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Abstract: In this study a discrimination system, using a neural network 

for Electromyogram (EMG) externally controlled Arm is proposed. In 

this system, the Artificial Neural Network (ANN) is used to learn the 

relation between the power spectrum of EMG signal analysed by Fast 

Fourier Transform (FFT) and the performance desired by handicapped 

people. The Neural Network can discriminate 4 performances of the 

EMG signals simultaneously. The digital signal processing was realized 

using MATLAB and LabVIEW software.  

 

Keywords: Electromyogram, Neural Network, Biosignal, Gripping and 

Rotating 

 

Introduction 

Worldwide, disability is one of the most acute 
medical and social problems. Recently more than 1.9 
million people are living in America without one or 
more limbs. Thirty percent of these amputees suffer from 
arm loss. The causes leading to amputation of the arms 
include military conflicts, roadaccidents, and industrial 
injuries, natural disasters and technological disasters, as 
well as diseases such as obliterating vascular lesions, 
atherosclerosis and diabetes. Besides that, there are 
50,000 new amputations each year (Marlow, 2003). The 
loss of an arm means a drastic reduction of live quality 
for affected people. Almost until the end of the 20th 
century, all inventions in the field of the prosthetics were 
mechanical, in some cases, the flexion was manually 
adjusted. The main problems of mechanical prostheses 
were the lack of any connection with the body, rigidity 
and fragility. The prostheses that replaced the arm or leg 
could not function as a full-fledged prototype - this is 
just a surrogate that replaces the active parts of the body 
but is unable to get closer to the natural counterpart in 
capabilities. This is the main disadvantage of dentures-
their "external" nature and low functionality. All that 
remains to be done by their owner to use them as an 
element of the wardrobe, which eventually wears out and 
becomes unsuitable for further operation. In recent years, 
in the field of prosthetics, such a direction as 
"biomechatronics" has appeared, which is a combination 
of robotics and human nerve cells. To compensate for 
the lost live quality myoelectric hand prostheses have 

been developed, that can be controlled by muscle 
contractions in the patient's stump. Surface myoelectric 
signal is still considered as an aid in various aspects of 
medical and biomedical applications. For example, they 
are used in the diagnosis of muscle disorders and the 
study of muscle function as well used to control 
prosthesis manipulators (Silcox and Rooks, 1993). 
Myoelectric control prostheses have received widespread 
use as devices for individuals with amputations or 
congenitally deficient upper limbs and many systems are 
now available commercially to control a single device 
such as a hand, elbow and wrist. There have been 
numerous approaches to interface humans with machines 
over the last century. Humans emit a variety of complex 
signals that today's technology can capture, process and 
decipher to varying degrees of success (Hudgins et al., 
1997). Advances in bioengineering have led to produce  
sophisticated prosthetic devices for the amputees and the 
paralyzed individuals. The control of such devices 
requires real-time classification of biosignals, for 
example, electromyographic signals (EMG signals) that 
are recorded by intact muscles (Kumaravel and Kavitha, 
1994). In biomechatronics, the application of biosignals 
for controlling external devices is based on  utilizing 
EMG electrodes In addition to that, 
Electroencephalography Electrodes (EEG) that record 
the brain activity of the operator can be used as devices 
that record driving signals from a biological object 
(prosthesis operator). The choice of method for 
controlling the prosthesis of the upper limb is largely 
determined by the sources of useful signals used. For 
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example, mechanical movement of segments of the arm, 
bioelectric signals of contracting muscles and also 
varying impedance to the alternating current of 
contracting muscles can be used as such signals. With 
the development of computer technology, fundamentally 
new technologies have appeared that are used in the 
control of upper limb prostheses: pattern recognition 
technology, neural networks, Fuzzy logic and machine 
learning. The work presents a design and implementation 
of a prosthetic arm that can be controlled naturally, 
provide sensory feedback and allows two movement 
actions. In addition to that, it also focuses on extracting 
electromyogram (EMG) signals generated during 
contraction of the biceps. The proposed partial-
prosthesis mechanism is controlled by a program 
developed under Labview software and MATLAB. 

Literature Review 

In work (Mastinu et al., 2018), the author presents an 
alternative approach in which one can intuitively control 
four different handles with the MPR (Myoelectric 
Pattern Recognition) and open/close grips in a 
multifunctional prosthetic hand. The system was used for 
five days by a one-sided person with dysmelia, whose arm 
never developed and yet learned to create patterns of 
myoelectric activity that are reported to be intuitive to 
multi-functionally control the prosthetics. The authors 
collect data for further real-time processing. 

The authors in work (Iqbal et al., 2018) present 
prostheses that are monitored using surface 
Electromyogram (sEMG) These signal are obtained 
from residual muscle tissue on the residual limb of an 
amputee. In their work, the intuitive control of the 
multifunctional upper-limb prosthesis achieved using 
Pattern Recognition (PR) sEMG. 

The article (Wang et al., 2017), introduces an 
anthropomorphic hand prosthesis with flexure joints that 
are controlled by surface Electromyography (sEMG) by 
only 2 electrodes. The myoelectric control system, which 
can classify 8 gripping hand movements, is being built. 
The pattern recognition is used when the Mean Absolute 
Value (MAV), the Variance (VAR), the fourth-order 
Autoregressive Coefficient (AR) and the Sample 
Entropy (SE) are selected as the optimal feature set and 
the Linear Discriminant Analysis (LDA) is used for the 
reduction of dimension. 

In their article (Younes, 2012), the authors introduce 
a fully integrated preinstalled artificial arm equipped 
with a human-machine feedback system. The artificial 
arm consists of five fingers. Hand driven by six DC 
motors, one per finger and one thumb. The motor is in 
the hand area and the sensors are distributed over the 
whole housing. The integrated control system is a 
subsystem and a sensory system. The motion control 
subsystem is a critical factor as a sensory system for the 
patient. The controllability is achieved by using several 
types of sensors. 

The aim of work (Shinde, 2012) is to design and 

construct a prosthesis that is strong and reliable and at 

the same time provides control over the exerted force. 

The design had to take into account the reliability and 

size of the mechanical and electrical design these 

objectives were achieved through the use of EMG in 
the electrical control system and a linear motion 

approach in Mechanics. 

The literature review shows that the developed 

system characterized by the complexity of design and 

implementation. On the other hand, the literature review 

emphasizes that the problem of controlling prostheses is 

still one of the most important issues. 

Theoretical Background 

Over the centuries, the design of upper limb 

prostheses has changed depending on the level of 
existing technology. The first wooden and iron 
prostheses appeared before our era. Over time, 
prostheses began to include mechanical elements: ratchet 

mechanisms, systems of levers, rods, joints, springs and 
gears appeared. This led to the ability to control the grip 
and opening of the hand, as well as the use of working 

prostheses (auxiliary tools that enable operators to 
engage in physical labor). However, despite significant 
advances, in the mechanics of such prostheses had some 

fundamental shortcomings. The grip force depended 
solely on the spring force, which was very limited. 
Another drawback was that the effort being made in the 
prosthesis was too small (González-Fernández, 2013). 

In the middle of the XX century. upper limb 

prostheses with an external energy source appeared. 

During this period, pneumatic actuators were widely 
used as executive engines, but several years later electric 

motors took their place. With the development of 

microcontroller technology, a new element base has 

arisen and prostheses have become an electromechanical 

control system, which includes master devices and 

controllers that implement algorithms and methods of 

control (Lake and Dodson, 2006). The idea of one of the 

first bioelectrically controlled prostheses working with 

an external energy source in case of amputation at the 

brush level was to control the electromechanical brush 

using biopotentials removed from the skin in the area of 
the projection of the abdomen of the contracting muscle. 

The signals are picked up by surface Electromyography 

(EMG) electrodes from two groups of stump muscles 

(flexors and extensors) and are fed through amplifiers to 

the control system of the electromechanical brush 

(Pasquina, 2015). Not only EMG electrodes that measure 

the biopotentials of contracting muscles, but also 

Electroencephalography Electrodes (EEG) are also 

utilized to record the brain activity of the operator and 

can be used as devices that generate signals from a 

biological object (prosthesis operator) o control several 
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types of actuators. The methods used to control 

prostheses are based on common fundamental principles: 

open control (without feedback); feedback (closed-loop); 

compensation method. The choice of method for 

controlling the prosthesis of the upper limb is largely 

determined by the sources of useful signals that is used for 
controlling external objects. For example, mechanical 

movement of arm segments, bioelectric signals of 

contracting muscles, as well as a variable impedance 

(impedance) to the alternating current of the contracting 

muscle (Cloutier and Yang, 2013). 
In humans, the system of movements consists of the 

systems of the brain, nervous system and muscle units. 
To create movement, the brain releases pulse signals. 
The signal is then sent through the nervous system. The 
muscle unit that is stimulated by the impulse of the 
nervous system, then squeezed and causes movement. 
When using a prosthesis, an Electromyographic signal 
(EMG) is used to send a command to develop two types 
of actions: rotation or capture. 

A transformation of the scanned signal into a certain 
amount of grip or rotating types for prosthesis requires 
the same amount of unique signal patterns. The major 
problem using myoelectric signal patterns is the patients' 
deficiency to contract more than two muscles 
independently. Additionally, the EMG-signal is no pure 
signal of one specific muscle but contains information 
about all contracted muscle fibers in the range of the 
sensor. Thus, signal quality is reduced drastically and the 
success of discrimination of different signal patterns 
decreases. Several groups made promising attempts to 

increase the corresponding classification rate via 
preprocessing or sophisticated classification algorithms 
(Yang et al., 2005; Davalli et al., 1993), however, no 
control using more than two to three movements is 
commercially available. In this work, two states of 
movement are considered: rotating and gripping. Starting 
in a neutral state (prosthesis opened and no rotation 
action is applied) the user may generate two switching 
signals depending on the intensity of the muscle 
contraction and the time of activation. 

Methodology 

When the fibers extend along the length of the 

muscle, the extracellular field potential is evoked. The 

typical amplitude of EMG ranges from 20-2000μV, 

depending on the size of the motor unit and the position 

of the electrode. The EMG signals generated from a 

contracting muscle for and detected by EMG electrodes are 

first to send to the instrumentation amplifier, the bandpass 

filter and the rectifier circuits. Following amplification, 

filtering and rectification the resulting signals are used for 

extracting features and consequently providing a control 

signal to control the movement of the prosthetic arm. The 

block diagram of the system is shown in Fig. 1. 
Several signs of progress in biomechatronics 

technology bring a lot of benefits to increase the 
mobility of the amputee in their daily life activities. A 
prosthetic arm, for example, is used to compensate for 
the lost functions of the amputee's absent arm.  

 

 
 

Fig. 1: Block diagram illustrates the main stages of myoelectric arm
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The work will be accomplished such as to 

minimize the discrepancy between the amputee's 

expectations and reality. This will be achieved by 

designing a prosthetic arm that has a sufficient 

number of degrees of freedom that result in a natural 

human-like arm motion while performing a daily life 
task.  

The goal of this article is to design and develop a 

prototype of prosthetic arm that can be controlled 

naturally, provide sensory feedback and allows some 

degrees of freedom. 

The prosthetic arm is to be perceived as an incentive 

that would encourage learning and to help advance 

current technology, with these specific goals: 
 

1. To develop a fully integrated prosthetic arm that can 

be used to compensate for the lost functions of the 

amputee's absent arm. The project offers a task that 

requires controllability and high level of signal 

conditioning and processing 
2. Getting involved in building integrated systems such as 

a prosthetic arm. Developing a prosthetic arm offers a 

unique educational exercise that provides experience in 

physics, mechanics, hardware, .and, teamwork 

 

The human body contains 650 muscles which 

represent 40% of the total weight of the body. Small 

electrical currents are generated by muscle fibers 

before the production of muscle force. These currents 

are generated by the exchange of ions across muscle 

fiber membranes, a part of the signaling process for 

the muscle fibers to contract. The signal is called the 

Electromyogram (EMG) and can be measured by 

applying electrodes to the skin surface, or invasively 

within the muscle. Figure 2 shows an EMG signal 
obtained by placing surface EMG electrodes on 

normal person skin. 

The EMG signal in a fiber muscle is stochastic. 

Normally, it shows the intensity of muscle contraction 

and the time of activation. 

The main characteristics of the EMG signal are: 
 

 Frequency is between 0 to 2000Hz, but the 
dominant energy is concentrated in the range of 50 

to 500Hz  

 Amplitude is between 0 and 10 mV 

 Noise Affectation is a common problem 
 

There are several types of electrodes used for the 

collection of EMG data, including wire needle and 

surface electrodes. Wire needle electrodes are useful for 

accessing individual motor units and muscles that are in 

deeper layers under the skin. Surface electrodes, on the 

other hand, are extremely low risk to the subject and 

require a little training to use properly also are the most 

suitable for assessing the time force relationship of EMG 

signals and interfacing an individual with a 

biomechanical device. 

 

 

 
Fig. 2: EMG signal obtained from muscle 
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To minimize the impedance between the electrode-

skin contacts it is recommended that the skin surface be 

shaved of any hair and dead skin cells at the target 

location. Dry shaving works well for removing the dead 

skin cells. Once shaved, the skin should be cleaned with 

alcohol and allowed to dry before the electrode is placed 
(Silcox and Rooks, 1993). 

After reading the electrical signals from the 

contracting muscles (EMG signals) using the surface 

EMG electrodes shown in Fig. 2, the signal has an 

amplitude of about (0-10 mV) and contains noise from 

the AC supplies (50-60Hz), this means processing is a 

must before the control phase. Many steps should be 

done to prepare the EMG signal; amplification using 

instrumentation amplifier, filtering by a pass-band filter 

(50-500Hz) and rectification. 

Development of the Preprocessing Phase and Data 
Acquisition System 

The preprocessing phase is given in Fig. 3. This 

schematic diagram consists of amplification, filtration 

and rectification elements that are used to filter the EMG 

signal from the noises affecting it. 

Because of the sensitivity of EMG signal to the 

surrounding effects, it is very important to use PCB 

processing circuit, this shown in following Fig. 4. 

The experimental setup of the developed arm is 

shown in Fig. 5. 

Development of Mechanical System  

The mechanical implementation was concerned locating 

the motors in the right position in the myoelectric arm. 

There are two motors (servo and Stepper) control the 

gripping and rotating of Myoelectric arm, where the 

gripping motor has been calibrated to give a fully opening 

action and optimum closed action through the mechanical 

design of the gripper, it has been located after about 20 cm 

from the wrist and connected with ring gear and shaft to 

pull up the cable that connected with gripper where the 
shaft will rotate about 160 degrees while the total stroke for 

the cable is about 5.1 cm to achieve fully open gripper. 

Rotating motor has been putting in the shaft of a 

myoelectric arm and calibrated to rotate 90-degree CCW 

using time principle and then it will be reverse its direction 

to return to the initial position. Figure 6 shows the final 

mechanical design system of a myoelectric arm. 

 

 
 

Fig. 3: The block diagram of the preprocessing phase of the EMG signal and data acquisition system 

 

 
 

Fig. 4: PCB processing circuit 
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Fig. 5: The experimental setup 

 

 
 

Fig. 6: Final mechanical system of myoelectric arm 

 

EMG Feature Extraction and Classification 

EMG Signal Classifications for Human-Computer 
Interaction 

With the increasing role of computerized machines 

in society, the Human-Computer Interaction (HCI) 

system is becoming an increasingly important part of 

our daily lives. HCI defines the effective use of the 

accessible information flow of computing, 

communication and display technologies. In recent 

years, there has been a huge interest in introducing 

intuitive interfaces that can recognize the movements 

of the user's body and translate them into machine 

instructions. For neural communication with 

computers, various biomedical signals (biosignals) can 

be used, which can be obtained from specialized tissue, 

organ, or cellular systems, such as the nervous system. 

For example, an electromyogram (EMG) signal. 

With the EMG feature extraction process, you can 

highlight the main features of the signal to distinguish 

more than one degree of freedom from a muscle, such as 

a muscle detection and rotation. The feature extraction 

reduces the dimension of the EMG signal suitable for the 

control system. The feature extraction can be applied 

both in the time domain and in the frequency domain. 

Time-domain objects are usually calculated quickly 

because they do not need to be converted. For example, 

Mean (MAV), Wavelength (WL), Willison Amplitude 

(WAMP) and variance (VAR), which are discussed later. 

A function in the frequency domain contains more 

useful information than a function in the time domain, 

which requires a transformation that slows down the 

system (Nishikawa et al., 1999). 
The first task is to detect the beginning of the 

movement. Due to the stochastic properties of the 

surface electromyogram, detecting the onset is a difficult 
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task, especially when the surface response of the EMG is 

weak (Carlo and Forrest, 1972). 

The algorithm we used for this task is the 

segmentation of the EMG signal. Each segment contains 

40 readings (48.88 ms) of 0.001222 seconds for each 

EMG reading. Calculate Willison's amplitude for this 
segment and compare it with a predefined parametrs. 

Willison amplitude: If the amplitude of the Willison 

segment is greater than the predetermined amplitude of 

Willison, an EMG signal will be detected, otherwise it 

will be noise. The next section explains the Willison 

amplitude criteria (Boostani and Moradi, 2003). 
The value of the threshold is determined using the 

following equation: 

 

   3*Threshold mean noise std noise   (1) 

 

Where:  

std =  Standard deviation of the EMG signal. 

Mean = Mean absolute value of the noise 100 reading. 

 

In the feature extraction, we take windows of the 

EMG signal each window contains 1440 readings when 

the signal is detected. 

The Mean Absolute Value (MAV), as the name 

suggests, is calculated by taking the average of the absolute 

value of all-time samples. The equation is given here: 
 

( 1)

1
| |

N

kk
M A

N 
   (2) 

 

where, N is the number of readings in each window. 

Figure 7 shows the mean absolute value of the EMG 

signal where the signal is divided into separated 

windows each window contains 40 readings and the 

mean absolute value is calculated for each part. 

The number of counts for each change of the EMG 

signal amplitude that exceeds a predefined threshold is 

called Willison Amplitude (Shinde, 2012). It is given by 
 

( 1)( 1)

N

k kk
WAMP X X 

   (3) 

 
With f (x) = 1 if x > threshold, 0 otherwise. This unit 

is an indicator of the firing of motor unit Action 

potentials (MUAP) and, therefore, an indication of 

muscle contraction level (Shinde, 2012). 

The EMG signal was modeled as amplitude 

modulated Gaussian noise whose variance is related to 

the force developed by the muscle, a variance (or 
second-order moment) of the EMG is a measure of its 

power and it is given by: 
 

 
2

( 1)

1

1

N

k
VAR X k

N 



  (4) 

  
The waveform is the cumulative length of the 

waveform over the time segment. It is defined as: 
 

1

N

kk
WL X


   (5)  

 

where, ΔXk = Xk-Xk-1., is parameter gives a measure of 

waveform amplitude, frequency and duration all in one. 

There are several possible classification techniques 

(Carlo and Forrest, 1972; Boostani and Moradi, 2003; 
Olson et al., 1968). Among them; the most used are 

artificial neural networks. Recently, some authors have tried 

to use a fuzzy classifier, but other authors reported that with 

the appropriate representation of the signal, a linear 

classifier performs better than a nonlinear one. 

 

 
 

Fig. 7: EMG signal and the mean absolute value of each window 
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The classification task includes Linear Discriminant 

Analysis (LDA) classifier and Multilayer Perceptron 

(MLP) classifier. LDA and the MLP are easy to 

implement and are representatives of statistical and 

neural classifiers respectively, which were well 

understood (Alsabbah and Mughrabi, 2008).  
Pattern classifiers with adaptability are desired in this 

application because of the nature of EMG signals. As we 

introduced in the feature extraction part there are many 

factors influencing the acquisition of the EMG signals: 

Mean absolute value, Wilson amplitude, waveform 

length and variances features are expected for different 

individuals. Similarly, there can be differences in EMG 

signals of a single person measured at different times. 

The patterns might be completely altered for different 

individuals, while for one individual the changes upon a 

time might be some "shifting", "increasing" or "growing" 
of the patterns. The classifiers need to be able to deal 

with these differences and variances while maintaining a 

certain level of stability. 

The recognition system of EMG patterns consists of 

three stages, all these stages are explained Firstly, time-

series data for EMG is measured by electrodes in the input 

part and then processed by filtration, amplification and 

amplitude rectification. The second stage is the EMG 

feature identification based on MLP-NN. The input data to 

the ANN are taken to have a dimension (P×I). The length of 

I represents the number of inputs to NN, which denotes the 

number of features that used for moving the human arm. 

The length of P represents the number of samples used in 
training the NN. The NN training algorithm, which is used 

in this stage, is MLP-NN Fig. 8. 

The identification system depends on the reliability 

of the measured signal. If the obtained signal from the 

muscle by using directly surface electrode as a 

measurement source is unknown data, it must be 

classified as an EMG signal for the human. This 

purpose is fulfilled by taking many different EMG 

signal lengths from different muscles of the human 

arm. The third stage is the movement's recognition 

system. At this stage, an EMG signal features will be 
considered and processed in the same way of the first 

stage. The NN, which is used in this stage, is considered 

from the learned NN in the second stage. The processed 

features of EMG signal in this stage are taken as the 

input to NN in the forward path only and the output of 

this NN is compared by a microcontroller to decide 

about human arm movement as shown in Fig. 9. 

 

 
 

Fig. 8: Flow chart for Processing EMG Signal and Identification of NN 
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Fig. 9: Block diagram of testing recognition processing 

 

 
 
Fig. 10: The left figure showing the signal produced by the user for rotating and the right figure showing the signal produced for 

gripping 

 

Training Procedure 

The training process was implemented offline by 

taking many examples of the EMG signal which the user 

trained to produce. The user generates a long signal 

when he wants to rotate the arm and generates a short 

signal when he want to gripe something by his arm as 

shown in the Fig. 10. 

The feature vector of each window of the EMG 

signal represents the input vector of the neural network 

feature vector (Mean Willison Amplitude Variance 

Waveform Length). Table I shows the minimum and 

maximum values of each feature. 

The target vector is built by calculating the Willison 
amplitude of each window if the Willison amplitude is 
greater than 5 and less than 200 then the target = 1 
“gripping” and if the Willison is greater than 200 then 
the target = 2 “rotating”.  

The neural network will generate the output vector "Y" 
and its values (Marlow, 1993; Silcox and Rooks, 1993). 

The error is calculated using the following equation: 
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Table 1: Features values 

Feature Min value Max value 

Mean absolute value 0.1499 0.2067 
Waveform length 15.4581 175.5520 
Willison amplitude 26.0000 568.0000 
Variance  0.0032 0.0476 

 

Conclusion 

In this study, the design and implementation of a 

myoelectric arm is presented. Feature extraction of EMG 

signal is developed using a neural network. According to 

the peak detection the extracted feature is used to control 

the motion of the arm. In addition to that, an algorithm for 

input vector of the neural network feature is developed. 
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