performs optimal noise-
free, vibration-free, no-smoky operation, as the 
maximum possible engine speed has increased from 
6000 to 30000 [rpm]. 

The paper tries to provide additional support to the 

development of distribution mechanisms so that their 

performance and the engines they will be able to further 

enhance. 
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Particular performance is the further increase in the 

mechanical efficiency of distribution systems, up to 

unprecedented quotas so far, which will bring a major 

fuel economy. 

The current oil and energy reserves of mankind are 

limited. Until the implementation of new energy sources 

(to take real control over fossil fuels), a real alternative 

source of energy and fuel is even "the reduction in fuel 

consumption of a motor vehicle", whether we burn oil, gas 

and petroleum derivatives, whether we will implement 

biofuels first and later hydrogen (extracted from water). 

The drop in fuel consumption for a given vehicle type 

over a hundred kilometers traveled has been consistently 

since 1980 and has continued to continue in the future. 

Even if hybrids and electric motor cars are to be 

multiplied, let us not forget that they have to be charged 

with electricity, which is generally obtained by burning 

fossil fuels, especially oil and gas, in a current planetary 

proportion of about 60%. Can burn oil in large heat 

plants to warm up, have domestic hot water and 

electricity to consume and some of that energy is extra 

and we add it to electric cars (electric vehicles), but the 

global energy problem is not resolved, the crisis even 

deepens. This was the case when was electrified the 

railroad for trains, when it were generalized trams, 

trolleybuses and subways, consuming more electric 

power produced mainly from oil; oil consumption has 

grown a lot, its price has had a huge leap and now one 

looks at how the reserves disappear quickly. 

Generally, generalizing electric cars (though it is not 

really ready for this), one will give a new blow to oil and 

gas reserves. 

Fortunately, biofuels, biomass and nuclear power 

have developed very much lately (currently based on 

the nuclear fission reaction). These together with the 

hydroelectric power plants have managed to produce 

about 40% of the total energy consumed globally. 

Only about 2-3% of global energy resources are 

produced by various other alternative methods 

(despite the efforts made so far). 

This should not disarm us and abandon the 

implementation of solar, wind, etc. 

However, as a first necessity to further reduce the 

share of global energy from oil and gas, the first 

vigorous measures that will need to be pursued will be to 

increase biomass and biofuels production along with the 

widening of the number of nuclear power plants (despite 

some undesirable events, which only show that nuclear 

fission power plants must be built with a high degree of 

safety and in no way eliminated from now on and they 

are still the one that has been so far "a bad evil "). 

Alternative sources will take them on an 

unprecedented scale, but it expects the energy they 

provide to be more consistent in global percentages so 

that can rely on them in a real way (otherwise, one 

risks that all these alternative energies remain a sort of 

"fairy tale"). 

Hydrogen fuel energy "when it starts when it stops" 

so there is no real time now to save energy through them, 

so they can no longer be priority, but the trucks and 

buses could even be implemented now that the storage 

problems have been partially solved. The bigger problem 

with hydrogen is no longer the safe storage, but the high 

amount of energy needed to extract it and especially for 

its bottling. The huge amount of electricity consumed for 

bottling hydrogen will have to be obtained entirely 

through alternative energy sources, otherwise hydrogen 

programs will not be profitable for humanity at least for 

the time being. The authors thinking the immediate use 

of hydrogen extracted from the water with alternative 

energies would be more appropriate for seagoing vessels. 

Maybe just to say that due to his energy crisis (and 

not just energy, from 1970 until today), the production of 

cars has increased at an alert pace (but naturally) instead 

of falling and they have and were marketed and used. 

The world's energy crisis (in the 1970s) began to rise 

from around 200 million vehicles worldwide, to about 

350 million in 1980 (when the world's energy and 

global fuel crisis was declared), about 500 million 

vehicles worldwide and in 1997 the number of world-

registered vehicles exceeded 600 million (Rulkov et al., 

2016; Agarwala, 2016; Babayemi, 2016; Gusti and 

Semin, 2016; Mohamed et al., 2016; Wessels and Raad, 

2016; Maraveas et al., 2015; Khalil, 2015; Rhode-

Barbarigos et al., 2015; Takeuchi et al., 2015; Li et al., 

2015; Vernardos and Gantes, 2015; Bourahla and 

Blakeborough, 2015; Stavridou et al., 2015; Ong et al., 

2015; Dixit and Pal, 2015; Rajput et al., 2016; Rea and 

Ottaviano, 2016; Zurfi and Zhang, 2016a; 2016b;   

Zheng and Li, 2016; Buonomano et al., 2016a; 2016b; 

Faizal et al., 2016; Cataldo, 2006; Ascione et al., 2016; 

Elmeddahi et al., 2016; Calise et al., 2016; Morse et al., 

2016; Abouobaida, 2016; Rohit and Dixit, 2016; 

Kazakov et al., 2016; Alwetaishi, 2016; Riccio et al., 

2016a; 2016b; Iqbal, 2016; Hasan and El-Naas, 2016; 

Al-Hasan and Al-Ghamdi, 2016; Jiang et al., 2016; 

Sepúlveda, 2016; Martins et al., 2016; Pisello et al., 

2016; Jarahi, 2016; Mondal et al., 2016; Mansour, 

2016; Al Qadi et al., 2016b; Campo et al., 2016; 

Samantaray et al., 2016; Malomar et al., 2016; Rich and 

Badar, 2016; Hirun, 2016; Bucinell, 2016; Nabilou, 

2016b; Barone et al., 2016; Chisari and Bedon, 2016; 

Bedon and Louter, 2016; Santos and Bedon, 2016; 

Minghini et al., 2016; Bedon, 2016; Jafari et al., 2016; 

Chiozzi et al., 2016; Orlando and Benvenuti, 2016; 

Wang and Yagi, 2016; Obaiys et al., 2016; Ahmed et al., 

2016; Jauhari et al., 2016; Syahrullah and Sinaga, 2016; 

Shanmugam, 2016; Jaber and Bicker, 2016; Wang et al., 

2016; Moubarek and Gharsallah, 2016; Amani, 2016; 
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Shruti, 2016; Pérez-de León et al., 2016; Mohseni and 

Tsavdaridis, 2016; Abu-Lebdeh et al., 2016; 

Serebrennikov et al., 2016; Budak et al., 2016; 

Augustine et al., 2016; Jarahi and Seifilaleh, 2016; 

Nabilou, 2016a; You et al., 2016; Al Qadi et al., 2016a; 

Rama et al., 2016; Sallami et al., 2016; Huang et al., 

2016; Ali et al., 2016; Kamble and Kumar, 2016;   

Saikia and Karak, 2016; Zeferino et al., 2016;  

Pravettoni et al., 2016; Bedon and Amadio, 2016; Chen 

and Xu, 2016; Mavukkandy et al., 2016; Gruener, 2006; 

Yeargin et al., 2016; Madani and Dababneh, 2016; 

Alhasanat et al., 2016; Elliott et al., 2016; Suarez et al., 

2016; Kuli et al., 2016; Waters et al., 2016;   

Montgomery et al., 2016; Lamarre et al., 2016; Daud et al., 

2008; Taher et al., 2008; Zulkifli et al., 2008; 

Pourmahmoud, 2008; Pannirselvam et al., 2008; Ng et al., 

2008; El-Tous, 2008; Akhesmeh et al., 2008; 

Nachiengtai et al., 2008; Moezi et al., 2008; Boucetta, 

2008; Darabi et al., 2008; Semin and Bakar, 2008; Al-

Abbas, 2009; Abdullah et al., 2009; Abu-Ein, 2009; 

Opafunso et al., 2009; Semin et al., 2009a; 2009b; 2009c; 

Zulkifli et al., 2009; Marzuki et al., 2015; Bier and 

Mostafavi, 2015; Momta et al., 2015; Farokhi and 

Gordini, 2015; Khalifa et al., 2015; Yang and Lin, 2015; 

Chang et al., 2015; Demetriou et al., 2015; Rajupillai et al., 

2015; Sylvester et al., 2015; Ab-Rahman et al., 2009; 

Abdullah and Halim, 2009; Zotos and Costopoulos, 

2009; Feraga et al., 2009; Bakar et al., 2009; Cardu et al., 

2009; Bolonkin, 2009a; 2009b; Nandhakumar et al., 

2009; Odeh et al., 2009; Lubis et al., 2009; Fathallah and 

Bakar, 2009; Marghany and Hashim, 2009; Kwon et al., 

2010; Aly and Abuelnasr, 2010; Farahani et al., 2010; 

Ahmed et al., 2010; Kunanoppadon, 2010; Helmy and 

El-Taweel, 2010; Qutbodin, 2010; Pattanasethanon, 

2010; Fen et al., 2011; Thongwan et al., 2011; 

Theansuwan and Triratanasirichai, 2011; Al Smadi, 2011; 

Tourab et al., 2011; Raptis et al., 2011; Momani et al., 

2011; Ismail et al., 2011; Anizan et al., 2011; Tsolakis and 

Raptis, 2011; Abdullah et al., 2011; Kechiche et al., 2011; 

Ho et al., 2011; Rajbhandari et al., 2011; Aleksic and 

Lovric, 2011; Kaewnai and Wongwises, 2011; Idarwazeh, 

2011; Ebrahim et al., 2012; Abdelkrim et al., 2012;   

Mohan et al., 2012; Abam et al., 2012; Hassan et al., 

2012; Jalil and Sampe, 2013; Jaoude and El-Tawil, 2013; 

Ali and Shumaker, 2013; Zhao, 2013; El-Labban et al., 

2013; Djalel et al., 2013; Nahas and Kozaitis, 2013; 

Petrescu and Petrescu, 2014a; 2014b; 2014c; 2014d; 

2014e; 2014f; 2014g; 2014h; 2014i; 2015a; 2015b; 

2015c; 2015d; 2015e; 2016a; 2016b; 2016c; 2016d;      

Fu et al., 2015; Al-Nasra et al., 2015; Amer et al., 2015; 

Sylvester et al., 2015b; Kumar et al., 2015; Gupta et al., 

2015; Stavridou et al., 2015b; Casadei, 2015; Ge and 

Xu, 2015; Moretti, 2015; Wang et al., 2015; Antonescu 

and Petrescu, 1985; 1989; Antonescu et al., 1985a; 

1985b; 1986; 1987; 1988; 1994; 1997; 2000a; 2000b; 

2001; Aversa et al., 2017a; 2017b; 2017c; 2017d; 2017e; 

2016a; 2016b; 2016c; 2016d; 2016e; 2016f; 2016g; 

2016h; 2016i; 2016j; 2016k; 2016l; 2016m; 2016n; 

2016o; Cao et al., 2013; Dong et al., 2013; Comanescu, 

2010; Franklin, 1930; He et al., 2013; Lee, 2013; Lin et al., 

2013; Liu et al., 2013; Padula and Perdereau, 2013; 

Perumaal and Jawahar, 2013; Petrescu, 2011; 2015a; 

2015b; Petrescu and Petrescu, 1995a; 1995b; 1997a; 

1997b; 1997c; 2000a; 2000b; 2002a; 2002b; 2003; 2005a; 

2005b; 2005c; 2005d; 2005e; 2011a; 2011b; 2012a; 

2012b; 2013a; 2013b; 2013c; 2013d; 2013e; 2016a; 

2016b; 2016c; Petrescu et al., 2009; 2016; 2017a; 2017b; 

2017c; 2017d; 2017e; 2017f; 2017g; 2017h; 2017i; 2017j; 

2017k; 2017l; 2017m; 2017n; 2017o; 2017p; 2017q; 

2017r; 2017s; 2017t; 2017u; 2017v; 2017w; 2017x; 

2017y; 2017z; 2017aa; 2017ab; 2017ac; 2017ad; 2017ae; 

2018a; 2018b; 2018c; 2018d; 2018e; 2018f; 2018g; 

2018h; 2018i; 2018j; 2018k; 2018l; 2018m; 2018n). 

Materials and Methods  

The Peugeot Citroën Group in 2006 built a 4-valve 

hybrid engine with 4 cylinders the first cam opens the 

normal valve and the second with the phase shift. 

Almost all current models have stabilized at four 

valves per cylinder to achieve a variable distribution. 

In 1971, K. Hain proposes a method of optimizing the 

cam mechanism to obtain an optimal (maximum) 

transmission angle and a minimum acceleration at the 

output. In 1979, F. Giordano investigates the 

influence of measurement errors in the kinematic 

analysis of the camel. 

In 1985, P. Antonescu presented an analytical method 

for the synthesis of the cam mechanism and the flat 

barbed wire and the rocker mechanism. In 1988, J. 

Angeles and C. Lopez-Cajun presented the optimal 

synthesis of the cam mechanism and oscillating plate 

stick. In 2001 Dinu Taraza analyzes the influence of 

the cam profile, the variation of the angular speed of 

the distribution shaft and the power, load, 

consumption and emission parameters of the internal 

combustion engine. In 2005, Petrescu and Petrescu, 

present a method of synthesis of the rotating camshaft 

profile with rotary or rotatable tappet, flat or roller, in 

order to obtain high yields at the exit. 

In the paper (Wiederrich and Roth, 1974), there is 

presented a basic, single-degree, dual-spring model 

with double internal damping for simulating the motion 

of the cam and punch mechanism. In the paper 

(Fawcett and Fawcett, 1974) is presented the basic 

dynamic model of a cam mechanism, stick and valve, 

with two degrees of freedom, without internal damping. 

A dynamic model with both damping in the system, 
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external (valve spring) and internal one is the one 

presented in the paper (Jones and Reeve, 1974). 

A dynamic model with a degree of freedom, 

generalized, is presented in the paper (Tesar and 

Matthew, 1974), in which there is also presented a two-

degree model with double damping.  

In the paper (Sava, 1970) is proposed a dynamic 

model with 4 degrees of freedom, obtained as follows: 

The model has two moving masses these by vertical 

vibration each impose a degree of freedom one mass is 

thought to vibrate and transverse, generating yet another 

degree of freedom and the last degree of freedom is 

generated by the torsion of the camshaft. Also in the 

paper (Sava, 1970) is presented a simplified dynamic 

model, amortized. In (Sava, 1970) there is also showed a 

dynamic model, which takes into account the torsional 

vibrations of the camshaft.  

In the paper (Koster, 1974) a four-degree dynamic 

model with a single oscillating motion mass is 

presented, representing one of four degrees of freedom. 

The other three freedoms result from a torsional 

deformation of the camshaft, a vertical bending (z), 

camshaft and a bending strain of the same shaft, 

horizontally (y), all three deformations, in a plane 

perpendicular to the axis of rotation. The sum of the 

momentary efficiency and the momentary losing 

coefficient is 1. The work is especially interesting in 

how it manages to transform the four degrees of 

freedom into one, ultimately using a single equation of 

motion along the main axis. The dynamic model 

presented can be used wholly or only partially, so that 

on another classical or new dynamic model, the idea of 

using deformations on different axes with their 

cumulative effect on a single axis is inserted. 

In works (Antonescu et al., 1987; Petrescu and 

Petrescu, 2005a) there is presented a dynamic model 

with a degree of freedom, considering the internal 

damping of the system (c), the damping for which is 

considered a special function. More precisely, the 

damping coefficient of the system (c) is defined as a 

variable parameter depending on the reduced mass of the 

mechanism (m* or Jreduced) and time, i.e., c, depends on 

the time derivative of mreduced. The equation of 

differential movement of the mechanism is written as the 

movement of the valve as a dynamic response. 

Starting from the kinematic scheme of the classical 

distribution mechanism (Fig. 1), the dynamic, mono-

dynamic (single degree), translatable, variable damping 

model (Fig. 2) is constructed, the motion equation of 

which is: 

 

( ) 0
M x K y x k x c x F⋅ = ⋅ − − ⋅ − ⋅ −ɺɺ ɺ  (1) 

 

Equation (1) is nothing else than the equation of 

Newton, in which the sum of forces on an element in a 

certain direction (x) is equal to zero. 

The notations in formula (1) are as follows: 

 

• M- mass of the reduced valve mechanism 

• K- reduced elastic constants of the kinematic chain 

(rigidity of the kinematic chain) 

• k- elastic spring valve constant 

• c - the damping coefficient of the entire kinematic 

chain (internal damping of the system) 

• F, Ft - the elastic spring force of the valve spring 

• x - actual valve displacement 

(the cam profile) reduced to the axis of the valve 

 

5 ω
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Fig. 1: The kinematic scheme of the classic distribution mechanism 
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Fig. 2: Mono - dynamic model, with internal depreciation of the variable system 

 
The Newton Equation (1) is ordered as follows: 

 

( ) ( )0
.M x c x K y x F k x⋅ + ⋅ = ⋅ − − +ɺɺ ɺ  (2) 

 
At the same time the differential equation of the 

mechanism is also written as Lagrange, (3), (Lagrange 

equation): 
 

1

2
m r

dM
M x x F F

dt
⋅ + ⋅ = −ɺɺ ɺ  (3) 

 
Equation (3), which is nothing other than the 

Lagrange differential equation, allows for the low 

strength of the valve (4) to be obtained by the 

polynomial coefficients with those of the Newtonian 

polynomial (2), the reduced drive force at the valve (5), 

as well as the expression of c, i.e., the expression of the 

internal damping coefficient, of the system (6): 
 

( )0 0 0r
F F k x k x k x k x x= + ⋅ = ⋅ + ⋅ = ⋅ +  (4) 

 

( ) ( )
m

F K y x K s x= ⋅ − = ⋅ −  (5) 

 

1

2

dM
c

dt
= ⋅  (6) 

 
Thus a new formula (6) is obtained, in which the 

internal damping coefficient (of a dynamic system) is 

equal to half the derivative with the time of the reduced 

mass of the dynamic system. 

The Newton motion Equation (1, or 2), by replacing 

it with c takes the form (7): 

 

( ) 0

1

2

dM
M x x K k x K y F

dt
⋅ + ⋅ + + ⋅ = ⋅ −ɺɺ ɺ  (7) 

In the case of the classical distribution mechanism (in 

Figure 1), the reduced mass, M, is calculated by the 

formula (8): 

 

( )
2 2 2

2 1 4

5 2 3 1 4

y
M m m m J J

x x x

ω ω     
= + + ⋅ + ⋅ + ⋅     

     

ɺ

ɺ ɺ ɺ
 (8) 

 

Formula in which or used the following notations: 

 

m2 = Stick weight 

m3 = The mass of the pushing rod 

m5 = Mass of the valve 

J1 = Moment of mechanical inertia of the cam 

J4 = Moment of mechanical inertia of the culbutor 

2
yɺ  = Velocity of stroke imposed by cam law 

xɺ  = Valve speed 

 

If i = i25, the valve-to-valve ratio (made by the crank 

lever), the theoretical velocity of the valve (imposed by 

the motion law given by the cam profile) is calculated by 

the formula (9): 

 

 2

5

y
y y

i
≡ =

ɺ
ɺ  (9) 

 
where: 
 

0

0

CC
i

C D
=  (10)  

 
is the ratio of the crank arms. 

The following relationships are written (11-16): 

 

1
'x xω= ⋅ɺ  (11) 
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2

1
''x xω= ⋅ɺɺ  (12) 

 

2 1 2 1
. . .y y i yω ω′ ′= =ɺ  (13) 

 

1 1

1

1

.x x x

ω ω

ω

= =
′ ′ɺ

 (14) 

 

2 1 2 1 1 0 1

4

0 0 0 0 0 0

. . . . .y y y i y CC y

CC CC CC CC C D C D

ω ω ω ω

ω

′ ′ ′ ′
= = = = =

ɺ
 (15) 

 

 4 1

0 1 0

. 1

. .

y y

x C D x C D x

ω ω

ω

′ ′
= =

′ ′ɺ
 (16) 

 

where, y' is the reduced velocity imposed by the 

camshaft (by the law of camshaft movement), reduced to 

the valve axis. 

With the previous relationships (10), (13), (14), (16), 

the relationship (8) becomes (17-19): 
 

( )
22 2

5 2 3 1 4

0

. 1 1i y y
M m m m J J

x x C D x

 ′ ′   
= + + ⋅ + ⋅ + ⋅     ′ ′ ′     

 (17) 

 
Or: 

 

( )
( )

2 2

2 4

5 2 3 12

0

1J y
M m i m m J

x xC D

  ′   
= + ⋅ + + ⋅ + ⋅     ′ ′     

 (18) 

 
Or: 

 
2 2

5 1

1
*

y
M m m J

x x

′   
= + ⋅ + ⋅   ′ ′   

 (19) 

 

One makes the derivative dM/dϕ and result the 

following relationships: 

 

 

( )

2

2

2

2

2

2
2

y
d

x y x x yy

d x x

y y y y x
y x

x x x y x

ϕ

 ′ 
  ′ ′′ ′ ′′ ′  ⋅ − ⋅′⋅   = ⋅

′ ′

′ ′ ′ ′′ ′′ ⋅    
′′ ′′= ⋅ − ⋅ = ⋅ ⋅ −    ′ ′ ′ ′ ′     

 (20) 

 
2

2 3

1

2
2

d
x x x

d x x xϕ

  
  ′  ′′ ′′−   = ⋅ = − ⋅

′ ′ ′
 (21) 

 
2

1 3
2 * 2

dM y y x x
m J

d x y x xϕ

′ ′′ ′′ ′′  
= ⋅ ⋅ ⋅ − − ⋅ ⋅  ′ ′ ′ ′   

 (22) 

 

Write the relationship (6) as (23): 

2

dM
c

d

ω

ϕ
= ⋅  (23) 

 

With (22), relation (23) becomes (24-25): 

 

( )
( )

2 4

2 3 2

0

2

1 3

J
c i m m

C D

y y x x
J

x y x x

ω

 
= ⋅ ⋅ + + ⋅ 

  

′ ′′ ′′ ′′   
⋅ − − ⋅   ′ ′ ′ ′    

 (24) 

 

Or: 

 
2

1 3
*

y y x x
c m J

x y x x
ω

 ′ ′′ ′′ ′′  
= ⋅ ⋅ ⋅ − − ⋅   ′ ′ ′ ′     

 (25) 

 

Where was noted:  

 

( )
( )

2 4

2 3 2

0

*
J

m i m m

C D

= ⋅ + +  (26) 

 

With relations (19), (12), (25) and (11), Equation (2) 

is written first in the form (27), which develops in forms 

(28), (29) and (30): 

 

( )2

0
M x c x K k x K y Fω ω′′ ′⋅ ⋅ + ⋅ ⋅ + + ⋅ = ⋅ −  (27) 

 

( )

2

2 2

5

2 2

2 2

1

2

1 03

*

1
*

y
x m m x

x

y y x
J x x m

x x y x

x
x J K k x K y F

x

ω ω

ω ω

ω

 ′ ′′ ′′⋅ ⋅ + ⋅ ⋅ ⋅  ′ 
 ′ ′′ ′′     ′′ ′+ ⋅ ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅ −     ′ ′ ′ ′     
 ′′

′− ⋅ ⋅ ⋅ + + ⋅ = ⋅ −
′

 (28) 

 

Meaning: 

 

( )

2 2

2 2 2

5

2

0

* * ''

* . ''

y y
m x m x m x

x x

y
m y K k x K y F

x

ω ω ω

ω

′ ′   
′′ ′′⋅ ⋅ + ⋅ ⋅ ⋅ − ⋅ ⋅ ⋅   ′ ′   

′
+ ⋅ ⋅ + + ⋅ = ⋅ −

′

 (29) 

 

And final form: 

 

( )2 2

5 0
*

y
m x K k x m y K y F

x
ω ω

′
′′ ′′⋅ ⋅ + + ⋅ + ⋅ ⋅ ⋅ = ⋅ −

′
 (30) 

 

which can also be written in another form: 
 

( )2

5 0
*

y
m x m y K k x K y F

x
ω

′ 
′′ ′′⋅ ⋅ + ⋅ ⋅ + + ⋅ = ⋅ − ′ 

 (31) 
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Equation (31) can be approximated to form (32) if we 

consider the theoretical input velocity y imposed by the 

camshaft profile (reduced to the valve axis) 

approximately equal to the velocity of the valve, x: 

 

( ) ( )2

5 0
*m x m y K k x K y Fω ′′ ′′⋅ ⋅ + ⋅ + + ⋅ = ⋅ −  (32) 

 

If the laws of entry with s, s' (low speed), s'' (low 

acceleration), Equation (32) takes the form (33) and 

the more complete Equation (31) takes the complex 

form (34): 

 

( ) ( )2

5 0
*m x m s K k x K s Fω ′′ ′′⋅ ⋅ + ⋅ + + ⋅ = ⋅ −  (33)  

 

( )2

5 0
*

s
m x m s K k x K s F

x
ω

′ 
′′ ′′⋅ ⋅ + ⋅ ⋅ + + ⋅ = ⋅ − ′ 

 (34) 

 

In the paper (Antonescu et al., 1985a) there is 

presented a dynamic damping model variable as in the 

previous paragraph, but with four degrees of mobility. 

The hypothesis of the existence of four masses in 

translational motion is made at the same time (Fig. 3). 

Figure 3a shows the kinematic diagram of the classic 

distribution mechanism and in Fig. 3b is shown the 

corresponding dynamic pattern, with four moving 

masses, thus with four degrees of freedom.  

The way in which the four dynamic masses and the 

corresponding elastic constants, as well as the 

corresponding damping, are deduced will be presented in 

the following paragraph. The dynamic model with four 

degrees of freedom (Fig. 3) is considered, where the four 

reduced masses of the driven element (valve) are 

calculated with the formulas (35). 

The mass m1* is calculated as the mass m1 (mass of 

the camshaft) that reduces to the valve axis, that is, this 

mass m1, multiplies by the theoretical input speed 
1c
yɺ , 

square and is divided by the square of the valve speed 
2

xɺ , the ratio between the cam entry speed 
1c
yɺ and valve 

velocity xɺ and rises to square and this square ratio 

multiplies by the mass m1. 

As the input speed 
1c
yɺ  must also be reduced to the 

axis of the valve, instead of it write down the reduced 

input velocity to the valve axis 
1
yɺ , multiplied by the 

coulter transmission ratio, i, that is, we have the 

relation 
1c
yɺ  = i. 

1
yɺ  and the square velocity 2

1c
yɺ , will be 

replaced with 2 2

1
.i yɺ  and will be written down i

2 

multiplied to the mass m1 with m1'. For mass m2*, 

consider the weight of the tappet, m2, plus one third of 

the weight of the pushing rod, m3 and the 

corresponding speed 
2

yɺ  is practically the dynamic 

velocity of the tappet reduced to the axis of the valve. 

The mass m3* corresponds to the pusher rod and 

consists of two remaining thirds of the pushing rod 

weight, m3, plus half of the mass of the stem, m4; 

velocity 
3

yɺ is the actual average speed with which the 

pushing rod moves on the vertical axis reduced to the 

valve axis, or the speed of the stopper at the point C 

reduced to the valve axis. 
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Fig. 3: Dynamic model with four degrees of freedom with internal system damping - variable 
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The mass m4* is obtained from all the summaries on 

the side of the valve, i.e., half the mass of the valve, plus 

the mass m5 (which in turn represents the sum of the 

valve mass and the mass of the valve pan) plus a third of 

the mass of the valve spring. The speed of the valve 

(obviously at its axis) was marked with �: 

 
2 2

* 2 ' *1 1

1 1 1 2

2 2

2 '2 2

2 3 2

2

* 2 3

3 3 4

2

*3

3 4 4 5 6 4

;

1
;

3

2 1

3 2

1 1
;

2 3

y y
m m i m m

x x

y y
m m i m

x x

y
m m m i

x

y
m m m m m m

x

    
= ⋅ ⋅ = ⋅    

   


     = + ⋅ ⋅ ⋅ = ⋅           

    

= ⋅ + ⋅ ⋅ ⋅   
   

  ′ ′= ⋅ = ⋅ + + ⋅ =  
  

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ ɺ

ɺ

ɺ

ɺ

ɺ

 (35) 

 

where, i = O4C/O4D (Fig. 3) represents the transmission 

ratio of the culbutor; m1, m2, m3, m4, m5, m6 are in order: 

The mass of the cam, the stick, the pusher rod, the stem, 

the valve (with the roller) and the valve spring 

respectively. The following equivalent elastic constants 

(Fig. 3) are reduced to the valve (36): 

 

* 2 * 2 * *1 2

1 2 3 3 4 4 6

1 2

; ; ;
K K

K i K K i K K K K
K K

⋅

= ⋅ = ⋅ = =

+

 (36) 

 

where, k1, k2, k3, k4, k6 are the stiffnesses (elastic 

constants) of the corresponding elements. The elastic 

valve constant is not in question. It is noted that F0 is the 

external force, known as the spring force of the valve 

spring and F
e
 is the balancing force at the valve, 

basically the driving force. The influence of moments of 

mechanical inertia (mass), weight forces and friction 

forces will be neglected. Following the dynamic 

equilibrium for each reduced mass in part are written 

four equations of the form (37-40): 

 

( )* *

1 1 2 1 1 1 1
0

e
K y y F m y c y⋅ − − + ⋅ + ⋅ =ɺɺ ɺ  (37) 

 

( ) ( )* * *

2 2 3 1 1 2 2 2 2 2
0K y y K y y m y c y⋅ − − ⋅ − + ⋅ + ⋅ =ɺɺ ɺ  (38) 

 

( ) ( )* * *

3 3 2 2 3 3 3 3 3
0K y x K y y m y c y⋅ − − ⋅ − + ⋅ + ⋅ =ɺɺ ɺ  (39) 

 

( )* * *

4 3 3 0 4 4
0K x K y x F m x c x⋅ − ⋅ − + + ⋅ + ⋅ =ɺɺ ɺ  (40) 

 

The linear displacements y1, y2, y3, y4 = x correspond 

to the reduced masses m1*, m2*, m3*, m4*. 

Assuming that the movement y1 is known from the 

motion law y1 = y1 (ϕ) imposed on the camshaft at the 

cam design, the displacements y2, y3, x and the balance 

force F
e
, i.e., the motor force F

m
, remain unknown. 

In this case it is observed that Equations (38), (39) and 

(40) form a system of three equations with three unknowns 

y2, y3, x. After calculating the three displacements from (37), 

the equilibration force F
e
 is obtained. 

Basically, the system is not linear because, in addition to 

the unknowns given by the three displacements, we have as 

extra unknown the speeds and accelerations derived from 

unknown movements, i.e., practically unknown will be ten 

and only four of the system's equations: 

 

 1
1

2 2

dM dM
c

dt d

ω

φ
= ⋅ = ⋅  (41) 

 

For the actual solution of the equation system (37) - 

(40), the damping coefficients c1, c2, c3, c4 of formula 

(41), already known from the system with a degree of 

freedom and the mass system (35), as follows (42-45): 

 
* 2

1 1 1 1

1 1 2 3

1 . .
. .

2

dm y y y x
c m

dt x x

 
′= = − 
 

ɺ ɺɺ ɺ ɺɺ

ɺ ɺ
 (42) 

 
* 2

2 2 2 2

2 2 2 3

1 . .
. .

2

dm y y y x
c m

dt x x

 
′= = − 
 

ɺ ɺɺ ɺ ɺɺ

ɺ ɺ
 (43) 

 
* 2

3 3 3 3

3 3 2 3

1 . .
. .

2

dm y y y x
c m

dt x x

 
′= = − 
 

ɺ ɺɺ ɺ ɺɺ

ɺ ɺ
 (44) 

 
*

4

4

1
. 0

2

dm
c

dt
= =  (45) 

 

which can also be written in the form (46-49): 

 
2

1 1

1 1

1

. .

y y x
c m

x y x

  
′= −  
   

ɺ ɺɺ ɺɺ

ɺ ɺ ɺ
 (46) 

 
2

2 2

2 2

2

. .

y y x
c m

x y x

  
′= −  
   

ɺ ɺɺ ɺɺ

ɺ ɺ ɺ
 (47) 

 
2

3 3

3 3

3

. .

y y x
c m

x y x

  
′= −  
   

ɺ ɺɺ ɺɺ

ɺ ɺ ɺ
 (48) 

 

4
0c =  (49) 

 
Using Relationships (46-49) and System (35), 

Relationships (50-53) can be obtained immediately: 
 

2

*1 1 1

1 1 1 1 1 1
. . . . . .

y y y
c y m y x m y x

x x x

     ′= − = −     
     

ɺ ɺ ɺ
ɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺ ɺ ɺ
 (50) 

 
2

*2 2 2

2 2 2 2 2 2
. . . . . .

y y y
c y m y x m y x

x x x

     ′= − = −     
     

ɺ ɺ ɺ
ɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺ ɺ ɺ
 (51)  
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2

*3 3 3

3 3 3 3 3 3
. . . . . .

y y y
c y m y x m y x

x x x

     ′= − = −     
     

ɺ ɺ ɺ
ɺ ɺɺ ɺɺ ɺɺ ɺɺ

ɺ ɺ ɺ
 (52)  

 

 
4 4 4
. . 0c y c x= =ɺ ɺ  (53) 

 

Taking into account relations (50-53), Equations (37-

40) are rewritten as follows (54-57): 

 
2 3

* * 1 1

1 1 1 2 1 1 1
. . 2. . . . . 0

e

y y
K y K y F m y m x

x x

   ′ ′− − + − =   
   

ɺ ɺ
ɺɺ ɺɺ

ɺ ɺ
 (54) 

 

 

( )* * * *

1 1 1 2 2 2 3

2 3

2 2

2 2 2

. . .

2. . . . . 0

K y K K y K y

y y
m y m x

x x

− + + −

   ′ ′+ − =   
   

ɺ ɺ
ɺɺ ɺɺ

ɺ ɺ

 (55) 

 

( )* * * *

2 2 2 3 3 3

2 3

3 3

3 3 3

. . .

2. . . . . 0

K y K K y K x

y y
m y m x

x x

− + + −

   ′ ′+ − =   
   

ɺ ɺ
ɺɺ ɺɺ

ɺ ɺ

 (56) 

 

( )* * *

3 3 3 4 4 0
. . . 0K y K K x m x F′− + + + + =ɺɺ  (57) 

 

With the system of Equations (54-57), the dynamic 

model shown in Fig. 3 is solved, given that the system is 

nonlinear and besides the four main unknowns, y2, y3, x, 

Fe, six more unknown 
2 2 3 3
, , , , , .y y y y x xɺ ɺɺ ɺ ɺɺ ɺ ɺɺ  occur, but 

dependent on each other and also depend on linear 

displacements, y2, y3 and x respectively. 

The system is greatly simplified if we consider the 

three speeds approximately equal to each other and equal 

to the known entry speed; In this case, the equation 

system (54-57) is considerably simplified, taking the 

form (58-61): 

 
* *

1 1 1 2 1 1 1
2 0

e
K y K y F m y m x′ ′⋅ − ⋅ − + ⋅ ⋅ − ⋅ =ɺɺ ɺɺ  (58) 

 

( )* * * *

1 1 1 2 2 2 3 2 2 2
2 0K y K K y K y m y m x′ ′− ⋅ + + ⋅ − ⋅ + ⋅ ⋅ − ⋅ =ɺɺ ɺɺ  (59) 

 

( )* * * *

2 2 2 3 3 3 3 3 3
. . . 2. . . 0K y K K y K x m y m x′ ′− + + − + − =ɺɺ ɺɺ  (60) 

 

 ( )* * *

3 3 3 4 4 0
. . . 0K y K K x m x F′− + + + + =ɺɺ  (61) 

 

Results and Discussion; SOLVING THE 

DIFFERENTIAL EQUATION 

In the paper was presented a dynamic model with a 

degree of mobility, internal damping of the variable 

system, which finally leads to the Equation (54), which 

can be writhed in the form (62) and the simplified 

Equation (53), arranged now in form (63): 

2 2

0
( ). . . . . . . .II

S T I

y
K k x K y k x m X m y

X
ω ω

′
′′+ = − − −  (62) 

 
2 2

0
( ). . . . . . .II

S T
K k x K y k x m X m yω ω ′′+ = − − −  (63) 

 

Differential Equation (63), i.e., the simplified form 

(in which the reduced input velocity imposed by the cam 

profile y' is equal to the low dynamic velocity, x', both 

reduced to the valve axis) is used. 

Solving the Differential Equation, Through a 

Particular Solution 

Equation (63) is written as (64): 

 

( ) 0
. . . . .

S T
m X K k X K y k x m y+ + = − −

ɺɺ ɺɺ  (64) 

 

One divides Equation (64) with mS and amplify the 

straight term with cosωt, thus obtaining the form (65): 

 

0 cos( )
cos( )

T

S S

K k K y k x m y
X X t

m m t
ω

ω

+ ⋅ − ⋅ − ⋅

+ ⋅ = ⋅ ⋅

⋅ ⋅

ɺɺ
ɺɺ  (65) 

 

The following notations (66-67) are used: 

 

2

S

K k
p

m

+

=  (66) 

 

0
. . .

.cos( . )

T

S

K y k x m y
q

m tω

− −

=

ɺɺ
 (67) 

 

Equation (65) is written in simplified form (68): 

 
2. .cos( . )X p X q tω+ =

ɺɺ  (68) 

 

The particular solution of Equation (68) is of the 

form (69): 

 

.cos( . )X a tω=  (69) 

 

Derivatives 1 and 2 of solution (69) are denoted by 

(70-71): 

 

. .sin( . )X a tω ω= −
ɺ  (70) 

 
2. .cos( . )X a tω ω= −

ɺɺ  (71) 

 

By replacing values (69) and (71) in Equation (68), 

form (72) is obtained: 

 
2 2. .cos( . ) . .cos( . ) .cos( . )a t p a t q tω ω ω ω− + =  (72) 

 

The characteristic equation is written as (73): 
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( )2 2
.a p qω− =  (73) 

 
It is explicit a in the form (74): 

 

2 2

q
a

p ω

=

−

 (74) 

 
Now write the solution X, under the forms (75), (76): 

 

2 2
.cos( . )

q
X t

p
ω

ω

=

−

 (75) 

 

0 0

2
2

. . . cos( . ) . . .
.

.cos( . ) .

T T

S S

S

K y k x m y t K y k x m y
X

K km t K k m

m

ω

ω ω
ω

− − − −

= =

+ + −
−

ɺɺ ɺɺ
 (76) 

 
For a more exact solution, we approximate directly in 

Equation (74), X’’ cu y’’ cu s’’, i.e., X y s= =
ɺɺ ɺɺ ɺɺ  and one 

arrives at the linear Equation (77): 
 

*

0 0
. . ( ). . . .

S T
K s k x m m s K s k x m s

X
K k K k

− − + − −

= =

+ +

ɺɺ ɺɺ
 (77) 

 

Solving the Differential Equation, Through a 

Complete Private Solution 

Equation (64) can be written as (78), taking into 

account coefficients D and D': 
 

( )

( )

2 2

2

0

. . . . . . .

. . . . . .

S S

T

m D x m D x K k x

K s k x m D s D s

ω ω

ω

′′ ′ ′+ + +

′′ ′ ′= − − +

 (78) 

 

One divides Equation (78) with mS.ω
2
.D and obtain 

the form (79): 

 

( )

2

2 2

2

0

2

. .
'' . ' .

. . . .

. . . . . .

. .

S

S S

T

S

m D K k
x x x

m D m D

K s k x m D s D s

m D

ω

ω ω

ω

ω

′ +
+ + =

′′ ′ ′− − +

 (79) 

 

The right term is amplified with (cosϕ+sinϕ) and 

Equation (79) is written as (80): 

 

( )

( )
( )

2

2

0

2

'' . .
. .

. . . . . .
. cos sin

. . . cos sin

S

T

S

D K k
x x x

D m D

K s k x m D s D s

m D

ω

ω
ϕ ϕ

ω ϕ ϕ

′ +
′+ +

′′ ′ ′− − +
= +

+

 (80) 

 

Note the corresponding coefficients (81-83): 

 

D
a

D

′
=  (81) 

2
. .

S

K k
b

m Dω

+

=  (82) 

 

( )

( )

2

0

2

. . . . . .

. . . cos sin

T

S

K s k x m D s D s
c

m D

ω

ω ϕ ϕ

′′ ′ ′− − +
=

+
 (83) 

 

Equation (80) can now be written as (84): 

 

( ). . . cos sinx a x b x c ϕ ϕ′′ ′+ + = +  (84) 

 

The complete particular solution of Equation (84) is 

of the form (85) and its derivatives according to the 

angle ϕ, the derivatives I and II, take the forms (86), 

respectively (87): 

 

.cos .sinx A Bϕ ϕ= +  (85) 

 

' .sin .cosx A Bϕ ϕ= − +  (86) 

 

'' .cos .sinx A Bϕ ϕ= − −  (87) 

 

Introducing solutions (85-87) in (84) one obtains 

Equation (88): 

 

.cos .sin . .sin . .cos

. .cos . .sin .cos .sin

A B a A a B

b A b B C C

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

− − − +

+ + = +

 (88) 

 

One identifies the coefficients in the cosine and those 

in the sin and one obtains a linear system of two 

equations with two unknown, A and B respectively: 

 

( 1). .

. ( 1).

b A a B c

a A b B c

− + =

− + − =

 (89) 

 

For the operative solving of the system (89) the first 

equation increases with a and the second with (b-1), after 

which B is collected and then determined by A, 

multiplying the first equation with (b-1) and the second 

one with -a, after which it collects and obtains the 

system (90): 

 

 
( )

( )

( )
( )

22

22

. 1

1

. 1

1

c
A b a

a b

c
B b a

a b


= − −

+ −

 = − +
 + −

 (90) 

 

The solution can now be written as (91), where the 

coefficients a, b, c are known (81-83): 

 

( )
( ) ( )

22
1 cos 1 sin

1

c
x b a b a

a b

ϕ ϕ= ⋅  − − ⋅ + − + ⋅  
+ −

 (91) 
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Solving the Differential Equation, with the Help of 

Taylor Series Developments 

Write the relation (92), which expresses the 

connection between the dynamic displacement of the 

valve, x and that imposed by the cam profile, s: 
 

( ) ( ) ( ) ( )x s x sϕ ϕ ϕ ϕ ϕ= + ∆ ≅ + ∆  (92) 

 

The function s(ϕ+∆ϕ) was developed in a Taylor 

series and retains the first 8 terms of development; now 

find the relationship (93): 
 

( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

0

2 3 4

5 6 7

1 1
. .

0! 1!

1 1 1
. . . . . .

2! 3! 4!

1 1 1
. . . . . .

5! 6! 7!

I

II III IV

V VI VII

x s s s

s s s

s s s

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ ϕ ϕ ϕ ϕ

= + ∆ = ∆ + ∆

+ ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

 (93) 

 
The relationship (93) is also written in the form (94): 

 

( ) ( ) ( )

( ) ( ) ( )

2 3 4

5 6 7

1 1 1
. . . . . . .

2 6 24

1 1 1
. . . . . .

120 720 5040

I II III IV

V VI VII

x s s s s s

s s s

ϕ ϕ ϕ ϕ

ϕ ϕ ϕ

= + ∆ + ∆ + ∆ + ∆

+ ∆ + ∆ + ∆

 (94) 

 
By derivation it obtains x' (relation 95): 

 

( ) ( )

( ) ( ) ( ) ( )

2 3

4 5 6 7

1 1 1
. . . . . . .

2 6 24

1 1 1
. . . . . .

120 720 5040

I I II III IV V

VI VII VIII

x s s s s s

s s s

ϕ ϕ ϕ

ϕ ϕ ϕ ϕ

= + ∆ + ∆ + ∆ +

∆ + ∆ + ∆ + ∆

 (95) 

 
Deriving the second time and get x'', (relation 96): 

( )

( ) ( )

( ) ( ) ( )

2

3 4

5 6 7

1
. . .

2

1 1
. . . .

6 24

1 1 1
. . . . . .

120 720 5040

II II III IV

V VI

VII VIII IX

x s s s

s s

s s s

ϕ ϕ

ϕ ϕ

ϕ ϕ ϕ

= + ∆ + ∆

+ ∆ + ∆

+ ∆ + ∆ + ∆

 (96) 

 
The differential equation used is (62), i.e., the 

complete equation, which we write in the form (97), also 

taking into account the transmission function, D: 

 
* 2

0

* 2

( '' ' ') 0.001

'
( '' ' ') 0.001

'

S

T

K s k x m D x D x

s
m D s D s

x
x

K k

ω

ω

⋅ − ⋅ − ⋅ ⋅ + ⋅ ⋅ ⋅

− ⋅ ⋅ + ⋅ ⋅ ⋅ ⋅

=

+

 (97) 

 

Dynamic analysis for sinus law, using the 

relationship (97), based on Taylor series and dynamic-

A1 model, with variable internal damping, without 

considering the mass m1 of the cam. 

Using the relation (97) obtained from the differential 

Equation (62) based on the dynamic damping model of 

the variable system, without considering the mass m1 of 

the cam, but using Taylor series calculations with the 

retention of 8 consecutive terms, dynamic (A1). 

For this dynamic model (A1) there is a single 

dynamic diagram (Fig. 4). 

The SINus law is used, the engine speed, n = 5500 

[rpm], equal ascension and descent angles, ϕu = ϕc = 75
0
, 

radius of the base circle, r0 = 14 [mm]. For the maximum 

stroke of the tappet, hT, equal to that of the valve, hS (i = 

1), the value of h = 5 [mm] was taken. A spring elastic 

constant is adopted, k = 60 [N/mm], for a valve spring 

compression of x0 = 30 [mm]. 

 

 
 

Fig. 4: Dynamic analysis using the dynamic A1 model 
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Mechanical yield is low (generally in rotary cam and 

punch mechanisms, mechanical efficiency has low 

values and in Module C-classical distribution mechanism 

these values are even slightly lower), η = 6.9%. 

The theoretical model presented and used has the 

advantages of simulating even the fine vibrations of the 

mechanism. 

Conclusion 

The development and diversification of road vehicles 

and vehicles, especially of cars, together with thermal 

engines, especially internal combustion engines (being 

more compact, robust, more independent, more reliable, 

stronger, more dynamic etc.)., has also forced the 

development of devices, mechanisms and component 

assemblies at an alert pace. The most studied are power 

and transmission trains. 

The four-stroke internal combustion engine (four-

stroke, Otto or Diesel) comprises in most cases (with the 

exception of rotary motors) and one or more camshafts, 

valves, valves and so on. 

The classical distribution mechanisms are robust, 

reliable, dynamic, fast-response and although they 

functioned with very low mechanical efficiency, taking 

much of the engine power and effectively causing 

additional pollution and increased fuel consumption, they 

could not be abandoned until the present. Another 

problem was the low speed from which these mechanisms 

begin to produce vibrations and very high noises. 

Regarding the situation realistically, the mechanisms 

of cam casting and sticking are those that could have 

produced more industrial, economic, social revolutions 

in the development of mankind. They have contributed 

substantially to the development of internal combustion 

engines and their spreading to the detriment of external 

combustion (Steam or Stirling) combustion engines. 

The problem of very low yields, high emissions and 
very high power and fuel consumption has been greatly 
improved and regulated over the past 20-30 years by 
developing and introducing modern distribution 
mechanisms that, besides higher yields immediately 
deliver a high fuel economy) also performs optimal 
noise-free, vibration-free, no-smoky operation, as the 
maximum possible engine speed has increased from 
6000 to 30000 [rpm]. 

The paper tries to provide additional support to the 

development of distribution mechanisms so that their 

performance and the engines they will be able to 

further enhance. 

Particular performance is the further increase in the 

mechanical efficiency of distribution systems, up to 

unprecedented quotas so far, which will bring a major 

fuel economy. 

The paper presents a dynamic model that works with 

variable internal damping, applicable directly to rigid 

memory mechanisms. If the problem of elasticity is 

generally solved, the problem of system damping is not 

clear and well-established. It is usually considered a 

constant "c" value for the internal damping of the system 

and sometimes the same value c and for the damping of 

the elastic spring supporting the valve. However, the 

approximation is much forced, as the elastic spring 

damping is variable and for the conventional cylindrical 

spring with constant elasticity parameter (k) with linear 

displacement with force, the damping is small and can be 

considered zero. It should be specified that damping 

does not necessarily mean stopping (or opposition) 

movement, but damping means energy consumption to 

brake the motion (rubber elastic elements have 

considerable damping, as are hydraulic dampers).  

Metal helical springs generally have a low (negligible) 

damping. The braking effect of these springs increases 

with the elastic constant (the k-stiffness of the spring) and 

the force of the spring (P0 or F0) of the spring (in other 

words with the arc static arrow, x0 = P0/k). Energy is 

constantly changing but does not dissipate (for this reason, 

the yield of these springs is generally higher).  

The paper presents a dynamic model with a degree of 

freedom, considering internal damping of the system (c), 

damping for which it is considered a special function. More 

precisely, the cushioning coefficient of the system (c) is 

defined as a variable parameter depending on the reduced 

mass of the mechanism (m* or J reduced) and the time, i.e.,, 

c depends on the derivative of m reduced in time.  

The equation of the differential movement of the 

mechanism is written as the movement of the valve as a 

dynamic response. Dynamic analysis for sinus law, using 

the relationship (97), based on Taylor series and 

dynamic-A1 model, with variable internal damping, 

without considering the mass m1 of the cam. 
Using the relation (97) obtained from the 

differential Equation (62) based on the dynamic 
damping model of the variable system, without 
considering the mass m1 of the cam, but using Taylor 
series calculations with the retention of 8 consecutive 
terms, dynamic (A1). For this dynamic model (A1) 
there is a single dynamic diagram (Fig. 4). 

The SINus law is used, the engine speed, n = 5500 
[rpm], equal ascension and descent angles, ϕu = ϕc = 75

0
, 

radius of the base circle, r0 = 14 [mm]. For the maximum 
stroke of the tappet, hT, equal to that of the valve, hS (i = 
1), the value of h = 5 [mm] was taken. A spring elastic 
constant is adopted, k = 60 [N/mm], for a valve spring 
compression of x0 = 30 [mm]. 

Mechanical yield is low (generally in rotary cam and 

punch mechanisms, mechanical efficiency has low 

values and in Module C-classical distribution mechanism 

these values are even slightly lower), η = 6.9%. 

The original theoretical model presented and used has 

the advantages of simulating even the fine vibrations of 

the mechanism. 
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These kind of mechanisms are used and to the robots 

of today. 
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Nomenclature 

J
*
 is the moment of inertia (mass or 

mechanical) reduced to the camshaft  
*

Max
J  is the maximum moment of inertia (mass 

or mechanical) reduced to the camshaft  
*

min
J  is the minimum moment of inertia (mass 

or mechanical) reduced to the camshaft  
*

m
J  is the average moment of inertia (mass 

or mechanical, reduced to the camshaft)  

J
*
' is the first derivative of the moment of 

inertia (mass or mechanical, reduced to 

the camshaft) in relation with the ϕ angle  

 ηi is the momentary efficiency of the cam-

pusher mechanism 

η is the mechanical yield of the cam-

follower mechanism 

τ is the transmission angle 

δ is the pressure angle 

s is the movement of the pusher 

h is the follower stroke h = smax 

s' is the first derivative in function of ϕ of 

the tappet movement, s 

s" is the second derivative in raport of ϕ 

angle of the tappet movement, s 

s"' is the third derivative of the tappet 

movement s, in raport of the ϕ angle 

x is the real, dynamic, movement of the 

pusher  

x' is the real, dynamic, reduced tappet speed  

x" is the real, dynamic, reduced tappet 

acceleration 

xɺɺ  is the real, dynamic, acceleration of the 

tappet (valve). 

v
τ
 ≡ sɺ  is the normal (cinematic) velocity of the 

tappet 

a
τ
 ≡ sɺ  is the normal (cinematic) acceleration of 

the tappet 

ϕ is the rotation angle of the cam (the 

position angle) 

K is the elastic constant of the system  

k is the elastic constant of the valve spring 

x0 is the valve spring preload (pretension)  

mc is the mass of the cam 

mT is the mass of the tappet  

ωm the nominal angular rotation speed of 

the cam (camshaft)  

nc is the camshaft speed  

n = nm is the motor shaft speed nm=2nc 

ω is the dynamic angular rotation speed of 

the cam 

ε is the dynamic angular rotation 

cceleration of the cam 

r0 is the radius of the base circle 

ρ = r is the radius of the cam (the position 

vector radius) 

θ is the position vector angle 

x = xc and y = yc are the Cartesian coordinates of the cam 

D is the dynamic coefficient 

Dɺ  is the derivative of D in function of the 

time 

D' is the derivative of D in function of the 

position angle of the camshaft, ϕ 

Fm is the motor force 

Fr is the resistant force. 


